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Abstract

Purpose

Choroideremia is a progressive X-linked recessive dystrophy, characterized by degenera-

tion of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors.

We examined photoreceptor structure in a series of subjects with choroideremia with partic-

ular attention to areas bordering atrophic lesions.

Methods

Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations

in the CHM gene were examined. High-resolution images of the retina were obtained using

spectral domain optical coherence tomography (SD-OCT) and both confocal and non-con-

focal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques.

Results

Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation

and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ)

attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning

in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal

tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve

cones near lesion borders, and such cones were abnormally heterogeneous in morphology,

diameter and density. On split-detector imaging, the cone mosaic terminated sharply at

lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner

segments within ORTs, which were generally contiguous with a central patch of preserved

retina.
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Conclusions

Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published

results. Evidence of remnant cone inner segments within ORTs and the continuity of the

ORTs with preserved retina suggests that these may represent an intermediate state of reti-

nal degeneration prior to complete atrophy. Taken together, these results supports a model

of choroideremia in which the RPE degenerates before photoreceptors.

Introduction

Choroideremia is a progressive X-linked recessive dystrophy characterized by degeneration of

the sensory retina[1] secondary to CHM gene mutations.[2, 3] Affected males typically experi-

ence nyctalopia and peripheral visual field loss by the second decade of life; central vision is

usually affected later in the course of the disease.[4] Early peripheral pigmentary mottling of

the fundus develops into choroidal and retinal atrophy, typically beginning in the midperiph-

ery and expanding both centrally and peripherally.[5] Previous histological and optical coher-

ence tomography (OCT) studies have led to various models of degeneration, including 1) a

diffuse and independent degeneration of the choriocapillaris, retinal pigment epithelium

(RPE), and neural retina,[6, 7] 2) a primary photoreceptor degeneration followed by RPE and

choroidal atrophy,[6, 8] and 3) a primary RPE degeneration followed by photoreceptor loss

and choroidal atrophy.[9–11] Additional OCT-documented characteristics of choroideremia

include the presence of interlaminar bridges[8] (ILBs, wedge-shaped hyporeflective structures

bridging the inner and the outer retina) and outer retinal tubulations[4, 12] (ORTs, structures

in the outer retina composed of deteriorating photoreceptors and remnant external limiting

membrane (ELM) that typically appear on OCT as hyperreflective ovaloid structures with a

hyporeflective lumen[13]). Finally, Lazow et al report a relatively abrupt termination of the

inner segment/outer segment ellipsoid zone (EZ) and ELM that frequently coincide with ILBs.

[9, 14] While these studies highlight the utility of commercially-available SD-OCT in assessing

the layered macroanatomy of the retina, their limited resolution precludes direct examination

of photoreceptor structure on a cellular scale.

By correcting for the eye’s monochromatic aberrations, confocal adaptive optics scanning

light ophthalmoscopy (AOSLO) enables cellular-resolution imaging of photoreceptor struc-

ture,[15, 16] and numerous studies have used AOSLO to probe the fine anatomy of retinal

degenerations.[12, 17–26] Indeed, confocal AOSLO has recently been used to document lack

of cone reflectivity in the ORTS found in age-related macular degeneration.[27] In choroidere-

mia, AOSLO imaging has uncovered novel pathologic features including bubble-like lesions

that appear to co-localize to structures in the choroid visualized by SD-OCT[26] and yielded

results suggesting a primary RPE degeneration with subsequent loss of photoreceptors and

choroid.[12, 26] Recent work by Morgan et al showed an abrupt decline in confocal AOSLO

photoreceptor reflectivity in areas of RPE degeneration[26], while SD-OCT imaging revealed

interdigitation zone (IZ, thought to represent the junction of photoreceptors and RPE) drop-

out and RPE thinning prior to disruptions in the overlying EZ.[26] Together, these results may

imply cone loss in choroideremia is secondary to the atrophy of supporting RPE. However,

imaging of cone structure with confocal AOSLO imaging relies upon propagation and reflec-

tance of the incident imaging light within an intact and properly aligned outer segment (i.e.,

waveguiding).[28] Disruptions of cone morphology in choroideremia[6, 7] might therefore

interfere with confocal imaging of cones, making it impossible to distinguish a non-
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waveguiding cone from an absent one. Thus, within the context of choroideremia, it remains

unknown whether the photoreceptor mosaic truly terminates at the point of RPE atrophy.

In contrast, the signal in split-detector AOSLO originates from multiply-scattered light

from the inner segment,[28] thus decoupling cone visualization from outer segment morphol-

ogy. Split-detector AOSLO has been used to provide unambiguous characterization of rem-

nant cone morphology in a number of retinal diseases.[28–33] Here, we used split-detector

AOSLO in conjunction with confocal AOSLO and SD-OCT to assess outer retinal structure in

choroideremia. We examined areas bordering regions of atrophy and within characteristic

ORTs, ILBs, and bubble-like lesions with the aim of clarifying the sequence of degeneration,

which may in turn assist the development of therapeutic strategies.[34, 35]

Methods

Subjects

Research procedures were in accordance with the tenets of the Declaration of Helsinki and

were approved by the Institutional Review Boards of the Medical College of Wisconsin and the

Children’s Hospital of Wisconsin. After explanation of the nature and possible consequences

of the study, informed written consent was obtained from all subjects. Subjects with clinically-

diagnosed choroideremia were eligible for inclusion. Between August 2010 and June 2014, 12

male subjects were enrolled in the study and imaged (Table 1); several subjects were followed

across more than one imaging session, and the most recent follow-up imaging was performed

in January 2016. For comparison, we utilized images from a healthy subject (28-year-old male,

