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Abstract

Evolutionary pathways describe trajectories of biological evolution in the space of different

variants of organisms (genotypes). The probability of existence and the number of evolution-

ary pathways that lead from a given genotype to a better-adapted genotype are important

measures of accessibility of local fitness optima and the reproducibility of evolution. Both

quantities have been studied in simple mathematical models where genotypes are repre-

sented as binary sequences of two types of basic units, and the network of permitted muta-

tions between the genotypes is a hypercube graph. However, it is unclear how these results

translate to the biologically relevant case in which genotypes are represented by sequences

of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins),

and the mutational graph is not the hypercube. Here we investigate accessibility of the best-

adapted genotype in the general case of K > 2 units. Using computer generated and experi-

mental fitness landscapes we show that accessibility of the global fitness maximum

increases with K and can be much higher than for binary sequences. The increase in acces-

sibility comes from the increase in the number of indirect trajectories exploited by evolution

for higher K. As one of the consequences, the fraction of genotypes that are accessible

increases by three orders of magnitude when the number of units K increases from 2 to 16

for landscapes of size N * 106 genotypes. This suggests that evolution can follow many dif-

ferent trajectories on such landscapes and the reconstruction of evolutionary pathways from

experimental data might be an extremely difficult task.

Author Summary

Biological evolution is driven by heritable, genetic alterations that affect the fitness of

organisms. However, the pool of “fitter” variants (genotypes) is often restricted and it is

not at all obvious how evolution finds its way from low-fitness to high-fitness genotypes

in a complex, multidimensional “fitness landscapes” with many peaks (fit organisms) and
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valleys (unfit ones). To address this question we investigate how likely it is for biological

evolution to find a way “uphill” from a lower-fitness organism to the best adapted organ-

ism. We discover that the accessibility of the fittest organism depends on the number of

types of basic “units” used to encode genotypes. These units can be, for example, the four

DNA nucleotides A,T,C,G, or the *20 amino acids used for synthesizing proteins, and

the choice of the most appropriate unit is dictated by how the genotypes and the fitnesses

are related—a relationship that researchers have begun to unveil only recently. We find

that increasing the number of units strongly increases the probability that there will be at

least one uphill path to the best-adapted genotype, and the number of evolutionary path-

ways leading to it. Our findings suggest that biological evolution can follow many more

pathways than previously thought.

Introduction

Biological evolution can be visualised as a dynamical process in which reproduction and muta-

tions cause organisms to move in the “fitness landscape” [1]—a complex, multidimensional

landscape full of ridges and local peaks in which space represents genetic variants (genotypes)

of organisms, and “height” corresponds to organism’s fitness—a measure of the reproductive

success.

The structure of the fitness landscape (FL) affects the speed and predictability of biological

evolution and is thus very important for practical reasons such as forecasting the evolution of

resistance to antibiotics [2–7]. However, fitness landscapes are astronomically large even for

the simplest organisms: the number of possible genotypes with the same genome size as the

smallest known bacterial genome to-date (Nasuia deltocephalinicola [8], L = 112kbp) is

N = 4112000� 1067430 genotypes. For this reason only small fragments of fitness landscapes

have been determined experimentally [3, 9–13] and progress has been made mostly by study-

ing adaptation in computer-generated landscapes (see e.g. [14–16]) or in simple theoretical

models (see e.g. House-of-Cards [17], NK [18], Mount Fuji [19], holey landscapes [20]). In

these models genotypes are typically represented as binary sequences, where 0 and 1 corre-

spond to two different alleles of a gene or a particular point mutation being absent/present.

This choice has been dictated by three factors: (i) availability of empirical data in which geno-

types usually differ by specific point mutations from a certain “wild-type” genotype (cf. Refs.

[10, 11]), (ii) most studies focused on the shortest evolutionary pathways for which (as we will

see later) the number of alleles is not important, (iii) under the assumption that offspring differ

from their parent by only one character, the resulting graph of permitted mutations is the

hypercube graph and this greatly facilitates mathematical analysis [17, 21].

However, the space of real genotypes and their mutational network differ significantly from

the space of binary sequences and the hypercube graph. A DNA sequence is made of four dif-

ferent nucleotides (A,T,G,C), hence at the most fundamental level genotypes must be repre-

sented as sequences of K = 4 different characters. Another example with K = 4 is RNA folding

in which relationship between the coding sequence and the corresponding secondary-struc-

ture defines a landscape of energetically favorable RNA conformations [22–24]. On a more

coarse-grained level, assuming that fitness is determined primarily by protein structure, a

genotype can be represented as a sequence of characters from a set of K> 20 symbols which

correspond to 20 standard amino acids [25–27] and their post-translational modifications.

Finally, if we consider genotypes as sequences of genes, K is equal to the number of different

variants (alleles) of genes and is practically infinite. All these examples are valid descriptions of
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the genotype space but they lead to different structures of the corresponding fitness landscape:

different genotype-to-fitness mappings and different structures of the graphs of possible tran-

sitions (mutations) between the genotypes.

