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ABSTRACT An abstract metric representation of ligand
binding thermodynamics reveals the basic connections between
the classical thermodynamic theory of binding and linkage
[Wyman, J. (1964) Adv. Protein Chem. 19, 223-2861 and its
site-specific formulation [Di Cera, E. (1990) Biophys. Chem.
37, 147-164]. These two approaches are limit cases ofa general
metric formulation of binding and linkage that also includes a
number of intermediate "mixed" representations.

It has been shown by Weinhold (1-3) that a simple thermo-
dynamic system of a fixed scale, containing c independent
chemical components and v distinct phases, can be associ-
ated with an abstract Euclidean space, R', whose dimension,
t, is equal to the number of degrees of freedom of the system
as fixed by the Gibbs phase rule t = c - v + 2. The
(nonorthogonal) basis set {PRiO)} E R' is uniquely defined in
terms of the association

dRj *+ 19[1]
by which the differential ofeach field, Rj, is mapped into a ket
in R'. Each field, Rp, is defined, in the Griffiths-Wheeler
sense (4), as the derivative

Rj= a U({XJ})/aXj, [2]

where U({Xj}) is the internal energy of the system and {Xj} is
the set of extensities conjugate to {RjJ. The metric of R' is
determined by the properties of the Gram matrix, G, whose
elements

gy= (9?iJ91J) aRi/aXj [3]

express the mutual projections of the kets and are associated
with the fluctuations of the fields. The first two laws of
thermodynamics imply that G is symmetric and positive
definite; i.e.,

becOaU}=(aecti) [4]

because U({XjJ) has an exact differential (first law) and

In the case of a macromolecular system at constant tem-
perature and pressure, which we are particularly interested in
here, the dimension of the Euclidean space is set by the
number of components, or ligands, that interfere with each
other using the macromolecule as a transducer. The macro-
molecule is used as a scaling factor for all t extensities, {X,},
that under the assumption of mass law binding reflect the
amount ofeach ofthe ligands bound to the macromolecule (5,
6). The fields {R.} represent the chemical potential of each
ligand. The Gram matrix contains all partial derivatives
involving chemical potentials and number ofligands bound to
the macromolecule and its properties reflect linkage and
stability relationships for these partial derivatives (7). A
complete metrication of ligand binding thermodynamics can
thus be achieved by substituting for {Rat} and {X} the relevant
quantities of interest. This metric will be referred to as the
global metric ofthe system, since it encapsulates binding and
linkage arising from the mutual interference among different
ligands. Nested within this global picture is a different
description of ligand binding and linkage effects that involves
phenomena occurring locally at the level of individual sites of
the macromolecule.

Global and Local Forms of the Gibbs-Duhem Equation

Since only t vectors can be linearly independent in R', then
for an arbitrary ket INC) E- RI one necessarily has

[6]

where cj is thejth component of IN). There are infinite such
kets that can be constructed in R', but one of them is
particularly interesting as it corresponds to the negative of
the reference field, -INo), whose conjugate extensity, XO, has
been used to scale all other extensities {X,}. When the
reference field is substituted in Eq. 6 an abstract metric form
of the Gibbs-Duhem equation is obtained; i.e.,

I9io)= E xil >,
J=l

[7]
[5]

because U({Xj}) has an extremal value at equilibrium (second
law). The nonsingularity of G ensures that the dimension of
Rt actually equals the number of degrees of freedom of the
system and that the inverse Gram matrix G', with elements
(XilX,) = aXi/aRj, exists and is itself symmetric and positive
definite. The connection of the foregoing abstract metric
treatment with the properties of real systems is to be seen in
the fundamental properties of the matrix G, as well as in the
association embodied by Eq. 3.

where it is understood that each Xi = -8Ro/8Rj is expressed
in X0 units. As pointed out by Weinhold (2), the Gibbs-
Duhem equation has a simple geometric interpretation as the
"impossibility offinding t + 1 linearly independent vectors in
a t-dimensional space." There are, however, additional as-
pects that need to be stressed in the case of macromolecular
systems. First, one has to recognize that the thermodynamic
picture cast in terms of the Gibbs-Duhem equation is only
one of infinite alternative ways of characterizing the thermo-
dynamic properties of the system. In fact, any arbitrary ket
Iye) E Rt, ofwhich -j9o) is a particular one, can be associated
with the differential of a potential that is a function of the
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fields {R.}. Second, one can think of the Gibbs-Duhem
equation as a way of characterizing the overall behavior of
the basis set {jAR)} E 1R', with -19Ro) being a resulting vector
over the manifold spanned by the basis set {I9%)}. Such an
interpretation can be extended to any ket 191) that can be
regarded as a resulting vector over the subspace lr(j) spanned
by r(j) linearly independent kets. This means that any
component 19,) of the basis set {19i} can give rise to a local
Gibbs-Duhem equation in Rrty); i.e.,