JC_0616) as well as previously-published cone density data from nine healthy subjects.[36]

Genetic Testing and Predictions. Whole blood was collected for analysis from 11 out of

12 subjects; the 12th subject had previously obtained genetic testing. Eight samples were sent to

The John and Marcia Carver Nonprofit Genetic Testing Laboratory (University of Iowa, IA,

USA), two to the National Ophthalmic Disease Genotyping and Phenotyping Network (Eye-

GENE, National Eye Institute, Bethesda, MD, USA), and one to the Casey Eye Institute Molec-

ular Diagnostics Laboratory (Oregon Health & Science University, OR, USA). Each sample

was screened for mutations in the CHM gene. For the remaining subject, genetic records were

available from the referring physician (The Chicago Lighthouse, Chicago, IL, USA). Amino

acid changes due to novel gene mutations were determined using Mutation Taster (available

in the public domain at http://www.mutationtaster.org).

Clinical Examination. Dilated fundus exams were performed prior to imaging. Axial

length measurements were obtained using an IOL Master (Carl Zeiss Meditec, Dublin, CA

USA) and used to calibrate the lateral scale of all retinal images (see Methods). For all imaging

sessions, one eye of each subject (OD in all except JC_0675 and DW_10173) was dilated and

accommodation suspended using one drop each of phenylephrine (2.5%) and tropicamide

(1%). Color fundus images were obtained in all subjects using a Zeiss VisuCam 200NM (Carl

Zeiss Meditec, Dublin, CA, USA) and/or an OPTOS Ultra-Widefield fundus camera (Optos

plc, Dunfermline, Scotland, United Kingdom). Fundus images were exported using onboard

software for subsequent alignment with high-resolution images.

Spectral Domain Optical Coherence Tomography (SD-OCT). Volumetric images of the

macula were obtained using optical coherence tomography (Cirrus HD-OCT; Carl Zeiss Med-

itec, Dublin, CA, USA). Volumes were nominally 6 x 6 mm and consisted of 128 B-scans (512

A-scans/B-scan). Retinal thickness was calculated using the built-in macular analysis software

(version 5.0) as the distance between inner limiting membrane (ILM) and RPE boundaries.

Additional high-density volume scans of the macula were acquired (Envisu 2300; Bioptigen,

Research Triangle Park, NC, USA); scans were nominally 6 x 6 mm or 7 x 7 mm in size and
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consisted of 250 B-scans (700 A-scans/B-scan). High-density line scans (nominal scan

length = 6 or 7 mm; 1000 A-scans/B-scan, 100 to 120 repeated B-scans) were acquired both

horizontally and vertically through the foveal center. Line scans were registered and averaged

to reduce image speckle as previously described.[39] In a few cases, 3 to 4 closely spaced B-

scans within a volume were averaged to generate higher signal to noise images at non-foveal

regions of interest (ROIs). Assessment of layer integrity at specific locations was performed

using the longitudinal reflectivity profile (LRP), as previously described.[40, 41] Four layers

were manually identified in the resultant LRPs: the external limiting membrane, ELM; the EZ;

the IZ; and the retinal pigment epithelium, RPE.

Using custom designed Java (Oracle, Redwood City, CA) software, we derived en face
summed volume projection (SVP) images from the Bioptigen SD-OCT volumes of 8 subjects

using a previously described method.[31, 42] These images were created to visualize the two-

dimensional layout of ORTs.

Adaptive Optics Scanning Light Ophthalmoscopy. Reflectance confocal images of the

photoreceptor mosaic were obtained using a previously described AOSLO.[15, 43, 44] Retinal

Table 1. Characteristics of 12 Male Subjects with Choroideremia.

Subject Age Identified CHM Gene Mutations Genetic References Eye Near-Foveal

Cones/mm2 ‡
Central

RT

Average

RT

BLLs ILBs ORTs

KS_0044 19 Deletion of exons 6, 7, and 8 Freund PR et al, Mol Genet

Genomic Med 2016

OD 87,603 99% (+) Normal Yes Yes Yes

JC_0618* 46 c.757C>T; p.Arg253Stop Van den Hurk JA et al, Hum

Genet 2003

OD N/A§ Normal Normal Yes Yes Yes

JC_0621 64 Deletion of exon 15 Novel exon deletion OS 67,886 Normal Normal No Yes Yes

JC_0672 55 Partial deletion of exon 4 c.314

+10127T>A splice site mutation

McTaggart et al, Hum Mutat

2002 Van den Hurk JA et al,

Hum Genet 2003

OD N/A§ Normal 99% (-) Yes Yes Yes

JC_0675 56 c.190-2A>G splice site mutation Van den Hurk JA et al, Hum

Genet 2003

OS N/A§ 99% (-) 99% (-) Yes Yes Yes

JC_0699 72 c.1349G>A; p.Arg450Lys Reported to the Vision

Variation Database[37]

OD N/A§ Normal Normal Yes No Yes

JC_0752 29 c.1530_1531insA fs*4; p.

Thr511Asn fs*4

Novel frameshift with

truncation

OD N/A§ Normal Normal Yes Yes Yes

JC_0754 40 c.1579_1582delTTGT; p.

