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Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to
quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal
images used for IMRT pretreatment quality assurance.
Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelera-
tor at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered
to minimize the impact of linear accelerator and electronic portal imaging device (EPID) position-
ing deviations. Detection studies are performed in which rectangular anomalies of various sizes are
inserted into the images. The performance of detection strategies based on pixel intensity deviations
(PIDs) and gamma indices is evaluated using receiver operating characteristic analysis.
Results: Residual differences between registered images are due to interfraction positional devia-
tions of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large
intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using
gradient scaling. Background noise is suppressed using median filtering. In the majority of images,
PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and
≥2% in ∼20 mm2 areas.
Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of
background noise. This in turn depends on the accuracy of image registration, the quality of the
reference image, and field properties. The longer term aim of this work is to develop accurate and
reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small
anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adap-
tive, and arc therapies, to be quantified. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4736821]

Key words: intensity modulated radiation therapy (IMRT), quality assurance (QA), electronic portal
imaging device (EPID), fluence anomaly, delivery error

I. INTRODUCTION

This work addresses the use of electronic portal imaging de-
vices (EPIDs) for pretreatment quality assurance (PTQA) of
intensity modulated radiation therapy (IMRT) fields. This is
one of several applications for EPIDs. Others are surveyed by
Herman.1 Dosimetric applications including use in PTQA are
reviewed by van Elmpt2 and the references contained within.

In PTQA, one compares a reference image for each IMRT
field to a measured image with no patient or phantom in the
beam. In a clinical setting, EPID reference images are typi-
cally calculated from the IMRT plan via Monte Carlo simu-
lation or an analytic algorithm.3, 4 The reference image is in-
tended to be an accurate approximation of the EPID image
that would be produced if the IMRT field were delivered per-
fectly, i.e., with no linac output variations, alignment errors,

EPID calibration errors, pixel sensitivity variations, leaf or
jaw position errors, ghosting, lag, etc. If the reference and
measured images agree to within some specified tolerance,
the IMRT field is deemed to be acceptable. Disagreement in-
dicates a nontrivial fluence deviation, also referred to in this
work as an anomaly. Detected anomalies must be assessed
and, if clinically significant, corrected before treatment.

Although IMRT is used to treat a wide range of cancers
and its effectiveness depends on the accuracy of radiation
delivery, relatively few works have attempted to rigorously
quantify the accuracy of PTQA anomaly detection. Yan et al.5

evaluated the ability of the gamma algorithm6, 7 to detect ran-
dom and systematic multileaf collimator (MLC) leaf position
errors, finding that all leaves had to be systematically off-
set by at least 2 mm before gamma could reliably detect er-
rors. (See additional studies cited by Yan et al.) Nelms et al.8
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simulated anomalies in head and neck plans and found poor
correlation between gamma passing rates and clinically rel-
evant dose metrics, presumably because gamma is a poor
detector of the underlying fluence anomalies. If PTQA is to
enable more accurate IMRT delivery by detecting and correct-
ing delivery errors, these results suggest the need for anomaly
detection algorithms with higher levels of sensitivity and
specificity.

From a pure engineering standpoint, The Practitioner’s
Guide to Statistics and Lean Six Sigma for Process Improve-
ments cites the following guideline for measurement accu-
racy: “The resolution, or discrimination of the measurement
device must be small relative to the smaller of either the spec-
ification tolerance or the process spread (variation). As a rule
of thumb, the measurement system should have resolution of
at least 1/10th the smaller of either the specification tolerance
or the process spread. If the resolution is not fine enough, pro-
cess variability will not be recognized by the measurement
system.”9

This can be applied to the PTQA processes as follows.
Suppose one requires PTQA to reduce or eliminate errors of
≥2% in the cumulative dose for some subvolume. In the case
that errors are randomly distributed, one might reasonably re-
quire PTQA to detect and “correct” errors of ≥10% in the
per-fraction dose (2

√
(36 fractions) = 12 ≈ 10). In order to

effectively detect errors ≥10% in each fraction, PTQA sub-
processes should be able to resolve per-fraction dose differ-
ences on the order of 1%. Similarly, for nonrandom (system-
atic) errors, effective detection of dose errors ≥2% requires
reliable detection and classification of errors of ∼0.2%.

[The above criteria apply to cumulative dose which re-
sults from radiation fluence delivery through a sequence
of (shaped) beam apertures which results in dose depo-
sition within the patient. Since individual beam apertures
expose different tissue volumes, there is not an exact one-to-
one correspondence between per-aperture fluence and cumu-
lative dose. While the clinical goal is to reduce cumulative
dose errors, this work concentrates on detection of fluence
anomalies. For the clinic, fluence errors detected via EPID
imaging need to be translated into corresponding patient dose
errors. In the absence of true in vivo dosimetry, given the rela-
tionship between fluence and dose, it is useful to quantify the
ability of EPIDs to detect fluence delivery errors.]