r(j)

l)= > cij49ji), [8]
i= 1

where the component c values are expressed in Xj units. The
basis set {J91j)} forms a submetric isomorphic with the pos-
itive-definite metric in R'. Substitution of Eq. 8 into Eq. 7
yields

roj)
2) = 2 AIX 9C1jii.), 19]

j=1 i=1

where I.) 9-10o) is the differential of a potential associated
with the Gibbs-Duhem equation and r(j) is the dimension of
the manifold associated with the ket PRY). Equivalence be-
tween Eqs. 7 and 9 leads to the operator representation

r(j)

a/aRj = a/Rji = Vj, [10]

whereby the derivative J/dRj in the global picture can be
given a local interpretation as the "gradient" computed over
the subspace R'(J), so that the jth component of Jy) in RI is
expressed in terms of the components of 1R) in Rr. Hence,

r(j)
Cji = 1. [11]

Introduction of the new quantities Xj, Xcji, which are
scaled only with respect to the reference component X0, leads
to a generalized local form of the Gibbs-Duhem equation as
follows

tr(J)
l2)=22 Xjil~j,). [12]

J=1 t=1

The consequence of Eq. 12 is that the metric constructed in
terms of the global basis set {J1)} E I can be mapped 1:1
into the metric constructed in terms of the local basis set
{IUSA)} EE RI, where E = r(1) + r(2) + ... r(t) (8, 9). The two
representations are isomorphic and differ solely for the
dimensionality of the manifold to which they are associated.
The higher dimensionality of RI arises from the fact that each
ket of R' is now expressed locally in terms of its components
in the subspace RrI). The possibility of accessing the infor-
mation stored at the local level is translated into an increased
number of linearly independent vectors in the abstract hy-
perspace associated with the thermodynamic system under
consideration. The classical form of the Gibbs-Duhem equa-
tion is obtained from this new, local description, when the
independent vectors 191j,) of each of the subspaces R r(il are
expressed in terms of their resulting, global vectors 91j). In
the global description each vector 191) can be given a simple
geometric representation as the vector drawn from the origin
of the basis set in Rr(J) to the center of mass of the subspace.
In fact, if the "masses" c , c2e I . . , cats in Eq. 8 are located
at 91.), R91), . . ., 91jr() in the subspace RrQ), then '91) is
the coordinate of the center of mass of the subspace. Con-
sequently, for any vector IN) E R' one necessarily has

[13]

whereby the ket 1,9) is bounded between the smallest and
largest kets in the subspace R'r).

Metrization of Local (Site-Specific) Binding and
Linkage Effects

The construction of a local metric as discussed above from a
classical, global treatment of equilibrium thermodynamics
stems from the possibility of defining new independent ther-
modynamic fields that can be accessed in the experimental
approach to the system under consideration. Such a possi-
bility is particularly relevant for a system composed of a
biological macromolecule and a number of ligands that in-
teract with it. In the global treatment of this system the ket
-19o) associated with the differential of the chemical poten-
tial of the macromolecule is expressed in terms of its com-
ponents Xj in the basis set {f191)} EiRI', where each field Rj
equals the chemical potential of ligandj. Let us now take one
of these ligands, say j, and consider it as the reference
component of an abstract subspace whose basis set is asso-
ciated with r(j) "ligands." What do these r(j) ligands
represent? For the basis set ofthe subspace to have a physical
meaning, the r(j) ligands must be associated with measurable
quantities that can be distinguished from one another, just as
in the case of the t ligands entering the definition of the global
form of the Gibbs-Duhem equation. Consequently, ligand j
has as many ligands in the abstract subspace RrO as there are
sites of the macromolecule where it can bind, provided one
can follow each site-specific binding reaction separately.
When this is the case, as recently shown in a number of
biochemical systems (9), then the number of sites for ligand
j sets the dimension of a local subspace where I9) parallels
191o) in the global picture. The fields of this local description
must reflect the properties of each individual Xj-binding site
ofthe macromolecule and, by analogy with the basis set in the
global description, they must be defined in the absence ofany
other field. There is one, and only one, such quantity, that is,
the association constant Kji between ligand Xj and its ith
binding site when all the other sites are unligated (8, 9). This
quantity reflects the properties of site i alone so that the field
IN) can be cast in terms of a basis set {j9ij)} associated with
the logarithm of each site-specific association constant. Met-
rization ofthe subspace therefore hinges upon the association

[14]

that parallels Eq. 1 in the global picture. The term Xjl
conjugate to the field I91j) gives the probability of the ith site
for ligand j being ligated. The ratio Xji/Xj, where Xj is the
number of ligandsj bound to the macromolecule, represents
the "mass" located at 19,i) in the subspace.