Leu527His fs*7

Novel frameshift with

truncation

OD 71,890 99% (+) Normal Yes Yes Yes

JC_0778† 22 c.757C>T; p.Arg253Stop Van den Hurk JA et al, Hum

Genet 2003

OD 95,771 95% (+) Normal Yes Yes Yes

JC_0782† 25 c.757C>T; p.Arg253Stop Van den Hurk JA et al, Hum

Genet 2003

OD 76,551 Normal Normal No No No

JC_0942 40 c.1144G>T; p.Glu282Stop Reported to the Leiden Open

Variation Database[38]

OD N/A§ 95% (+) Normal Yes Yes Yes

DW_10173 40 Deletion of exons 1–15 (complete

deletion)

Den Dunnen and Antonarakis,

Hum Genet 2001

OS N/A§ Normal 95% (-) Yes Yes Yes

Eye = eye used for all measurements, assessments, imaging, and analysis. Central RT = central retinal thickness as a percentile of normal. Average

RT = average retinal thickness as a percentile of normal. BLLs = bubble-like lesions. ILBs = interlaminar bridges. ORTs = outer retinal tubulations.

Fs = frameshift. Del = deletion. Ins = insertion. Stop = stop codon (truncation). *(n) = stop codon in n residues.

* Unrelated to JC_0778 and JC_0782.

† First cousins. JC_0782 independently sought genetic testing and presented results at time of study.

‡ Cone densities were measured at 0.70˚ (202.5 μm) eccentricity. Normal mean cone density at this eccentricity is 76,038 cones/mm2 (SD 31,543 cones/

mm2).

§ In subjects with no EZ band visible at the fovea on SD-OCT due to advanced pathology, no near-foveal cone count was measured.

doi:10.1371/journal.pone.0167526.t001
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images were obtained using 775, 790, or 796 nm superluminescent diodes, subtending 1, 1.5,

or 1.75˚ square fields of view. In 5 subjects (KS_0044, JC_0699, JC_0778, JC_0782, DW_10

173), split-detector AOSLO images were captured simultaneously with confocal ones (and

thus are in perfect spatial co-register). Foveal images were acquired by instructing the patient

to fixate on the corners or edges of the imaging raster (eccentricities of 0.5 or 0.65˚), while par-

afoveal images were acquired using an adjustable external fixation target extending out to

eccentricities of up to 12˚. Additional images were acquired as needed to assess specific ROIs.

Raw AOSLO retinal images were corrected for distortions, registered, and averaged as pre-

viously described.[32, 45] These registered and averaged AOSLO images were manually mon-

taged using Adobe Photoshop (Adobe Systems, Inc., CA) as previously described.[32] Line

scanning ophthalmoscope (LSO) images from the Cirrus HD-OCT and volume intensity pro-

jection images from the Bioptigen SD-OCT were exported and, together with AOSLO mon-

tages, aligned to the clinical fundus images. The relative sizes of multimodal images were

derived by scaling the visual angle for an ideal eye with an axial length of 24 mm, 291 μm/

degree, in proportion to the subject’s measured axial length.[46] Alignment was performed

manually utilizing blood vessel patterns. This multimodal aligned overlay enabled comparison

of retinal structure at specific ROIs.

For clarity, areas of retina (typically central) with discernible IZ and/or EZ structure will

henceforth be referred to as “preserved retina,” while areas of retina (typically peripheral) with

neither IZ nor EZ structure is referred to as “atrophic retina.” Regions of abnormal preserved

retina that border atrophic lesions (generally within a few hundred microns) are referred to as

“border regions.”

Parafoveal Cone Density Measurements and Statistical Analysis. In 5 subjects

(KS_0044, JC_0621, JC_0754, JC_0778, and JC_0782) in whom OCT B-scans showed an intact

EZ at the fovea, near-foveal cone densities were counted from AOSLO confocal images

acquired on the same day as the OCT scans shown in Fig 1. Please note that despite overlap

(KS_0044, JC_0778, and JC_0782), these are not the same five subjects for which AOSLO split

detector imaging was obtained. Although JC_0752 had an intact EZ at the fovea, poor foveal

image quality precluded cone counting. The anatomic fovea can sometimes be difficult to

resolve due to extremely tight cone packing. Ability to visualize cones may also be locally or

globally compromised on AOSLO despite high-quality OCT imaging, particularly in subjects

with poor fixation, severe visual impairment, advanced age, and/or other media-opacifying

intraocular processes (e.g. cataracts). ROIs used in cone counts were generated by manually

cropping 50 x 50 μm square sampling areas at an average of 0.70˚ (approximately 202.5 μm)

eccentricity. Cones were frequently not countable at the true anatomic foveal pit because such

cones were too tightly packed to be resolvable on AOSLO.

Cones were identified from confocal AOSLO images using a previously-described custom

semi-automated algorithm that locates cones based on local intensity maxima, followed by

manual adjustments by a single observer (L.W.S.).[47] Image contrast was adjusted as needed

to assist in manually identifying dimly reflective cones. Density (in cones/mm2) was calculated

by dividing the number of counted cones by the summed area (in mm2) of the bound Voronoi

domains in the ROI,[48] and compared to an exponential fit to normative cone density data

from 9 healthy subjects developed by Wilk et al.[36] T-scores were calculated using Student’s

t-test for two independent means, and corresponding two-tailed p-values were generated

using t-scores and degrees of freedom calculated as independent samples (QuickCalcs, Graph-

Pad Software, Inc., La Jolla, CA).

Cone Density and Diameter Measurements in Areas Bordering Lesions. Lesion borders

were mapped using OCT en face imaging and projected onto confocal AOSLO images using

the aforementioned registration methods. In subjects with split-detector AOSLO imaging,
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lesion borders were mapped using split-detection. Cone density near the borders of lesions

was also measured using the split-detector AOSLO images because confocal AOSLO was

unable to unambiguously identify all cones due to irregular reflectivity in pathologic areas.