Here we investigate how the global structure of the fitness landscape is affected by the num-

ber K of different “units”, or characters, of which sequences of length L representing genotypes

are made, and the structure of the corresponding mutational graph (Fig 1). We focus on evolu-

tionary accessibility of the global fitness maximum. An accessible pathway is a trajectory in the

genotype space along which fitness increases monotonically. Accessible pathways are impor-

tant because in the low mutation-strong selection limit [28–30] such pathways are good

approximations to evolutionary trajectories obtained in computer models of biological evolu-

tion, regardless of the details of the model. Accessible pathways are thus expected to represent

real evolutionary pathways, at least in some experiments [3].

While we intuitively expect that increasing the number of coding units and hence the con-

nectivity of the mutational graph should increase accessibility if the total number of genotypes

N = KL is kept fixed, it is not obvious how increasing L affects accessibility for different K. In

the case of well-studied binary landscapes (K = 2) the probability that a maximally random

(House-of-Cards) fitness landscape has at least one accessible pathway approaches zero as

L!1 [30–32]. While many evolutionary models have been studied in the case K> 2 [33–

36], these works have not addressed accessibility of fitness landscapes. It is also unclear what

happens for K> 2 in the presence of correlations between the fitnesses that exist in many real

fitness landscapes [10].

To address these questions, we analyse computer-generated and experimental fitness land-

scapes with various K and L. First, we show that if maximally random landscapes with the

same number of genotypes N = KL but different K are compared, larger K leads to higher acces-

sibility. In contrast to the binary case K = 2, in the large-L limit the landscape with K> 2 con-

tains on average at least one pathway. We demonstrate that as K increases, accessible pathways

become longer and contain an increasing number of indirect mutations which do not decrease

the distance to the fittest genotype. We also show that accessibility depends strongly on the fit-

ness of the initial genotype, f0, and that a transition occurs at some critical f0 above which there

Fig 1. Different numbers of sequence-coding units K result in different mutational structures of the fitness landscape. Examples of

two fitness landscapes with K = 2 and K = 4 and the same number of genotypes N = 16. Grey arrows show the direction of increasing fitness.

Two accessible pathways (black = with indirect mutations, green = without indirect mutations) have been highlighted. For K = 4, indirect

mutations can be either backward (increasing the Hamming distance from the target genotype) or distance-neutral (the Hamming distance

remains unchanged).

doi:10.1371/journal.pcbi.1005218.g001
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are no accessible pathways. Finally, we confirm our predictions for two experimentally deter-

mined fitness landscapes.

Modelling framework

We consider the space of all possible sequences of length L made of symbols taken from a K-

letter alphabet. Each sequence i = 0, . . ., KL − 1 represents a genotype in the discrete genotype

space, with i = 0 corresponding to sequence {0, 0, 0, . . ., 0} and i = KL − 1 to {K − 1, K − 1,

K − 1, . . ., K − 1}. The genotypes are connected by a network of mutations that change one

genotype into another one. We assume that any position in the sequence can mutate with

equal probability and that a mutation at a given position changes the symbol at this position to

another randomly selected symbol. Therefore, two genotypes are connected if they differ at

exactly one position.

To create a fitness landscape, we assign random fitnesses {fi} to all genotypes. Each fitness fi
is a random number drawn independently from the probability distribution uniform on

[0. . .1). Next, we re-index all genotypes such that genotype {K − 1, K − 1, K − 1, . . ., K − 1} has

the maximum fitness (Methods). This procedure creates an ensemble of maximally-random or

“rugged” fitness landscapes with no correlations between the fitnesses of adjacent genotypes.

This is arguably the simplest non-trivial model of the fitness landscape with many local max-

ima and minima and thus it presents an ideal test ground to investigate the role of connectivity

on the accessibility of FLs. Although real landscapes are known to be moderately correlated

[10, 37–39], we shall show later that our conclusions are robust in the presence of such

correlations.

We define a pathway in the genotype space as a trajectory that connects two given geno-

types following the links of the mutational graph. We call a pathway accessible if fitness

increases monotonically from the start to the end point along the pathway. We consider only

such evolutionary trajectories that begin at genotype {0, 0, 0, . . ., 0} and end at the best-fit,

antipodal genotype {K − 1, K − 1, K − 1, . . ., K − 1}. Following Ref. [10], we call a FL accessible

if there is at least one accessible path between the target and the initial genotype (Fig 1). We

also define accessibility A as the probability that a FL randomly selected from our statistical

ensemble is accessible.

Results

Computational model

Accessibility increases with K. We investigated how accessibility varied with the number

of genotypes N = KL for different K. We first considered only pathways without “backward

mutations”, that is pathways along which the Hamming distance from the initial genotype

increased (or remained the same for K> 2) with each step. Fig 2a shows that accessibility A
slowly decreases with increasing N, for all K. When K = 2, we recover the mathematical result

of Hegarty et al. [31] that A tends to zero for N!1. However, when K> 2, accessibility

approaches a finite, non-zero value in the large-N limit. The estimated asymptotic accessibility

A1 = A(N!1) increases with K and equals 47%, 69% and 81% for K = 4, 8, and 16 (S1 Fig)

(standard errors <1%). Therefore, for sufficiently long sequences accessibility is larger for a

larger number of basic unit types.