This work has three goals. The first is to characterize
background deviations that are likely to occur in EPID im-
ages. These impose a fundamental limit on detection perfor-
mance. The second is to rigorously quantify achievable de-
tection performance using the standard statistical tool of re-
ceiver operating characteristic (ROC) analysis. The final goal
is to explore a novel method of anomaly detection based
on pixel intensity deviations (PIDs). This work focuses on
the PID-based method, comparing it with commonly used
3%/3 mm gamma analysis,10 without attempting to optimize
gamma parameters. Optimization of gamma-based detection
is a nontrivial subject that is addressed in a separate work.11

The longer term aim of this work is to develop accurate
and reliable methods of detecting IMRT delivery errors and
variations.

II. METHODS AND MATERIALS

II.A. Overview

The main contents of this work are ROC studies in which
PID- and gamma-based strategies are used to classify EPID
images as either good (anomaly-free) or bad (containing a
fluence anomaly). The ROC studies are performed by clas-
sifying many good and bad images. Good images are mea-
sured patient images; bad images are measured images with
artificial rectangular anomalies inserted. The steps involved
in image classification are: (i) select a measured patient im-
age; (ii) optionally insert an anomaly; (iii) renormalize to
remove output variation; (iv) optionally register to the refer-
ence image (explained below); (v) calculate PIDs and gam-
mas for above-threshold pixels (explained below); and (vi)
classify the image based on a PID- or gamma-based statis-
tic. Following classification of many images, the classifi-
cation accuracy for a given metric/method is established.
Classification accuracy is reported for PID- and gamma-
based classifiers, the goal being to identify analysis meth-
ods that are most accurate and sensitive at detecting fluence
anomalies.

Raw data consist of repeat images of 11 clinical IMRT
fields, culled from different patients. For purposes of com-
puting reference images, all measured images are corrected
for output variations and registered. For output variation cor-
rection, above-threshold pixels are identified, comprising all
pixels above 20% of maximum intensity. Images of each field
are then normalized so that their average intensity across
above-threshold pixels is identical. Registration is described
below. Calculation of PIDs and gamma indices is performed
with respect to two reference images: (i) the first of the
output-variation-corrected (OVC) registered images, and (ii)
the mean of these images. Detection studies consider fluence
anomalies of different sizes (±1%−±10% dose differences
over 1 mm2−20 mm2 areas), and a number of gamma- and
PID-based image classifiers. Only above-threshold pixels are
utilized for classification. For each combination of fluence
anomaly and classifier, a ROC curve is generated by classi-
fying good and bad images. The true positive rate, false neg-
ative rate, and maximum accuracy are determined from the
ROC curve.

PID values are calculated using the formula: δj = 100 ·
(pj − �

pj )/
�

pj , where
�

pj and pj are the jth pixel intensi-
ties in the reference and measured images. Gamma indices
are calculated using two methods: (a) A 2D implementa-
tion of the interpolation-free method of Ju et al.12 This
method approximates image intensity as a linear function
on simplices (i.e., triangles in 2D), and calculates gamma
“exactly” without the need for subdivision of the native grid.
Gamma indices calculated according to this method are re-
ferred to below as “continuous.” (Additional details are given
in a separate work.11) (b) Gamma values are also calcu-
lated according to the familiar grid sampling method.13 In
this work, sampling is performed by default on the origi-
nal EPID grid with effective pixel size 0.37 mm. Gamma
values obtained using this method are referred to below as
“discrete.”
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(a) (b) 

direction of  
leaf motion 

FIG. 1. Panel (a) shows the principal clinical dynamic IMRT field analyzed in this work. This dynamic field is repeatedly acquired at 6 MV and 18 MV, and is
shot in conjunction with a number of other open and calibration fields, including the picket-fence test field of panel (b). The yellow arrow shows the direction of
leaf motion. The superimposed black line shows above-threshold pixels (i.e., pixels with intensity ≥20% of maximum intensity).

Note that if image gradients are large—as is the case for
PTQA EPID images—gamma calculations on finite grids can
introduce significant errors. The interpolation-free method is
preferred because it avoids this problem. All gamma calcula-
tions are performed out to a maximum distance-to-agreement
(DTA) search distance of 1 cm using (local) 3%/3 mm crite-
ria, which are among the most frequently adopted criteria for
published gamma analyses.10 PID and gamma distributions
given in Sec. III are for above threshold pixels only.