Paired 50 x 50 μm ROIs were cropped from each AOSLO montage of the 5 subjects with both

split-detector and confocal imaging. ROI pairs were chosen such that each was within 200 μm

of the nearest lesion border, and both were at approximately the same eccentricity from the

foveal pit. One ROI was cropped from an area of visibly higher cone density and one was

cropped from an area of visibly lower cone density. No semiautomated algorithm was available

at the time of these experiments, so all cones were manually identified within each ROI by a

single observer (L.W.S.). Because ROIs varied in eccentricity based on individual pathology, it

Fig 1. Horizontal SD-OCTs of all 12 subjects with X-linked choroideremia. Horizontal SD-OCT line scans through the

fovea of all 12 subjects (labeled) are presented here in the same order given in Table 1. Images are scaled and cropped to

subtend a uniform retinal distance (6 mm). Degree of pathology varies, and older patients generally exhibit greater loss of

central retina. Pathologic features can be seen: outer retinal tubulations (ORTs) are visible as hyperreflective ovaloid rings with

hyporeflective lumens (filled arrowheads) and interlaminar bridges (ILBs) are visible as wedge-shaped hyporeflective

structures, sometimes with a hyperreflective exterior, extending from the outer plexiform layer to Bruch’s membrane (open

arrowheads). ILBs frequently coincide with the termination of the central zone of preserved retina, and sometimes flank ORTs.

Note the asymmetry of many OCTs, particularly in cases of severe pathology. Longitudinal images are shown for 3 subjects

(KS_0044, JC_0778, and JC_0782), showing early IZ attenuation and characteristic peripheral-to-foveal progression of

atrophy. Scale bars, axial & lateral: 250 μm.

doi:10.1371/journal.pone.0167526.g001
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was not possible to conduct formal statistical analyses on the data. However, comparisons to

normal cone densities from the previously-referenced database of nine healthy subjects[36]

were performed by using an exponential fit to normative cone density data to calculate

expected differences in cone density at each of the pairs of ROIs sampled.

Results

Subject Demographics, Clinical Data, and Genetics

Subject demographics, genetic profiles, and a brief summary of OCT and AOSLO findings are

given in Table 1. Twelve males (mean ± SD age = 44.6 ±16.5 years) with choroideremia were

recruited based on clinical diagnoses of choroideremia, which took into account personal ocu-

lar history, presenting symptoms, and family history. Disease was confirmed by genetic analy-

sis in 11 of 12 cases; in the 12th case, JC_0782, the subject had obtained genetic testing through

his referring physician prior to our study. This patient is also the first cousin of JC_0778, who

was among the 11 patients for whom we requested genetic testing.

We identified a total of 11 mutations within the 12 subjects (Table 1), 8 of which had been

previously reported. Two previously documented[49, 50] mutations, a splice site mutation and

a partial deletion, were found in subject JC_0672. Three subjects were found to have the same

previously published point mutation resulting in truncation, c.757C>T (p.Arg253Stop);[50]

two of these subjects were first cousins (JC_0778 and JC_0782), but the third (JC_0618) was

unrelated. Five other previously-reported mutations were found in our subjects: one complete

CHM gene deletion, two deletions of one or more exons of the CHM gene, one single base pair

substitution resulting in truncation, and one splice site mutation. To the best of our knowl-

edge, the remaining 3 mutations were novel: a deletion of most or all of exon 15 (JC_0621) and

two frameshift mutations (JC_0752 and JC_0754, both with truncation occurring shortly after

frameshift). Because all novel mutations found in our subjects were deletions or frameshifts,

the commonly-used tools SIFT, PROVEAN (both available in the public domain at http://

provean.jcvi.org/index.php), and/or PolyPhen-2 2.2.2 (available in the public domain at http://

genetics.bwh.harvard.edu/pph2) could not be used to assess probable pathogenicity.

Pathologic Features Visualized with SD-OCT

Fig 1 shows averaged horizontal line scans through the anatomic foveal pit of all subjects, and

S1 Fig shows corresponding averaged vertical line scans also through the fovea. Upon exami-

nation of all horizontal and vertical line scans, the IZ band is absent and/or indistinct from the

RPE band in all but two subjects even in areas where the outer retinal layers were otherwise

visible, which is consistent with previous reports in choroideremia.[26] The exceptions were

JC_0782 and KS_0044, both young subjects followed for extensive periods (JC_0782: age 21

at initial imaging, followed over 47 months; KS_0044: age 16 at initial imaging, followed over

36 months). In both cases, an intact and distinct IZ band was initially seen centrally with

peripheral loss of IZ band discrimination. While JC_0782 has exhibited slow disease progres-

sion limited to the periphery, KS_0044 has progressed more rapidly with patchy IZ band loss

first noted centrally at age 17 (6 months after initial visit) and near-complete loss of IZ band

discrimination in both eyes at his latest visit (age 19). Repeat SD-OCTs taken at 3 different

time points in 3 subjects (KS_0044, JC_0778, and JC_0782) are representative of the periph-

eral-to-central progression of the disease observed in the 7 subjects (KS_0044, JC_0618,

JC_0621, JC_0699, JC_0752, JC_0778, and JC_0782) who were imaged across at least two

visits.