Fig 2b shows that the same trend holds when all pathways and not just the ones without

backward mutations are considered. However, in the latter case A1 remains finite also for

K = 2. A comparison of panels (a), (b) in Fig 2 shows that, except for the case K = 2, accessibil-

ity is almost identical regardless of whether pathways with backward mutations are included

or not. We shall see later that A1 does not change much for K> 2 because the fraction of
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backward mutations is small compared to other (distance-neutral) mutations, see Fig 3. When

K = 2 we recover the analytical prediction A = 0.1186. . . from Berestycki et al. [32]. We also

note that if only shortest pathways are included for K> 2, accessibility tends to zero as N!1
because in this case only mutations that change the symbol “0” to K − 1 are permitted and thus

Fig 2. Accessibility increases with increasing number of unit types K. (a) Plots of accessibility A versus the number of genotypes N for

different K (black, red, blue, and green triangles) and for pathways without backward mutations. A tends to zero as N!1 for K = 2. (b)

Accessibility versus N for all pathways, including indirect ones (circles). In both panels the dashed lines correspond to asymptotic estimates

of accessibility A1 (cf. S1 Fig).

doi:10.1371/journal.pcbi.1005218.g002

Fig 3. Indirect mutations dominate evolutionary trajectories for fitness landscapes with K > 2. (a) Average number of mutational

steps (pathway length) along accessible pathway for a fixed length of genotype L. Fractions of forward, distance-neutral, and backward

mutations are indicated by coloured areas between the curves, for example the fraction of forward mutations corresponds to the distance

between the red and the gray curve. (b) Average length of accessible pathway for a fixed number of genotypes N. (c) Average length of

accessible pathway for a fixed number of coding units K (circles) with straight lines fitted to the data (lines). Note that the fraction of shortest

pathways (with only forward mutations) among all pathways quickly decreases (cf. S3 Fig).

doi:10.1371/journal.pcbi.1005218.g003
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the space of permitted genotypes is restricted to that of binary sequences (K = 2). Since path-

ways without backward mutations form only a small subset of all pathways for K> 2 (S2 Fig)

in the rest of the paper we shall consider all pathways when discussing accessibility.

Larger K increases the length of accessible pathways and the fraction of indirect muta-

tions in such pathways. We next investigated the attributes of individual accessible path-

ways: their length and the fraction of backward mutations. Increasing K while keeping L fixed

makes accessible pathways longer (Fig 3a). Interestingly, the average length scales as *0.5LK
and only weakly depends on N (S4 Fig). Notice that by fixing L we keep the same mutational

(Hamming) distance between the initial and target genotype, thus any increase in pathway

length for K> 2 must be caused by mutations that either do not change the Hamming distance

from the initial genotype (distance-neutral mutations) or decrease it (backward mutations),

which we jointly refer to as indirect mutations. This is indeed what happens; S2 Fig shows that

the probability that an accessible path has backward or distance-neutral mutations increases

with K if we compare fitness landscapes with the same L. Moreover, the higher K the more

dominating are distance-neutral mutations (Fig 3a). For example, for K = 16 and L = 5 accessi-

ble pathways have on average 5% of backward, 15% of forward and 80% of distance-neutral

mutations. This is in contrast to the binary case K = 2 and L = 5 in which forward mutations

account for 98% of all mutations, and the remaining 2% are backward mutations. Keeping N
or K fixed while changing K or L (Fig 3b and 3c) does not qualitatively change this picture.

Hence, higher accessibility of FLs with multiple coding units comes with a price: accessible

pathways become longer, and more mutational steps are required to reach the best-fit geno-

type than in the binary case (K = 2).

Initial fitness affects the number of pathways and accessibility. So far we have been

assigning a random fitness to the initial genotype. We may however expect that the fitness f0 of

the initial genotype strongly affects the number of accessible pathways from that genotype to

the antipodal, best-fit genotype. If f0 was close to the maximal fitness we would intuitively

expect few (or no) pathways, whereas for small f0 such pathways would be more likely. This

phenomenon was first noted in Ref. [40] under notion of “accessibility percolation” and fur-

ther studied for binary sequences (K = 2) [31, 32, 41]. Fig 4a shows that this is also the case for

K> 2: the number of accessible pathways decreases with increasing f0. Moreover, accessibility

sharply decreases from� 1 to zero as f0 crosses a critical fcrit, different for each K (Fig 4b). This

transition between accessible and inaccessible FLs becomes sharper with increasing L, and for

L!1 the numerical value of fcrit approaches A1. Thus, for L large enough, while accessible

pathways exist for K = 2 only if the initial fitness is very low (f0 < 0.1), the number of such

pathways is non-zero even for relatively large f0 when K> 2.

Accessible pathways can cover most of the FL. Fig 4a shows that the number of accessi-

ble pathways increases by several orders of magnitude when K increases from 2 to 16. This is

associated with a rapid increase in the number of genotypes belonging to accessible pathways,

i.e., the coverage of the FL (Fig 5). In particular, for K = 2 the average coverage of the FL equals

0.02%, whereas for K = 16 around 25% of genotypes belong to accessible pathways. Coverage

can exceed 50% when the initial fitness f0 is small (S5 Fig). The increase in the number of

accessible pathways and accessible genotypes has important consequences for the a posteriori
predictability of biological evolution: given the initial and final genotypes, we cannot reliably

predict the pathway biological evolution might have followed if K> 2.