Existence of a local metric greatly expands the dimension-
ality of the abstract metric space while keeping the type of
metric unaltered. The dimension of the Euclidean space
associated with the system under consideration is equal to the
number of ligands, in the case of the global picture, and
increases to the total number of sites of the macromolecule
in the local description. Therefore, associated with Eq. 12 is
the Gram matrix GI whose elements

gim,jn = (9ims9lin) [15]

express the mutual projections of the kets and are associated
with the fluctuations of the site-specific fields. Again, from
the first two laws of thermodynamics it follows that GX is
symmetric and positive definite; i.e.,

(iml9in) = (inl9iim) [16]
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and

[17]

while the nonsingularity of GE ensures that the dimension of
RE actually equals the total number of ligand binding sites of
the macromolecule, as well as the fact that the inverse
Gramian (GE)-l exists and is itself symmetric and positive
definite (9).

Mixed Representations

From the operator equivalence in Eq. 10 it follows that there
are 2' possible representations ofthe Gibbs-Duhem equation,
which can be obtained by in turn substituting each field 1RJ)
with the local basis set {IRJ,)}. Each of these representations
gives rise to a different Gram matrix. The choice of a
particular representation is solely dictated by our ability to
access the information stored at the local level for each
particular ligand. When only the global information can be
accessed, we are dealing with the "classical" description of
binding and linkage effects cast in terms of the global fields
IIJ) associated with the chemical potentials of the t ligands
present (5, 6). On the other hand, when each binding reaction
can be followed at the local, site-specific level then we deal
with a higher-dimensional abstract metric space where each
coordinate is associated with the association constant ofeach
site (8, 9). Between these two limiting representations there
are a number of "mixed" representations where some bind-
ing and linkage effects are treated globally and some locally.
In this case we deal with the interplay between global and
local properties of the system involving two or more ligands.

Consider the case of two ligands, each having two binding
sites for the macromolecule. The possible Gibbs-Duhem
representations are

) = X19i1) + X2l12) [18a]

I-) = X111941) + X121R12) + X21R2) [18b]

Ike) = X119R) + X211921) + X221i22) [18c]

I-T) = X111R11) + X12142) + X211921) + X22IN22), [18d1

where X1 and X2 are the number of ligands 1 and 2 bound to
the macromolecule, X11 and X12 are the probabilities ofligand
1 binding to its sites 1 and 2, and similarly X21 and X22 are the
probabilities of ligand 2 binding to its sites 1 and 2. It also
follows from Eqs. 11 and 12 that X11 + X12 = X1 and X21 +
X22 = X2. The first representation, Eq. 18a, is the classical
global description based on the chemical potentials ofligands
1 and 2. The last representation, Eq. 18d, is the local
description based on the site-specific association constants of
the four sites. Two mixed representations, Eq. 18b and 1&c,
show the interplay between ligand chemical potentials and
site-specific association constants. The Gram matrices

l(91119) AI1R2) 1gll 912
G2= =I *..... [19a]

(9R21J1) (M219i2) / g21 /22
(94119111) (94119412) 112)

G2> C12
G- (911219R11) (9R21942) (9t12|I2) =

(9121OR11) (R12) (91219b2)[19b]

(9l191 ) (91119t2l) (91I922)
911 * C12

G (91211911) (92119121) (921192n> =..C..G22(G3221=11) (2)/ C21.2 G222
( 22194) (M2219t2l) (M22M22)
F-(9119411) (9illIT12) (9111IM21) (OR11IT22)'

(91219ill) (l21912) (942192l) AlIMR22)

(M21IR11) M211942) M2119i2l) MMMl22)

(912219111) (91221942) MM22R21) (M2219122)-

Gil: G12
...... ......