In all subjects, areas of thinned RPE band were also noted in the periphery, and sometimes

in the fovea. In general, RPE thinning is associated with notable overlying abnormalities of the
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IZ and EZ bands. Finally, loss of the EZ band was also noted peripherally in all subjects except

JC_0782, who exhibited patchy EZ band attenuation at the far periphery of the 7 mm area

examined by SD-OCT line scan. In 10/12 cases, both the EZ band and overlying ELM were

noted to terminate sharply at an ILB in at least one hemiretina, again consistent with previous

reports.[9]

Other previously reported SD-OCT features were also seen in our subjects, including rela-

tive retention of retinal lamination at and around the fovea, chorioretinal atrophy in the

periphery, ORTs, and ILBs. Changes in retinal thickness were also observed, including central

thickening in 4 patients (aged 19, 22, 40 and 40 years) and general thinning in 3 patients (aged

40, 55, and 56 years). Table 1 summarizes these pathologic SD-OCT findings. Note, not all

findings are evident in the horizontal and vertical line scans through the fovea; some are visible

only in volume scans through the 7 mm foveal area.

Parafoveal Cone Density Measurements using Confocal AOSLO

Within our cohort of 12 subjects, cone densities were measured at or near the anatomic foveal

pit in 5 subjects. Cone densities were only obtained from subjects with OCT B-scans showing

intact EZs at the fovea. This is because only confocal imaging could resolve foveal cones, and

only reflectivity in areas with intact EZs could be confidently regarded as cone reflectivity

could be used for cone density measurements. Consequently, cone densities were only mea-

sured in subjects with comparatively mild pathology. Confocal AOSLO images acquired on

the same day as the OCT B-scans shown in Fig 1 were used in near-foveal cone density mea-

surements. Sampling windows for these 5 subjects are shown in S2 Fig. The average eccentric-

ity of the 5 near-foveal cone density measurements was 202.5 μm, or approximately 0.70˚. The

mean (±SD) near-foveal cone density was 79,940 ± 11,521 cones/mm2 (Table 1), which did

not differ significantly (two-tailed p = 0.79) from the normal mean (±SD) near-foveal cone

density at 202.5 μm eccentricity, 76,038 ± 31,542.75 cones/mm2.[36]

Disambiguation of Remnant Cone Structure with Split-Detector AOSLO

Fig 2 shows a comparison of confocal and split-detector AOSLO images in all 5 subjects

imaged with both modalities and one healthy control subject. The split-detector modality pro-

vides unambiguous visualization of cone inner segments in areas of preserved retina and near

lesion borders. While increased scleral shine-through on confocal AOSLO imaging can be

used to approximate lesion borders, split-detector imaging can more precisely identify and

localize lesion borders as sharply-circumscribed perimeters where photoreceptor inner seg-

ment mosaics terminate. Furthermore, confocal AOSLO cannot be used to reliably identify

cones in far-peripheral or pathologic areas due to irregularities in confocal reflectivity, where

some cones appear as clusters of bright spots not easily distinguishable from rod or RPE reflec-

tivity. In contrast, split-detector AOSLO unambiguously resolves cone inner segments even in

the very peripheral and/or diseased areas, enabling observation of pathologic cone density,

size, and morphology.

Sharp Transitions Observed Between Areas with Remnant Cone Mosaic

and Areas of Atrophy

We observed variable photoreceptor density, spacing and morphology near lesion borders and

abrupt delineations between areas with a remnant cone mosaic and areas of atrophy. This does

not seem to be the case in other retinal dystrophies such as retinitis pigmentosa (RP), in which

the transition between preserved and atrophic retina occurs over an extended transition zone

several hundreds or thousands of microns wide.[32] Fig 3 contrasts SD-OCT and AOSLO
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retinal imaging in a representative subject (JC_0778) with choroideremia with previously-pub-

lished[32] SD-OCT and AOSLO images from a subject (DH_10161) with RP. Although

DH_10161 demonstrates a classic pattern of peripheral-to-central degeneration, it should be

emphasized that RP is an extremely diverse family of diseases with equally broad-ranging find-

ings that cannot be fully encompassed by a single subject.

In 4 of the 5 choroideremia subjects for whom both confocal and split-detector imaging

were available, outer segment reflectivity (seen on confocal AOSLO) and inner segment struc-

ture (seen on split-detector AOSLO) were simultaneously extinguished at lesion borders. The

cone inner segment mosaic in areas of preserved retina formed a largely continuous and

closely packed mosaic up to the edge of the lesion, but was observed to abruptly terminate at

Fig 2. Split-detector AOSLO imaging allows unambiguous imaging of photoreceptors and lesions borders. Regions bordering areas of

atrophy are shown here for all 5 subjects who were imaged using both confocal and split-detector AOSLO. Confocal images of 400 x 400 μm

regions of interest (ROIs) are shown beside split-detector images of the same areas. Subjects and modalities are labeled. Confocal and split-

detector images from a normal male, JC_0616, are shown for comparison. The ROIs are located at the following eccentricities: KS_0044, 3780 μm;

JC_0699, 1432 μm; JC_0778, 2772 μm; JC_0782, 3050 μm; DW_10173, 1883 μm; JC_0616, 1899 μm. Note that confocal images often present

confounding ambiguities in pathology: lesion borders are poorly defined, and abnormal cone reflectivity cannot be clearly distinguished from the

reflectivity arising from rods, debris, and/or atrophic retina. In contrast, split-detector images offer superior delineation of lesion borders and

unambiguous imaging of cone inner segments. Rods can be seen between cones in 4 of 5 cases (all but JC_0699). Scale bar: 100 μm.

doi:10.1371/journal.pone.0167526.g002
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Fig 3. Abrupt termination of photoreceptor mosaic at lesion borders in choroideremia is contrasted to

gradual loss of photoreceptors in retinitis pigmentosa. Images from a subject with X-linked choroideremia