Experimental fitness landscapes

We next verified the predictions of our computer model using two experimentally determined

fitness landscapes. We first analysed the landscape of DNA-protein affinities [39], with binding
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affinity to the fluorescent protein allophycocyanin as a proxy for fitness. By selecting subsets of

genotypes (Methods) we generated two ensembles of fitness landscapes with L = 5, K = 4 and

L = 10, K = 2 (N = 1024 genotypes in each case).

We obtained accessibility A = 0.669(5) for K = 2 and A = 0.864(4) for K = 4, thus confirming

our prediction that A increases with K (Fig 6a–6c). The values of A are higher than for the

Fig 4. Accessibility strongly depends on the initial fitness. (a) Average number of accessible pathways as a function of initial fitness f0
for different K and for N = 220. Shaded areas represent standard errors. (b) Accessibility A as a function of initial fitness f0 for different K and

for N = 228. A steep decrease in accessibility at some critical f0 (dashed line) indicates that the probability of reaching the best-fit genotype

can be very sensitive to the initial fitness.

doi:10.1371/journal.pcbi.1005218.g004

Fig 5. Accessible pathways cover a large part of FL for K > 2. The total number of genotypes (grey) and the genotypes belonging to

accessible pathways (colours black, red, and green) as a function of Hamming distance from the target genotype, for fitness landscapes with

different number of coding units K = 2, 4, 16 (panels a, b, c) and the same number of genotypes N = 220. The shaded area under the curve

corresponds to the total number of genotypes (for any distance) that belong to accessible pathways. Coverage (the fraction of genotypes in

accessible pathways) is also shown.

doi:10.1371/journal.pcbi.1005218.g005
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maximally random landscape (Fig 2) because the fitness values are negatively correlated with

the distance to the target genotype, i.e., the closer to the target genotype, the higher is the fit-

ness (Fig 6b). If we randomize the fitness landscapes by randomly swapping the fitnesses, the

expected A decreases and it matches the value obtained for the maximally random landscape.

Correlations between the fitness and the distance of a genotype to the target genotype can

therefore significantly increase accessibility. We note that this is not caused by the difference

between the distributions of f0 for randomized and original FLs because these distributions

strongly overlap (Fig 6c). This observation indicates that accessibility can be enhanced by fit-

ness-to-distance correlations in FLs, in accordance with [30].

We further investigated how the fitness of the initial genotype affects accessibility, i.e.,

whether there is some critical value of initial fitness separating regions of FLs with high and

low accessibility. To account for the non-uniform distribution of the experimental fitnesses we

transformed the fitnesses such that the new fitness distribution was uniform, while preserving

the order of the fitnesses and local correlations (epistasis), i.e., if f0 < f1 < f2 < . . .< fN − 1 then

the transformed fitnesses ~f 0 <
~f 1 <

~f 2 < . . . < ~f N� 1. The estimated critical values of ~f 0 are

0.69(1) and 0.90(1) for K = 2 and K = 4 respectively (Fig 7a). These values are close to the

Fig 6. Accesibility of experimental FLs. Panels (a-c): data from Rowe et al. [39], panels (d-f): data from Guenther et al. [42]. (a,d)

Accessibility of the sub-FLs for K = 2, 4 (red), and for their randomized counterparts with the same fitness distribution (grey). Randomization

decreases accessibility to that of a maximally-random FL. (b,e) Average genotype fitness in sub-landscapes with K = 2 as a function of the

distance from the target genotype. Randomization removes correlations present in the original FL. (c,f) Histogram of the fitness of the initial

genotype; the average fitness for each histograms is the same as the average fitness value of the antipodal genotype (the right-most points

in Panels b, e).

doi:10.1371/journal.pcbi.1005218.g006
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estimated values of A from Fig 6a; the critical fcrit increases with K similarly as in the maximally

random model.

The presence of fitness-to-distance correlations affects also other properties of FLs: there

are more accessible pathways leading to the best-fit genotype (Fig 7b), the pathways are longer

and the fraction of accessible genotypes is higher than in the maximally random model (S1

Table). Moreover, the fractions of accessible genotypes for K = 2 and K = 4 are large and

behave similarly when plotted against ~f 0 (Fig 7c), but when fitness-to-distance correlations are

removed the two curves separate. Correlations thus enhance accessibility for both K = 2 and

K = 4, making a posteriori predictability of evolutionary trajectories even more difficult than in

the case of the maximally-random FL.

In order to confirm that the observed behaviour is not unique to the specific experimental

data set of Ref. [39], we analysed a second landscape of RNA-protein binding affinity [42]. We

assumed fitness to be proportional to the rate constant for the reaction of the RNA-binding

subunit C5 of RNase P with all variants of the 6-nucleotide recognition site (Methods).