II.B. Measured images

II.B.1. Dynamic images

The principal input data for this work consist of repeat
6 MV and 18 MV measurements of a clinical dynamic IMRT
field [Fig. 1(a)] which is shot in conjunction with several other
fields, including a picket fence test field [Fig. 1(b)] plus open
field and calibration fields. These images are analyzed in sub-
stantial detail to determine the properties of IMRT fields that
affect anomaly detection. Images are collected on different
days. On each day the EPID is extended to 105 cm source-
to-imager distance, and remains in the same position for all
images. At 6 MV, dark field and flood field images are taken
and EPID calibration is performed. A postcalibration image
is taken with the same jaw settings as the flood field image;
this image is referred to below as an “open field” image. Fi-
nally, images are taken of the patient and picket fence fields of
Fig. 1. The same procedure is followed for 18 MV. Images
are obtained by delivering 100 monitor units (MU) at a rate of
300 MU/min using dynamic IMRT. (Reference and measured
images are normalized before comparison, so use of 100 MUs
is as good as any other value. In a clinical workflow, where
reference images are computed, images would likely be ac-
quired using the planned MUs for each field.) This procedure
is repeated daily producing fifty-seven 6 MV and fifty-six
18 MV images of the patient field.

II.B.2. Step-and-shoot images

Additional data consist of repeated images of the ten clin-
ical step-and-shoot IMRT fields shown in Fig. 2. Each of

the ten clinical fields comes from a different patient plan:
three from prostate plans, three from head and neck plans,
and one each from chest, brain, spine, and abdomen plans.
In contrast to the dynamic field of Fig. 1, which is shot at
both 6 MV and 18 MV, the fields in Fig. 2 are shot at one
energy only: five at 6 MV and five at 18 MV. Open field im-
ages (but not picket fence images) are also acquired at 6 MV
and 18 MV. All images are collected on a single day. Flood
field calibration is performed once at the start of image col-
lection. Between shooting each set of 12 fields, the EPID is
retracted and re-extended. Images are obtained by delivering
100 monitor units (MU) at a rate of 600 MU/min using step-
and-shoot IMRT. This procedure is repeated 30 times, result-
ing in 30 images of each field. It is generally accepted that
dynamic versus step-and-shoot delivery can require different
levels of performance from the MLC. There is consequently
value in analyzing the characteristics of dynamic versus step-
and-shoot images.

II.B.3. Image acquisition details

All images are acquired with collimator at 90◦ and the
gantry at 0◦, the position commonly used for clinical EPID-
based IMRT pretreatment QA. Each image represents the
average of acquired frames in the EPID’s integrated mode.
Imaging is performed on a Varian Trilogy linear accelerator
with a Millenium 120 MLC, using an aS1000 EPID with IAS3
control software. Flood field jaw settings are 38 cm × 28 cm,
ensuring the flood field covers the EPID array except for a
small margin around its edge. The picket fence image requires
MLC leaves to move across a rectangular region, maintaining
a fixed gap between leaf banks, “pausing” to generate five
“lines” at 3 cm spacing, as in Fig. 1(b).

The aS1000 array is 40 cm × 30 cm, and is divided into
1024 × 768 pixels, making the physical pixel size 0.39 mm
× 0.39 mm. All images are acquired at a source-imager dis-
tance (SID) of 105 cm, a common SID used for pretreatment
QA. Consequently, the effective pixel size in the isocenter
plane is 0.39/1.05 = 0.37 mm. Each dynamic field im-
age produces on the order of 40 000 above-threshold pix-
els. The 57/56 dynamic images therefore produce a total of
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FIG. 2. Ten clinical step-and-shoot IMRT fields used in this work. These
are analyzed in less detail than the dynamic field of Fig. 1(a). They are used
to test whether techniques developed for the field of Fig. 1(a) can be validly
applied to other fields. As in Fig. 1(a), the superimposed black lines show
above-threshold pixels.

∼2.2 million PID and gamma values, from which background
PID and gamma distributions are determined. Step-and-shoot
images produce approximately comparable sample sizes.

Although the measurements are performed with Varian
equipment, techniques used in this study are directly translat-
able to other accelerator vendor equipment, different EPIDs,
and even non-EPID measurement devices. Different linac
equipment may yield different reproducibility of accelerator
components (MLC leaf positions, beam output, etc.). Differ-
ent EPIDs (detectors) may exhibit different positional and re-
sponse reproducibility.