(JC_0778, top) are compared with images from a previously-published[32] subject with retinitis pigmentosa

(DH_10161, bottom). To facilitate comparison, images of the same modality share the same scaling. Labeled

arrowheads in OCTs correspond to respectively labeled AOSLO images, and imaged regions are selected to

correspond to pathologic features. Panels A and E show 0.25 x 0.25˚ (approximately 74 x 74 μm) areas of retina

with intact IZ and EZ bands on SD-OCT. In both pathologies, cone inner segments appear grossly normal on split-

detector (A2, E2), while only RP displays notably dim or dark cones on confocal (E1). Panels B and F show areas of

Multimodal Imaging of Photoreceptor Structure in Choroideremia
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the point of EZ dropout (Fig 3C). This point of EZ dropout and inner segment disappearance

also coincided with ELM dropout in these 4 cases, and with an interlaminar bridge (ILB) in at

least one direction in these 4 cases, consistent with reports by Lazow et al.[9] In the 5th case,

the cone mosaic termination point was beyond the SD-OCT scan volume.

Foveal cone reflectivity was relatively normal in subjects with choroideremia (Fig 3A1),

which differed from the numerous non-waveguiding cones visible in subjects with RP even in

areas of intact IZ (Fig 3E1).[32] In both choroideremia and RP, the inner segment mosaic

remains densely and regularly packed in pre-IZ dropout areas. Finally, in both conditions, the

cone mosaic exhibits dimmer and altered confocal reflectivity after IZ band dropout on

SD-OCT, but appears largely normal on split-detector AOSLO (Fig 3B).

Heterogeneous Photoreceptors and Photoreceptor Mosaics at Lesion

Borders

Cone density in approximately equally-eccentric areas of remnant retina near the edges of

atrophic lesions was observed to vary significantly in all 5 subjects imaged with split-detector

AOSLO (Fig 4). To sample this variability, paired cone-counting ROIs in areas of high and

low density were manually selected in each montage. Split-detector images were used, as cone

densities could not be reliably measured near lesion borders using confocal AOSLO. The

mean eccentricity difference between sampling ROIs for high- vs. low-density areas of the

mosaic was 186 μm (maximum eccentricity difference = 395 μm), and ROIs were cropped

within 200 μm of the nearest lesion border. Complete results are presented in Table 2.

In one case (JC_0778), the measured difference in cone density was similar to the expected

calculated normal density difference due to change in eccentricity (see Methods). In the

remaining 4 cases, measured density differences deviated greatly from expected density differ-

ences. Furthermore, in all subjects except JC_0778, cone density variability between paired

ROIs exceeded 2 SD of the mean cone density measured from 9 normal subjects.[36] The

mean difference in eccentricity between normal and choroideremia sampling areas was 63 μm

(maximum eccentricity difference = 210 μm). Interestingly, cone densities could be either sig-

nificantly greater than (JC_0782) or less than (DW_10173) normal. One subject, KS_0044, had

cone densities both statistically significantly greater and lower than normal.

Axial Localization of Bubble-like Lesions

Bubble-like lesions were frequently observed on confocal AOSLO in the atrophic retina near

lesion borders. Previous reports have proposed that these lesions may correspond to subretinal

structures seen on SD-OCT.[26] Findings in our subjects concur with this observation. After

SD-OCT images were precisely scaled, aligned, and mapped to confocal AOSLO montages,

nearby objects of interest (e.g. retinal tubulations, pigment clumps, and blood vessels) were

used to assist localization of bubble-like lesions to the approximate areas labeled by black

arrowheads on SD-OCT (Fig 5).

retina with IZ band dropout but intact EZ. Confocal AOSLO in both (E1, F1) shows some irregular “multimodal”

reflectivity, with dark cones again visible in the RP subject (F2). Split-detector imaging (E2, F2) again shows

relatively normal inner segments. Panels C and G correspond to IZ and EZ dropout. In choroideremia, EZ dropout

coincides closely with the loss of the ELM and presence of an interlaminar bridge (ILB). On AOSLO, there is an

abrupt termination to the photoreceptor mosaic (C2), with no cone inner segments present past this point (D2). In

RP, ILBs are generally not seen, and the ELM continues well past EZ dropout. On AOSLO, remnant cone inner

segments similarly persist well past the end of the EZ (G2), finally disappearing at or near the point of ELM

termination (H2). Scale bars: OCTs, 100 μm lateral, 100 μm axial; AO, 10 μm.

doi:10.1371/journal.pone.0167526.g003
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Remnant Cone Structure within Interconnected Outer Retinal

Tubulations (ORTs)

Outer retinal tubulations (ORTs) were observed in 10 of 12 subjects on SD-OCT. Fig 6 shows

representative en face SD-OCT images alongside averaged horizontal and vertical line scans

through the fovea. Consistent with previous reports,[13, 14, 30] ORTs typically appear on

SD-OCT as ovaloid hyperreflective structures with hyporeflective lumens located between the

RPE and the outer nuclear layer. IZ and EZ bands were not discernible within ORTs. The axi-

ally elongated shape of ORTs is an artifact of SD-OCT aspect ratio, which is typically chosen to

provide higher axial vs. lateral magnification. Histology has shown that ORTs are more fre-

quently axially flattened ovaloids.[14] Viewed en face, these ORTs can be clearly seen as long,

thin protrusions that are mostly interconnected and contiguous with central preserved retina.

Some “island” ORTs were observed, which may have detached from nearby ORTs through

progressive degeneration (Fig 6).