Fig 7. Fitness-to-distance correlation impacts accessibility and coverage of the experimental FLs. Panels (a-c): data from Rowe

et al. [39], panels (d-f): data from Guenther et al. [42]. (a,d) Accessibility of the sub-FLs for K = 2, 4 (red circles, red triangles), and for their

randomized counterparts (grey, black) as a function of rescaled initial fitness ~f 0. In the presence of fitness-to-distance correlations

landscapes with high levels of ~f 0 are mostly accessible compared to the case with no correlations. (b,e) Number of paths exhibits as a

function of rescaled initial fitness ~f 0. Presence of fitness-to-distance correlations increased number of pathways by a few orders of

magnitude compared with the randomized ensemble. (c,f) Coverage of experimental sub-FLs and their randomized counterparts as a

function of ~f 0. The insets show the same data in semi-log scales. In the case of K = 2 correlations increase the fraction of accessible

genotypes to levels observed for FLs with K = 4.

doi:10.1371/journal.pcbi.1005218.g007
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Proceeding similarly as before, we generated sub-FLs with L = 3, K = 4 and L = 6, K = 2

(N = 64 genotypes). The results for this second landscape (Fig 6d–6f, Fig 7d–7f, S1 Table)

turned out to be consistent with the results reported above.

Note that although our approach in which we identify fitness with binding affinity of a pro-

tein to an RNA or a DNA sequence is commonly used in the literature, the fitness defined in

this way is not “true fitness”, i.e., it does not have to directly correspond to reproductive suc-

cess of an organism in which the described interactions take place.

Discussion

Although the concept of the fitness landscape was proposed almost a century ago [1], many

open problems remain. Setting aside the appropriateness of the FL to model evolution in the

presence of interactions between different organisms, one of the important questions is the

accessibility of local fitness peaks: are such peaks sufficiently well connected, or are they sepa-

rated by “fitness valleys” which are so deep that evolution cannot reach most of them? Another

question concerns the predictability of evolution: how many evolutionary trajectories lead

from one genotype to another, better adapted genotype?

Our results show that the answer to these questions depends on how genotypes are con-

nected in the genotype space, i.e., which transitions between the genotypes are permitted and

which are not. Since genetic information is stored in a linear molecule (DNA), genotypes are

most naturally represented as linear sequences of some “units” of information, or building

blocks, and this already imposes restrictions on the structure of the mutational graph. More-

over, the nature of the smallest unit of information and how mutations convert one unit into

another further affects how genotypes are connected and how they are mapped to fitnesses.

The choice of the appropriate “unit” depends on the subset of the fitness landscape considered

in a particular research problem. While the presence or absence (K = 2) of a certain point

mutation leads to a simple mathematical model, this approach is limited to small fragments of

fitness landscapes and it requires the knowledge of which mutations are important and which

can be ignored [11]. How many unit types are necessary to model the most general situation?

Since the DNA code uses four nucleotides, K = 4 building blocks should in theory suffice to

represent all possible genotypes. On the other hand, the redundancy of the genetic code might

suggest that the most appropriate unit should rather be an amino acid, in which case K� 20.

However, this could be disputed because there is evidence that synonymous codons can be

translated at different rates [43–45] which may affect fitness.

We have seen that increasing the number of basic units or “alleles” K generally increases

accessibility. This is not just a trivial consequence of increased connectivity of the mutational

graph (number of permitted mutations for each genotype). Connectivity also increases with

increasing sequence length L, but this actually slightly decreases accessibility (cf. Fig 2).

Increasing K changes not only how many neighbours a genotype has in the genotype space,

but it affects the global topology of the network of genotypes. Since accessibility of the global

fitness maximum is a global property of the fitness landscape, it depends on K. This is in con-

trast to local properties such as the number of local fitness maxima, which depend only on the

number of nearest neighbours and is thus the same for FLs with the same value of the product

(K − 1)L [17].

The presence of multiple alleles has also one more important effect—it enables pathways to

explore a much larger part of the fitness landscape through mutations that either do not

decrease the Hamming distance to the target genotype or even increase it (backward muta-

tions). This greatly enhances accessibility by exploring genotypes through indirect mutations,

effectively circumventing regions of sign epistasis [46–48]. This observation has been recently
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supported by experimental study of the four-site IgG-binding domain of protein G (L = 4,

K = 20) [49] which shows that direct paths are often blocked by reciprocal sign epistasis, and

only indirect pathways can access high-fitness regions of the landscape.

By re-sampling two experimental fitness landscapes [39, 42] we have found that the pres-

ence of correlations between the fitnesses facilitates evolution and, as a result, accessibility and

the fraction of accessible genotypes for K = 2 increases to a level comparable with that of the

maximally-random FL with K> 2. For larger K the increase of accessibility is not so pro-

nounced (accessibility is already high in the maximally random FL), but the number of accessi-

ble pathways increases by many orders of magnitudes: there are *1010 pathways in the

presence of correlations as compared to *103 pathways in the randomized FL with 1024 geno-

types (S1 Table). It would be interesting to see if similar effects could be observed in other

large FLs [50, 51]. However, these data sets, despite a large number of genotypes included,

cover only a small fraction of the genotype space due to random mutagenesis employed to gen-

erate mutant genotypes. The problem of missing genotypes with undefined fitness is why in

this work we decided to use only the (almost complete) FLs of Refs. [39, 42].