G21 . G22

[19d]

are associated with each representation. The elements of the
matrix G4 can be partitioned into four matrices. The diagonal
matrices correspond to the Gram matrices of the two sub-
spaces spanned by the site-specific fields coupled to the two
ligands. The off-diagonal matrices reflect linkage properties
between the two subspaces. The remaining three Gram
matrices in Eq. 19a-c can be partitioned in an analogous way.
In general, each diagonal matrix will always be associated
with the Gram matrix of a subspace, and each off-diagonal
matrix will reflect linkage between subspaces. In the case of
the global representation each subspace is one-dimensional
and the Gram matrix associated with it is simply the diagonal
element of the Gram matrix of the whole t-dimensional
hyperspace. In the case of a mixed representation, one-
dimensional subspaces linked to global fields coexist with
multidimensional subspaces spanned by the local fields. In
general, for a system of t ligands there are a total of2' possible
representations. One ofthem is t-dimensional and global, one
is s-dimensional and local, and 2' - 2 are mixed and with a
dimensionality bounded from t to X.

Global and Local Linkage Effects

The interplay between global and local representations is best
understood mathematically through Eq. 10. The global link-
age relationship (5, 6)

aXi/aR. = aXA/aRi [20al

can be given a local interpretation using the gradient operator
V. The linkage between ligand i and the sites binding ligand
j is embodied by the relationship

VjXi= aXjlaR,. [20b]

Since Xi = Xn + X,2 = . . . Xj,,), then the left-hand side of
Eq. 18b simply states that the sum of all elements of the
submatrix G..1 of (G')-' equals the global derivative on the
right-hand side. Therefore, a partial derivative expressing
linkage in the global sense corresponds to the sum of the
elements of a local matrix. Similarly, for the linkage between
ligand j and the sites of ligand i one has

aXi/aRj = ViXj [20c]

and finally

V*AT = VAT. [20d]
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expresses linkage between the two sets of sites.
The generality of Eq. 10 can be exploited further to derive

other linkage relationships. From the symmetry properties of
the Gram matrix of the subspace associated with the global
field IN) it follows, for any two local fields 19ijm) and 19ij,)'
that

(Oiml Ijn) =(Oinlj1jm). [21]

Hence, from the symmetry properties of the inverse Gram
matrix of this subspace it must follow that (8, 9)

aXjm/aRin = aXin/aRim. [22]

Summing over the index m on both sides of Eq. 22 yields

aXj/aR1n = VjXn = aXn/laR [23]

which is an interesting linkage relationship in the subspace
Rr(j) involving the gradient and the basis vector 1j9,). The
effect of the local field Rjn on the global quantity Xj equals the
effect of the gradient, or else the global field Rp, on the local
quantity Xj,. Summing now over n in both sides of Eq. 23
yields

VjXj = aXj/aRj =g> 0, [24]

which is the effect ofthe global field on its conjugate extensity
or else the binding capacity of the ligand (7). We have thus
expressed the binding capacity of a ligand as the sum of the
elements ofthe inverse Gram matrix of the subspace spanned
by the local fields associated with the ligand chemical po-
tential. This sum must be positive as a consequence of the
second law. It also follows from Eq. 23 that the sum of the
elements of the nth row, or equivalently of the nth column,
of the inverse Gram matrix of the subspace gives the binding
capacity of the nth site and, consequently, the binding
capacity of the ligand equals the sum of the site-specific
binding capacities (8, 9). The linkage relationship given in Eq.
23 allows for a definition of the binding capacity of site n as
the change of the number of ligands bound to the macromol-
ecule, Xj, due to a change in the site-specific association
constant Kjn of that site. Such a change is equivalent to the

sum ofthe changes ofeach site-specific binding isotherm, Xjl,
XJ, ..., Xjr(j) due to a change of Kj, or else to the sum of
the changes of Xj, due to changes of each of the association
constants K-1, K 2, Kjroj).
Conclusion

Application ofthe foregoing abstract metric considerations to
real systems is straightforward once the partition function of
the system, related as it is to the potential associated with the
Gibbs-Duhem equation, is cast in terms ofthe relevant global
and local quantities, such as ligand chemical potentials and
site-specific association constants. Elementary transforma-
tions in the abstract metric space map into corresponding
transformations of the partition function. The whole infor-
mation stored in the partition function can be explored by
suitable "contractions" of the abstract metric space that
correspond to sampling linearly independent sets of site-
specific configurations of the system (9). The "complexity"
of such a geometric interpretation of binding and linkage
effects is only apparent. Indeed this approach reveals in a
rather general and straightforward way the basic aspects that
dominate global and local binding effects at equilibrium. It
also points out that a "continuous" transition exists between
the classical theory of binding and linkage (5, 6) and the
recently developed theory of site-specific binding phenom-
ena (8, 9). Both theories can now be interpreted as limit cases
of the general approach taken here where the transition from
the global to the local metric is traced using intermediate
"mixed" representations.
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