II.C. Image registration

II.C.1. Image registration for dynamic images

Registration of the dynamic images [Fig. 1(a)] is explored
in detail. Rigid registration is performed in order to remove
global translations, rotations, and scale changes. Causes of
these shifts could include positional deviations of the carriage,
collimator, and EPID with respect to their intended positions.
For example, a slight offset of the collimator will cause the
IMRT field to be rotated. Similarly, failure of the EPID to ex-
tend exactly to its intended position could cause a translation
or scale change.

Within each image set, images Ii, i ≥ 2, are registered
to the first image I1. (Registration is performed on full im-
ages of size 1024 × 768 pixels.) Two registration algorithms
are employed: (a) a cross-correlation algorithm from Guizar–
Sicairos et al.,14 and a home-grown picket fence (PF) al-
gorithm. The cross-correlation algorithm is used to detect
and correct translations, down to subpixel accuracy. MATLAB

code can be found in Ref. 15.
The PF algorithm uses the picket fence image associated

with each patient field image to correct rotations and scale
changes. It relies on the fact that the EPID position is static
during each measurement session’s image acquisitions, ensur-
ing that patient field and picket fence images exhibit identical
positional offsets. Thresholding is performed on picket fence
images in order to identify the five horizontal leaf gaps [see
Fig. 1(b)]. Pixels along these gaps are assigned an intensity of
one, while all other pixels are assigned an intensity of zero.
Best fit lines are then obtained for each gap. Rotations are
determined from the mean slope of the five lines, and scale
changes from the distances between the outermost lines.

II.C.2. Validation of image registration for dynamic
images

Accuracy of the cross-correlation algorithm is evaluated
by repeating an offset test 200 times. For each test, one of
the 57/56 patient field images is selected at random, copied,
translated with respect to the original, and resampled onto the
original grid. Translations along both axes are random and
uniformly distributed between ±2 pixels. Random, uncorre-
lated, and normally distributed PIDs, having zero mean and
standard deviation (SD) of 0.5%, are applied to each pixel in
the copied image, i.e., each pixel intensity is multiplied by a
factor (1 + p/100), where p is given by 0.5 times a standard
normally distributed pseudo-random value. This PID compo-
nent simulates differential noise between two images of the
same patient field. As reported below, a SD of 0.5% approx-
imates the actual level of noise in the dynamic images. The
copied image is then registered with the original, and esti-
mated translations are compared with true values. This is done
for both 6 MV and 18 MV image sets.

Accuracy of the PF algorithm is also evaluated by repeat-
ing a test 200 times. For each test, a picket fence image is
selected at random, copied, then rotated and scaled with re-
spect to the original. Rotations and scale changes are random
and uniformly distributed between ±2◦ and ±2%. Random,
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uncorrelated, and normally distributed PIDs, having zero
mean and SD of 1.5%, are applied to each pixel in the copied
image. The PIDs are intended to simulate differential noise
between two picket fence images. A SD of 1.5% approxi-
mates the actual level of noise in picket fence images. The
copied image is then registered with the original, and esti-
mated rotations and scale changes are compared with true val-
ues. This is done for both 6 MV and 18 MV image sets.

II.C.3. Image registration for step-and-shoot images

Repeat step-and-shoot images are taken without requir-
ing any motion of the gantry or collimator. (In principle, the
gantry remains stationary at 0◦ and the collimator stationary
at 90◦ for all images. Note, however, that the linac dynami-
cally controls the gantry and collimator, so the possibility ex-
ists of some slight motion around the nominal position.) For
this reason, the cross-correlation algorithm alone is used to
correct translational offsets between repeat images. Rotations
and scale changes are assumed to be zero. Separate validation
of the accuracy of the cross-correlation algorithm for step-
and-shoot images is not performed. Accuracy is assumed to
be similar to that obtained for the dynamic images.

II.D. Image processing to improve anomaly detection

After rigid registration (Sec. II.C), global misalignment
between images are minimized. However, there can still ex-
ist residual deviations in the positions of image subelements.
These are due to small positional deviations of individual jaws
and MLC leaves with respect to their intended positions, and
to imperfect global registration. Residual misalignments of
measured images (i.e., image subelements) with respect to the
reference image interact with image gradients to produce vari-
ability in PID values.

The relative image gradient R is defined to be the percent
change in image intensity I per pixel: R = 100 �I/I. Sub-
scripts x,y (Rx, Ry) denote relative gradients in the x- and y-
directions. With reference to Figs. 1(a) and 2, the x (horizon-
tal) direction is the cross-plane direction, i.e., the direction
of upper jaw motion. The y (vertical) direction is the in-plane
direction, i.e., the direction of MLC leaf motion. Where direc-
tion is unspecified, R denotes the magnitude of the gradient:

R =
√

R2
x + R2

y . A suffix j (Rx,j, Ry,j, Rj) denotes gradients at

pixel j. Unless otherwise noted, gradients are calculated in the
reference image. Gradients employed here are calculated via
MATLAB’s “gradient” function, which defines Rx,j and Ry,j as
half the difference of intensity values at pixels on either side
of pixel j.