Our analysis assumes that all evolutionary pathways are equally likely. This does not have to

be true in many biologically relevant scenarios [3, 52, 53]. Even in the strong selection/weak

mutation (SSWM) limit to which the notion of accessible pathways is most relevant, pathways

of different lengths have different probabilities of realisation. In particular, for K = 2 shortest

pathways (if they exist) may have higher probability of realisation than more abundant but

longer indirect pathways [54]. Our work shows however that for K> 2 indirect pathways

completely dominate the set of accessible pathways (cf. S3 Fig), which suggests that indirect

accessible pathways with moderate lengths may be relevant in the SSWM limit. It would be

interesting to see how these predictions change once the SSWM assumption is relaxed, effec-

tively decreasing the relevance of pathways with increasing fitness [55].

Another factor that we neglected was that genotype-to-phenotype mapping is not unique

due to phenotypic plasticity [56–58] in which many phenotypes may correspond to the same

genotype. Moreover, fitness is not an absolute characteristic of an organism in the same way as

the genotype is because it depends on the organism’s environment: physical conditions such as

temperature, available nutrients, and the presence/absence of other organisms. This environ-

mental plasticity has been shown to speed up evolution in experiments [59–61] and in silico
[62–64]. Fitness can also be different at different locations even in a relatively small habitat,

and chemical gradients can significantly affect the rate of biological evolution [65, 66]. The

reality is thus much more complicated than our idealised model, but the picture that emerges

from our work is that the mutational structure of the genotype space is an important factor

affecting biological evolution, and that the use of binary sequences to represent real genotypes

has limited applicability.

Methods

Computer model

For each generated fitness landscape (FL) we find the number of accessible pathways that

start from the antipodal genotype {0, 0, . . .0} and end at the fittest (target) genotype {K − 1,

K − 1, . . ., K − 1} using a depth-first search (DFS) algorithm with backtracking. The fitness

landscape is represented as a graph with nodes corresponding to genotypes and edges to muta-

tions between the pairs of genotypes. Each node is assigned a counter variable which specifies

how many accessible pathways connect this node to the fittest genotype, and an auxiliary vari-

able v which assumes one of the three possible node states: v = 0, v = 1 or v = 2, representing

nodes that have not been visited by DFS yet, the visited ones, and the ones with their whole
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mutational neighbourhood explored. All counters and variables v are initially set to zero. The

DFS algorithm starts from the antipodal genotype and follows only those edges along which

fitness increases. When the final node (genotype with maximal fitness) has been reached the

algorithm traces its steps back to the initial node while increasing the counters of all nodes it

visits on its way. Particularly, if all edges from a given node have been explored, the node is

labelled as explored (v = 2) and its counter variable is no longer updated. Next, the counter of

this node is added to the counter of the previous node in the DFS and the search continues

from the later node. If at some point the DFS algorithm attempts to visit an already explored

node, only the explored node counter is added to the counter of the current node. The back-

tracking procedure thus exhaustively accumulates the number of all paths going from a given

node to the target genotype. When the search is completed, the value of the counter at the ini-

tial node gives the total number of accessible paths starting at this node.

We tested this algorithm by comparing the number of pathways found for small (N< 210)

FLs with the number obtained by a naive, recursive breath-first search algorithm. Both algo-

rithms produced identical results but the first algorithm was substantially faster for larger

graphs than the naive algorithm. For example, the described algorithm enabled us to enumer-

ate all pathways (*1034) on a computer-generated FL with K = 16, L = 6 which would clearly

be impossible for the naive algorithm.

To obtain the accessibility of a given FL we used a simple DFS algorithm without backtrack-

ing. This reduced memory requirements as compared to the full algorithm described above,

enabling FLs with higher K and/or L to be analysed. To obtain the number of forward, back-

ward and distance-neutral mutations in pathways of a given length, we modified the algorithm

so that it stored a two-dimensional histogram—a generalized counter variable—for each node.

During backtracking the histograms were accumulated and stored as the final histogram in the

antipodal genotype (in S6 Fig example of such histogram is plotted for the experimental FL

with K = 4 and L = 10).

Experimental fitness landscape

The first experimental FL we used was the protein-binding landscape of DNA oligomers of

length L = 10 [39]. This landscape has been previously shown to be rugged, with many minima

and maxima, and is thus not too dissimilar from our computer-modelled landscapes. How-

ever, the landscape shows strong correlations (Fig. 2 in Ref. [39]) and thus it is not evident

how our results from the computer model of maximally-random, uncorrelated FLs will apply

to this landscape.

The natural number of coding units, or “alleles”, for this landscape is K = 4 since each site

of the sequence can be in one of four possible states (4 nucleotides A,T,G,C). The total number

of genotypes is 410� 1M. In order to obtain quasi-independent fitness landscapes necessary

for statistical analysis from just one, large data set and FLs for other values of K (in particular

for K = 2), we followed the procedure described below.