Fig 4. Variability in photoreceptor density near lesion borders. Panel A displays a border region from KS_0044

approximately 1˚ nasal from the area shown in Fig 2, located at approximately 6.5˚ to 8.5˚ eccentricity. Arrowheads

indicate two regions within ~100 μm of the lesion edge; the cone mosaic at the open arrowhead is noticeably sparser

(B, 8,049 cones/mm2) than at the closed arrowhead (C, 15,474 cones/mm2), which is approximately 395 μm (or

approximately 1.36˚) more eccentric from the fovea. For comparison, normal mean ± standard deviation cone density

measured from 9 normal subjects at an eccentricity of 7.36˚ (~2,142 μm) is 11,833 ± 1,816 cones/mm2.[36] Scale

bars: 50 μm.

doi:10.1371/journal.pone.0167526.g004
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By precisely aligning SD-OCT B-scans, SD-OCT en face projections, and AOSLO confocal

and split detector images, direct comparison of the anatomy of preserved retina and ORTs

across different imaging modalities was possible. Of the 5 subjects imaged with split-detector

AOSLO, 4 displayed ORTs (JC_0782 had relatively mild disease and no ORTs were visualized).

Fig 7 shows an example comparison of the same ORT and an immediately adjacent area of

remnant retina across multiple imaging modalities. SD-OCT imaging reveals that the infolded

ORT is morphologically distinct from the nearby, wider ORT-like region of preserved retina,

in which the typical retinal architecture is attenuated but partially retained.

In the split-detector images, large, sparse, remnant cone inner segments were clearly

observed within ORTs of all subjects. Panels 7D2-G2 show split-detector AOSLO images of

representative ORTs from these 4 subjects. Cone inner segments of relatively normal diameter,

density and orientation are also seen in adjacent areas of preserved retina. The split-detector

imaging wide-field montage of the border of an area of atrophy in KS_0044 (Fig 7C) reveals

most of the salient features discussed in preceding sections, including abnormal cone mosaics,

ORTs, and bubble lesions.

Discussion

The recently-developed split-detector AOSLO imaging modality allows unambiguous imaging

of cone photoreceptor inner segments even in the setting of pathologies that disrupt waveguid-

ing.[28–33] This circumvents an inherent drawback of previous AO imaging modalities in

which photoreceptor visualization was dependent on the waveguided reflectance of imaging

light through an intact cone outer segment.[28]

Using split-detector AOSLO imaging, we examined the photoreceptor mosaic in subjects

with choroideremia and uncovered several novel findings. Foveal cone densities were normal

in subjects with preserved EZ bands on SD-OCT, though it should be noted that disease pro-

gression was relatively mild in these patients. The cone mosaic was contiguous throughout

regions of preserved retina; however, cone densities in areas near lesion borders could be sig-

nificantly increased or decreased from normal, and individual cone inner segments appeared

dysmorphic and enlarged. The loss of cone reflectivity on confocal AOSLO at lesion borders

Table 2. Cone Density Variability Near Lesion Borders.

Subject Dense Region Sparse Region Expected

Density

Difference

Measured

Density

Difference

Mean Normal Data

Density

(Cones/

mm2)

Eccentricity

(mm)

Density

(Cones/

mm2)

Eccentricity

(mm)

Mean

Density

(Cones/

mm2)

Standard

Deviation

Eccentricity

(mm)

KS_0044 15,474* 2.362 8,049† 1.967 -1,636 7,425‡ 11,833 1,816 2.142

JC_0699 17,960 1.725 9,937 1.658 -383 8,023‡ 14,122 2,098 1.694

JC_0778 5,917 3.256 5,276 3.529 712 641 7,305§ 1,506§ 3.455§

JC_0782 15,062* 3.684 10,458* 3.646 -91 4,604‡

DW_10173 16,857 1.222 10,152† 1.066 -2,034 6,705‡ 19,966 3,226 1.127

Expected density difference = (mean normal cone density at eccentricity of dense region in choroideremic patient)–(mean normal cone density at

eccentricity of sparse region in choroideremic patient). Negative value indicates the region with denser cones was actually expected to have sparse cones

due to greater eccentricity from the fovea.

* Cone density is >2 SD greater than normal mean cone density at a comparable eccentricity.

† Cone density is >2 standard deviations (SD) less than normal mean cone density at a comparable eccentricity.

‡ Cone density difference is >2 SD of normal mean cone density at a comparable eccentricity.

§ The same measured normal data was used in comparison to data from both JC_0778 and JC_0782 because of similar eccentricities of measurements.

doi:10.1371/journal.pone.0167526.t002

Multimodal Imaging of Photoreceptor Structure in Choroideremia

PLOS ONE | DOI:10.1371/journal.pone.0167526 December 9, 2016 13 / 21



(previously reported by Morgan et al.[26]) was found to colocalize with a complete loss of the

remnant cone inner segment mosaic and with ILBs. This sharp termination of the cone inner

segment mosaic at well-delineated lesion borders, combined with early IZ band abnormalities

and RPE band thinning on SD-OCT,[26] reinforces the theory that cone loss is predicated on

underlying RPE degeneration, and may offer additional evidence toward a primary RPE

degeneration model of choroideremia.[6, 8, 12, 26]

The macro- and microanatomy of ORTs was also examined. Zweifel et al.[13] first reported

these characteristic structures in OCT images acquired from subjects with age-related macular

degeneration,[13] while recent work by Litts et al. revealed that the branching, interconnected

structure of ORTs is composed of degenerating cones and infolded ELM.[14] Consistent with

recent results published by Litts et al.,[27] ORTs did not display IZ/EZ bands on SD-OCT or