The following model is adopted to estimate the effect of
the image gradient for PID δj:

δj = δB,j + �Xj · Rx,j + �Yj · Ry,j , (1)

where δB, j, �Xj, and �Yj are random variables that assume
different values at different pixels. The quantityδB, j is the
baseline (i.e., gradient-independent) intensity variation. It rep-
resents the baseline detector “noise” against which fluence

anomalies must be detected. �Xj and �Yj are local misalign-
ments in units of pixels, e.g., due to positional variations of
individual MLC leaves. This work does not attempt to de-
duce the values of �Xj and �Yj for individual pixels, but
rather evaluates their statistics over a large population of pix-
els. When considering the distribution of PIDs across an im-
age, or a set of images, δB, j, �Xj, and �Yj are assumed to
be independent and normally distributed with zero mean and
standard deviations σ B, σ x, and σ y that are independent of
pixel index j. A consequence of Eq. (1) is that the SD σ PID,j

of PID values δj can be expressed as follows:

σPID, j =
√

σ 2
B + σ 2

x R2
x,j + σ 2

y R2
y,j , (2)

where dependence on pixel index j is solely through the gradi-
ents. The values of σ B, σ x, and σ y can be obtained from image
analysis. Gradient dependence of PIDs degrades one’s abil-
ity to detect fluence anomalies in the PID distribution. High
gradient regions of the image contribute large PIDs, which
can mask bona fide fluence anomalies in other parts of the
image. Gradients effects can be removed by using gradient
scaled PIDs (GSPIDs):

δ′
j = δj · σB√

σ 2
B + σ 2

x R2
x,j + σ 2

y R2
y,j

. (3)

The ability to detect fluence anomalies in GSPID dis-
tributions is better than in PID distributions. However, ad-
ditional processing provides further improvements. Specifi-
cally, application of median filtering to the GSPID images is
able to suppress background noise, making fluence anomalies
easier to detect. Median filtered GSPID values are referred
to in the following as median-filtered gradient-scaled PIDs
(MFGSPID) values. Median filtering is performed using the
MATLAB “medfilt2” function. Details are given below.

II.E. PID- and gamma-based classifiers

ROC analysis relies on classifiers to catalog an image as
being “good” or “bad” in the presence of image offsets and
noise. PID-based classifiers use the statistic φ1 = Pr[|δ − μ|
< κσ ], i.e., the percentage of (above threshold) PID values
δ lying within κ sample SDs σ of the mean μ. For a cut-
off τ , images are classified as good if φ ≥ τ and bad if
φ < τ . For each value of τ , classification produced certain
rates of true positives (TPR), false positives (FPR), true neg-
atives (TNR), and false negatives (FNR), where TPR, FPR,
TNR, and FNR are in the range [0,1] and TPR + FNR = TNR
+ FPR = 1. A true positive is an anomaly-free image that is
correctly classified as positive (good), and so on. Accuracy
is equal to 100 * (TPR+TNR)/(TPR+FNR+TNR+FPR). A
ROC curve plots TPR versus FPR as τ is varied. Accuracy
varies along the ROC curve, attaining a maximum at some
specific value of τ , denoted max_acc(κ ,A) where A is the
anomaly. Taking the maximum over sampled values of κ gives
the overall maximum max_acc(A), which is used to quan-
tify classifier performance. A classifier with maximum ac-
curacy close to 100% exhibits good discrimination between
anomalous and anomaly-free images. For this study, classifier
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performance is deemed to be acceptable if maximum accu-
racy is greater than or equal to 95%. This means that, with
optimum parameter settings, the classifier can correctly clas-
sify at least 95% of images.

Note that PID-based classifiers utilize not only simple
PIDs, but also GSPIDs, and MFGSPIDs. In Tables III–V, the
classifier labeled “no RG”, signifies use of PIDs without reg-
istration and gradient scaling with respect to the reference
image. This classifier illustrates the degree to which prior
registration improves classification performance. The “no G”
classifier utilizes simple PIDs from registered images, with-
out gradient scaling. The remaining PID-based classifiers use
gradient-scaled PIDs from registered images. The classifier
labeled “1 × 1” uses no median filtering. The classifiers la-
beled “6 × 1,” “13 × 1,” “6 × 6,” and “13 × 13” use median
filtering with the indicated window size (e.g., “6 × 1” signi-
fies a filter window of size 6 pixels in the x-direction and 1
pixel in the y-direction).