To obtain a sample landscape with K = 4, L = 5, we randomly selected 5 different

positions~i ¼ fi1; i2; . . . ; i5g from the 10-nucleotide sequence, and a random sequence

~c ¼ fc1; c2; . . . ; c5g where ci was one of A,T,G, or C. We then selected all 10-nucleotide

sequences with nucleotides~c at positions~i, and any nucleotides at the remaining L = 5 posi-

tions. This generated a sub-landscape of the full fitness landscape with N = 45 = 1024 genotypes

with the same “genetic background” at positions~i. By repeating the above procedure we cre-

ated 10k (of the total� 258k different) FLs with different genetic backgrounds (different~i ).

To generate a sample landscape with K = 2, L = 10, we selected a random sequence~x from

all 10-nucleotide sequences, and another sequence~y such that it differed from~x at all
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positions. We associated sequences~x;~y with two antipodal binary sequences 00. . .0 and

11. . .1 of length L = 10, and constructed the fitness landscape from all N = 2L = 1024 sequences

such that the i-th nucleotide was either xi or yi. We repeated this procedure to sample 10k land-

scapes of the total� 60M different possible FLs.

After generating the sets of fitness landscapes with K = 4 and K = 2 with the same number

of genotypes N = 1024, the corresponding fitness values were normalized to be between 0 and

1. Accessibility was determined for mutational pathways starting at the antipodal genotype

and ending at the genotype with maximum fitness. For K = 4 we used the same convention of

selecting the antipodal genotype as in the computer-generated FLs (see below).

For our second FL we used the rate constants for the reaction between the RNA-binding

subunit C5 of RNase P recognition and its RNA substrate, with all variants of its recognition

site of length L = 6 [42]. Using the same approach as described in the Methods of Ref. [42] we

calculated the rates krel
i relative to the rate constant of the wild-type RNA sequence. In our anal-

ysis we were less stringent than Ref. [42] on removing sequence variants that exhibited biased

amplification, i.e., we kept sequences that had reads above quality threshold for at least three

time points. We took as fitness the relative rate constant averaged over different time points;

we also checked that other methods, e.g. selecting krel
i with the largest difference in the corre-

sponding raw read count, did not significantly affect our results. The analysis yielded fitness

values for 3940 out of the total 46 = 4096 possible sequences. The remaining 4% sequences for

which fitness could not be determined were assigned the fitness of the least fit genotype.

Adapting the procedure described for the first experimental landscape we obtained sub-

landscapes of the full experimental landscape with K = 4, L = 3 and K = 2, L = 6, with N = 64

genotypes each. Since these sub-FLs were sampled from the landscape smaller than the first

one and the total number of possible sub-FLs was much smaller than before (e.g., 1280 for

K = 4), we generated only 1k sub-FLs for each K. We also normalized the fitness to be between

0 and 1, and performed the same analysis as for the first experimental data set.

Re-indexing fitness landscapes

In both the computer model and the analysis of the real FLs we re-index all genotypes such

that the best-fit (target) genotype is assigned the sequence {K − 1, K − 1, . . ., K − 1}. The antipo-

dal genotype is then {0, 0, . . .0}. When fitness values are drawn at random no actual re-index-

ing is necessary but the series of N = KL fitnesses is generated and the highest value is assigned

to the target genotype while the remaining fitness values are assigned to the remaining

genotypes. For sub-landscapes of the real fitness landscapes we define a map that assigns the

target genotype sequence to the fittest genotype while preserving all correlations and the

structure of the FL; in particular, each genotype has the same nearest neighbours in the re-

indexed FL. For K = 2 we proceed as follows: if the fittest genotype sequence has 0s at k posi-

tions~i ¼ fi1; i2; . . . ; ikg and 1s at the remaining positions, the map changes 0! 1 and 1! 0

at the~i positions and for the remaining positions there are no changes, see S7 Fig. Applying

this transformation to all genotypes results in a FL with the desired indexing (the fittest geno-

type sequence contains only 1s and the antipodal genotype sequence only 0s). This mapping is

unique for K = 2, but in the case of K> 2 the antipodal genotype can be selected in many

ways. We thus modify the algorithm as follows for K> 2. Assume that the fittest genotype

sequence has characters~c ¼ fc1; c2; . . . ; ckg at positions~i such that 0� c1, c2, . . ., ck < K − 1.

We then define the following reassignment: c1! K − 1, . . ., ck! K − 1, which maps the fittest

genotype to the sequence {K − 1, K − 1, . . ., K − 1}. There are now (K − 1)L possible choices for

the antipodal genotype and we remove this ambiguity by randomly selecting one of them and

extending the mapping (character reassignment) in such a way that the selected genotype is
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mapped onto the sequence {0, 0, . . .0}. The character reassignment rules described above are

then applied to all remaining genotypes. We note that these rules apply only to specific posi-

tions in the sequence; for example the mapping 1! K − 1 at position 3 will be applied only if a

sequence has character 1 at position 3, but not if there is a 1 at another position, unless there is

a rule 1! K − 1 specifically for that position. We also note that the algorithm does not change

characters which are neither assigned to (K − 1) (target) nor to 0 (antipodal).