Fig 5. Bubble lesions correspond to subretinal hyporeflective regions on SD-OCT. SD-OCT and confocal AOSLO imaging of bubble lesions are

presented here from two subjects, JC_0618 (left) and JC_0752 (right). The lateral distance subtended by the AOSLO imaging windows are indicated by two

black arrows in frames A, C, D, and F, while the location of the SD-OCT B-scans are indicated by white arrows in frames B and E. In JC_0618, an ORT is

indicated by the asterisk (*) allowing mapping of the bubble-like lesions seen in B to the regions indicated by black arrowheads in A and C. In JC_0752,

double asterisks (**) indicate pigment clumps, while triple asterisks (***) mark a retinal blood vessel. These features help localize the bubble-like lesions in

E to the region indicated by the black arrowhead in D. In F, where the plane of the B-scan does not cross the bubble-like lesions, and the spot in D is no

longer visible. Scale bars: A, C, D and F, 500 μm; B and E, 100 μm.

doi:10.1371/journal.pone.0167526.g005
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recognizable cone reflectivity on confocal imaging. However, we did observe remnant cone

inner segments in these structures using split-detector imaging. These cones appeared

enlarged and morphologically irregular, suggesting a state of advanced degeneration. Interest-

ingly, this association of remnant inner segments to preserved ELM is also seen in the transi-

tion zone of retinitis pigmentosa. However, in choroideremia, the ELM typically terminates

too close to EZ dropout to definitively associate its presence with inner segment visibility.[32]

Our data also confirms that although noncontiguous ORT “islands” could be seen near ORT

tips, ORTs are generally contiguous with one another and with the central region of preserved

retina. As was previously proposed,[13] ORTs appeared to degenerate slowly, persisting

Fig 6. ORTs viewed en face on SD-OCT are contiguous with central regions of preserved retina. Four sets of

SD-OCT en face and B-scan images are presented here for subjects JC_0621, JC_0699, JC_0754, and JC_0942.

En face projections are aligned to averaged line scans passing horizontally (bottom) and vertically (right) through

the fovea. Orthogonal lines on each en face OCT indicates the locations at which line scans were taken. B-scan

cross sections of ORTs can be seen as distinct hyperreflective ovaloid structures superficial to Bruch’s membrane;

in en face projection, ORTs appear as long, thin protrusions. Most ORTs are contiguous with the central region of

preserved retina, though remnant “island” ORTs can also be seen amidst surrounding atrophy. Scale bars: all

lateral & en face OCTs (L/E) = 1,000 μm, axial OCTs = 200 μm.

doi:10.1371/journal.pone.0167526.g006

Multimodal Imaging of Photoreceptor Structure in Choroideremia

PLOS ONE | DOI:10.1371/journal.pone.0167526 December 9, 2016 15 / 21



Fig 7. Multimodal imaging of ORTs. A-G present a vertical SD-OCT B-scan (A), an en face SD-OCT projection

(B), a split-detector AOSLO montage (C), and zoomed-in views of the montage (D-G) of an ORT in subject

Multimodal Imaging of Photoreceptor Structure in Choroideremia
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relatively unchanged over several months or years of follow-up imaging. Together, these find-

ings suggest that ORTs are an end stage of retinal degeneration.

Finally, we endeavored to localize the “bubble-like” lesions previously noted by Morgan

et al.[26] These lesions were best seen on confocal AOSLO, and by precisely aligning these

images with SD-OCT of the same area, these lesions were mapped to choroidal sources on

SD-OCT. However, it should be emphasized that the exact source of these bubble-like lesions

has yet to be determined, owing both to a relatively large depth of field on AOSLO and limited

resolution on SD-OCT. Furthermore, these structures cannot be readily identified by SD-OCT

alone at this point, as they are not easily distinguished from other structures in the choroid (e.

g., blood vessels). Although more work is needed to characterize the pathophysiology of these

lesions, bubble-like lesions were most frequently seen in areas near the leading edge of atrophic

lesions, possibly suggesting a link to recent or active atrophy.

This study illustrates some of the benefits of a multimodal imaging approach combining

SD-OCT with confocal and split-detector AOSLO in studying retinal degenerations, and con-

tributes to a growing body of literature concerning the pathophysiology and progression of

choroideremia. In the future, we expect additional studies using these modalities, as well as

emerging techniques including AO microperimetry,[51] OCT-angiography and directional

OCT,[52] will provide further insight into choroideremia and other retinal degenerations. In

addition, these non-invasive, in vivo high-resolution imaging modalities may aid in the selec-

tion of eligible subjects for novel gene therapy trials[34] and offer improved monitoring of dis-

ease progression.

Supporting Information

S1 Fig. Vertical SD-OCTs of all 12 subjects with X-linked choroideremia. Shown here are

vertical SD-OCT line scans through the fovea of all 12 subjects (labeled) taken concurrently

with the SD-OCTs presented in Fig 1. Images are scaled and cropped to subtend a uniform ret-

inal distance (6 mm). ORTs are labeled with filled arrowheads, and ILBs are labeled with

open arrowheads. Scale bars, axial & lateral: 250 μm.

(TIF)

S2 Fig. Sampling windows used for near-foveal cone mosaic density analyses. Cone densi-

ties were measured at a mean 0.70˚ (202.5 μm) eccentricity in 5 subjects with intact foveal EZ

bands on SD-OCT. The confocal AOSLO regions of interest (ROIs) used in cone density anal-

yses are shown here with subject IDs superimposed for identification. A normal subject

(JC_0616) has been included for comparison. Scale bar: 10 μm.

(TIF)
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