Gamma indices are calculated using registered images.
Gamma-based detection uses the statistic φ2 = Pr[γ < 1], the
percentage of pixels having gamma less than 1. This is the
frequently used 3%/3 mm gamma analysis with a threshold
of one.10 Two forms of gamma calculation are used: gamma
values calculated on the discrete image grid are denoted with
“disc,” while gamma values calculated using interpolation-
free method of Ju et al.12 are denoted “cont” (for continuous).
Note that this work makes no attempt to optimize gamma de-
tection: for gamma there is no free parameter κ (although
maximum accuracy is still evaluated over all cutoffs τ ). Opti-
mization of gamma-based detection is addressed in a separate
paper.11

For PID-based classifiers, κ is varied from 1 to 10 in steps
of 1. Note that in the above classification procedure, output
variation correction and registration are performed after inser-
tion of the anomaly. This simulates clinical reality, by ensur-
ing that anomalies have the potential to interfere with output
variation correction and registration.

II.F. Detection studies

Detection studies consider various sizes of fluence anoma-
lies (see the left-most column of Table III) and the gamma
and PID-based image classifiers as described above (listed in
the top row of Table III). For each combination of fluence
anomaly and classifier, a ROC curve is generated by classi-
fying available good and 500 bad images. (See any standard
statistics text for details of the ROC method.) Good images
consist of unmodified measured images: fifty-six 6 MV im-
ages and fifty-seven 18 MV images in the case of the dy-
namic field, and thirty 6/18 MV images in the case of the step-
and-shoot fields. Bad images consist of a randomly selected
measured image, into which a randomly positioned fluence
anomaly is inserted.

Each fluence anomaly consists of a rectangular region of
n × m pixels (n in the x-direction and m in the y-direction)
in which dose (intensity) is changed by ± q percent. Anoma-
lies used in this study are listed in the left-most column of
Table III in “n × m, q” format. Note that 3, 6, 13, 26, and

53 pixels represent lengths of 1.1, 2.2, 4.8 (≈5), 9.7 (≈10),
and 19.7 (≈20) mm, respectively. The last three lengths are
selected to correspond roughly with multiples of the Varian
Millenium 120 MLC 5 mm inner leaf width. However, this
work makes no assumptions about whether anomalies are pro-
duced by MLC leaf positioning deviations, or other causes.
It simply attempts to characterize detection performance for
anomalies of the stated sizes.

For each bad image, the sign of the dose change within
the anomaly is random, with 50% probability that it is pos-
itive or negative. The position of the anomalous rectangle
is randomly selected within the image, in such a way that
the entire rectangle overlaps the region of above-threshold
pixels. This ensures that, for each scenario, classification
of bad images is based on a consistent number of anoma-
lous pixels. For the field of Fig. 1(a), the number of candi-
date positions for the largest anomalies (53 × 53 pixels) is
around 15 000. For smaller anomalies it approaches the num-
ber of above-threshold pixels, i.e., about 40 000. Correspond-
ing numbers for step-and-shoot images are similar.

III. RESULTS

III.A. Output variations and registration of dynamic
images

The standard deviation of measured output variations in
6 MV flood field images is 3.01%, and in 18 MV images is
1.85%. (The energy-dependence is not explained, but may be
caused by different linac pulse durations or levels of quan-
tum detector noise. Munro and Bouius analyzed an aSi EPID
concluding that overall detector noise is dominated by quan-
tum noise.16) These variations correspond with the size of ex-
pected day-to-day output variations when output calibration is
performed less frequently than daily, e.g., at monthly or quar-
terly intervals. The SD in open field images, taken soon after
flood field calibration, is 0.4% for 6 MV and 0.7% for 18 MV.
In patient field images, the SD is 0.3% for 6 MV and 0.8% for
18 MV. Daily flood field calibration (or similar output calibra-
tion using a nonflood field) reduces, but does not eliminate,
output variations. Note that image “output variations” could
be attributable to linac output variations, or detector output
variations, or both.