Equivalently to re-indexing sub-landscapes of the real fitness landscape one could adapt the

DFS algorithm and related structures storing accessible pathways to have arbitrary target and

initial genotypes, i.e., not encoded by sequences {K − 1, K − 1, . . ., K − 1} and {0, 0, . . .0}. The

outcome of both approaches would be identical, as the fitness landscapes before and after re-

indexing are isomorphic (S7 Fig).

Supporting Information

S1 Fig. Asymptotic accessibility estimates for different K. (a) Asymptotic estimate of acces-

sibility A versus the log(log2 N)/log2 N for K = 2 when only shortest pathways are considered.

The logarithmic correction to the inverse of log2 N comes from mathematical arguments [31].

(b,c) Plots of accessibility A versus the inverse of log2 N for different K (2 = black, 4 = red,

8 = blue, and 16 = green) and for pathways without backward mutations (panel b) and for all

pathways (panel c). The dashed lines are linear fits to the data subset. Only landscapes with

N> 210 have been used to estimate A1. Statistical errors (s.e.m.) are below 0.01 for all A1.

(TIF)

S2 Fig. Fraction of pathways with backward and distance-neutral mutations increases with

K. (a) Average fraction of pathways that contain at least one backward mutation as a function

of genotype length L, and for different K. (b) Analogous to panel a, but for distance-neutral

mutations. By definition, distance-neutral mutations do not exist for K = 2 and hence there is

no corresponding line in the plot.

(TIF)

S3 Fig. Shortest pathways are quickly outnumbered by indirect pathways. The average frac-

tion of shortest pathways as a function of number of genotypes N, and for different K. The

median of the fraction of shortest pathways appears to tend to zero for K> 2 in the large-N
limit.

(TIF)

S4 Fig. Increasing the number of coding units lengthens accessible pathways. (a) The nor-

malized pathway length (number of mutational steps divided by L) as a function of K, for dif-

ferent values of L. (b) The normalized length as a function of log2 N for different values of K.

Except from K = 16 the normalized length reaches a plateau within the investigated range of N.

(TIF)

S5 Fig. Coverage of FL with genotypes belonging to accessible pathways depends on the fit-

ness of the initial genotype. Average coverage of fitness landscapes with different number of

coding units K (black, red, blue, green) and a fixed number of genotypes (N = 224 for K = 2, 4,

8 and N = 220 for K = 16) as a function of initial fitness f0. Inset: the same data in the log-linear

scale. Shaded area corresponds to one standard deviation (accessible FLs only).

(TIF)

S6 Fig. Number of accessible pathways in the experimental FL has a broad distribution in

the space of indirect mutations. Number of accessible pathways from the antipodal to the

best-fit genotype for the full experimental FL as a function of the number of backward and
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distance-neutral mutations. The maximal number of pathways (black dot) is approximately

6.45 × 1021. The histogram was obtained by exhaustive enumeration of all pathways using the

algorithm described in Methods.

(TIF)

S7 Fig. Re-indexing preserves mutational neighbours of each genotype. Example of original

(left) and re-indexed (right) fitness landscapes with target (best-fit) and antipodal genotypes

highlighted. The aim of re-indexing is to reassign genotypes in isomorphic manner (the struc-

ture of the fitness landscape is unchanged), such that the target genotype is assigned sequence

11. . .1 and the antipodal genotype 00. . .0. For each genotype the original sequence and the re-

indexed sequence are highlighted with the same colour and linked with an arrow.

(TIF)

S1 Table. Fitness-to-distance correlations facilitate accessibility of the best-fit genotype.

Properties of the two fitness landscapes generated from the experimental data sets discussed in

the main text [39, 42]. Randomized ensembles of FLs preserve fitness values, but not fitness-

to-distance correlations.

(PDF)

S1 Data and Code. ZIP-archived directory containing all data and computer programs.

(ZIP)

Acknowledgments

We thank Marjon de Vos and Oliver Martin for critically reading the manuscript.

Author Contributions

Conceptualization: MZ BW.

Data curation: MZ.

Formal analysis: MZ.

Funding acquisition: MZ.

Investigation: MZ.

Methodology: MZ ZB BW.

Software: MZ BW.

Supervision: BW.

Validation: MZ ZB BW.

Visualization: MZ.

Writing – original draft: MZ ZB BW.

Writing – review & editing: MZ ZB BW.

References
1. Wright S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of

the Sixth International Congress of Genetics. 1932; 1:356–366.

Evolutionary Accessibility of FLs with Realistic Mutational Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005218 December 9, 2016 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005218.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005218.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005218.s009


2. Orencia MC, Yoon JS, Ness JE, Stemmer WPC, Stevens RC. Predicting the emergence of antibiotic

resistance by directed evolution and structural analysis. Nature Structural & Molecular Biology. 2001; 8

(3):238–242. doi: 10.1038/84981

3. Weinreich DM, Delaney NF, DePristo MA, Hartl DL. Darwinian evolution can follow only very few muta-

tional paths to fitter proteins. Science. 2006; 312(5770):111–114. doi: 10.1126/science.1123539 PMID:

16601193

4. Martinez JL, Baquero F, Andersson DI. Predicting antibiotic resistance. Nature Reviews Microbiology.

2007; 5(12):958–965. doi: 10.1038/nrmicro1796 PMID: 18007678
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