Accuracy of the cross-correlation and PF registration al-
gorithms is given in Table I, which quantifies the difference
between estimated and true image offsets obtained using the
methodology of Sec. II.C.2. The accuracy of translation es-
timates in the x- and y-directions are similar, so results are
combined. Based on these results, the cross-correlation al-
gorithm can estimate global translations to an accuracy of
about 0.01 pixels (2σ ), or 0.004 mm at a SID of 105 cm. The
PF algorithm can estimate rotations to an accuracy of about
0.03◦ and scale changes to an accuracy of about 0.1%, which
represents a SID shift of ±1 mm at a SID of 105 cm. The
cross-correlation algorithm is more accurate than the PF al-
gorithm at detecting translations, but does not detect rotations
and scale changes. The PF algorithm is the most accurate al-
gorithm found by the authors to date for detecting rotations
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TABLE I. Accuracy of the cross-correlation registration algorithm at estimating translations and the PF algorithm at estimating rotations and scale changes.
Quoted figures are the differences between estimated and true values. Statistics are over 200 samples (μ = mean, σ = SD).

Energy � x/y shift (pixels) � rotation (degrees) � scale change (%)

6 MV Range = −0.012 : 0.011 Range = −0.030 : 0.038 Range = −0.196 : 0.214
μ ± σ = 0.000 ± 0.005 μ ± σ = 0.006 ± 0.010 μ ± σ = 0.005 ± 0.06

18 MV Range = −0.012 : 0.011 Range = −0.013 : 0.018 Range = −0.110 : 0.089
μ ± σ = 0.000 ± 0.005 μ ± σ = 0.000 ± 0.005 μ ± σ = −0.009 ± 0.04

and scale changes. A cross-correlation algorithm for detect-
ing rotations and scale changes did not to perform as well as
the picket fence algorithm. Note that detection of rotations
using the PF algorithm is unaffected by translations, and so is
logically independent of translation detection.

Table II shows the estimated translations, rotations, and
scale changes obtained when the cross-correlation/PF algo-
rithms are used to register output-variation-corrected patient
field images Ii, i ≥ 2, to the first image I1. Translations
range up to ∼0.4 pixels, with a SD that is larger in the
y (MLC) direction than in the x (jaw) direction. Rotations
range up to ∼0.1◦ (about three times measurement accuracy),
with a SD that is approximately equal to measurement accu-
racy. Scale changes are on the order of measurement accu-
racy (i.e., < 0.1%), indicating that scale estimates are unre-
liable and scale corrections are therefore pointless for these
measurements.

A key assumption of the PF algorithm is that all images
taken on the same day (i.e., without moving the imager) have
the same offsets, and that rotations obtained from picket fence
images can therefore be used to correct rotational offsets in
patient field images. Figure 3(a) is a plot of same-day 18 MV
versus 6 MV shifts, obtained from the cross-correlation algo-
rithm applied to patient field images. Figure 3(b) is a plot of
same-day 18 MV versus 6 MV rotations, obtained from the
PF algorithm applied to picket fence images. Both plots ex-
hibit reasonably good correlation between 18 MV and 6 MV
results, confirming that offsets are due to daily position vari-
ations of the EPID with respect to the treatment head. (For
Fig. 3(a), the correlation coefficient is 0.95. For Fig. 3(b), it is
0.83.)

III.B. Output variations and registration of
step-and-shoot images

SDs of output variations are less than 0.3% for all fields
except one. The exception—the field of Fig. 2(e), referred to

henceforth as field 2e—has a SD of ∼0.6%. Translational
shifts for all step-and-shoot fields are similar to those for
the dynamic field. Shifts in both directions fall within the
range [−0.4, 0.4] pixels, and shift SDs range from 0.03 to
0.12 pixels.

III.C. PID distributions for dynamic images

Figure 4 shows distributions of 6 MV PIDs and gamma
values with respect to a reference image that is the mean
of output-variation-corrected registered images. Results for
18 MV, and for a reference image that is the first of the
fifty-seven 6 MV/fifty-six 18 MV images are visually similar.
Figure 4(a) shows the PID distribution obtained in the pres-
ence of 53 × 53 pixel, +2% and +5% anomalies. Plots are
obtained by taking each of the fifty-seven 6 MV patient field
images, inserting a 53 × 53 pixel +2% or +5% anomaly
at a random location (such that the entire anomaly overlaps
the region of above-threshold pixels), and aggregating the re-
sulting gradient-scaled PIDs. The distributions of simple and
median-filtered PIDs are visually similar, though they differ
in the percentages of PIDs falling in the central part of the
distribution versus the tails. Note that anomalous pixels can
be clearly seen as humps around +2% and +5%, as would be
expected. Also the height of the humps relative to the main
peak is consistent with about 8% of pixels (i.e., 53 × 53
≈ 2500 out of approximately 40 000) being anomalous.

Figure 5(a) plots PID SDs for 6 MV output-variation-
corrected (OVC) and output-variation-corrected-and-
registered (OVCR) patient field images against the jaw
gradient RX and leaf gradient RY. Note that these results
are for good images (no inserted anomalies). In order to
generate these plots, PIDs for above-threshold pixels are
binned according to the reference image gradient with bin
size 2.5. PID SD values are calculated and plotted against the
mid-point of each bin. Plots for 18 MV patient field images
are similar.

TABLE II. Estimated translations, rotations, and scale changes between dynamic field images Ii, i ≥ 2, and the first image I1. Statistics are over fifty-seven 6
MV and fifty-six 18 MV images (μ = mean, σ = SD).

Energy x-shift (pixels) y-shift (pixels) Rotation (degrees) Scale change (%)

6 MV Range = −0.03 : 0.24 Range = −0.31 : 0.29 Range = −0.12 : 0.02 Range = −0.17 : 0.04
μ ± σ = 0.11 ± 0.06 μ ± σ = −0.01 ± 0.14 μ ± σ = −0.04 ± 0.03 μ ± σ = −0.07 ± 0.05

18 MV Range = −0.07 : 0.22 Range = −0.39 : 0.19 Range = −0.06 : 0.07 Range = −0.05 : 0.16
μ ± σ = 0.07 ± 0.06 μ ± σ = −0.10 ± 0.13 μ ± σ = 0.02 ± 0.03 μ ± σ = 0.07 ± 0.06
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FIG. 3. (a) Plot of estimated x- and y-shifts derived from same-day 18 MV versus 6 MV dynamic field images [Fig. 1(a)]. (b) Plot of estimated rotations derived
from same-day 18 MV versus 6 MV picket fence images [Fig. 1(b)]. Superimposed lines have slope of one, and are fitted by eye to the data.

OVC images are not registered with the reference image.
Figure 5(a) shows that misalignments in the OVC images in-
teract with intensity gradients in the x- and y-directions to
produce PID SDs up to 6%. The overall range of PID val-
ues in this case is [−12.8, 14.8]. OVCR images are registered
with the reference image. Figure 5(a) shows that registration
eliminates almost all jaw misalignments in the x-direction:
PID SDs become approximately independent of gradient RX.
However, global registration cannot eliminate individual leaf
misalignments in the y-direction. Consequently, PID SDs still
vary with gradient RY, though the dependence is weaker than
in OVC images. As a result of registration, maximum PID
SDs are reduced to 2%, and the range of PID values is re-
duced to [−10.0, 5.5].

To derive estimates of the parameters σ x and σ y in Eq. (2),
it is necessary to plot PID variance against gradient squared.
Figure 5(b) shows these plots for the OVCR data of Fig. 5(a),
with superimposed regression lines in gray. Using these re-
gression parameters, Eq. (2) gives the near-linear fitted curves
shown in gray in Fig. 5(a). Based on the regressions, 6 MV
patient field images have σ x = 0.01 and σ y = 0.08. Plotting
σ 2

PID versus a single squared gradient as in Fig. 5(b) effec-
tively averages over the other gradient, leading to an offset in
the y-intercept. For this reason, σ B is estimated by finding the
PID SD for pixels having Rx,j ≈ 0 and Ry,j ≈ 0. The estimated
value is: σ B = 0.25. The corresponding values for 18 MV pa-
tient images are: σ B = 0.35, σ x = 0.01, and σ y = 0.07. The
measured values for σ x and σ y imply that, after image reg-
istration, the residual x- and y-shifts will mostly lie between
three-sigma values of ±0.03 pixels (or ±0.01 mm) in the x-
direction and ±0.24 pixels (or ±0.1 mm) in the y-direction.

Gradient scaled PIDs are corrected for the gradient effect
as in Eq. (3). GSPID SDs are consequently approximately
independent of gradient and equal to 0.25 for 6 MV and
0.35 for 18 MV patient field images. In 6 MV patient field
images, the range of GSPIDs is [−2.1,2.2]. The range for
18 MV patient field images is similar. Figure 6 shows PID and
GSPID images derived from the same 6 MV patient field im-
age. In the original image, intensity in a 20 × 20 pixel region
has been artificially increased by 2%. In the PID image the
anomalous region must be detected against background PIDs

ranging from −3 to +6. In the GSPID image background
GSPIDs extend from −1.5 to about +1, making anomaly de-
tection easier. Median filtering complements gradient scaling
by potentially suppressing background noise, while preserv-
ing bona fide anomalies.

III.D. PID distributions for step-and-shoot images

Figure 7 shows PID distributions for the ten step-and-shoot
fields, plus the 6 MV open field that is shot at the same time
as the step-and-shoot fields. The 6 MV open field exhibits
the tightest distribution (red curve). Since it derives from an
open field, this distribution is a reasonable approximation for
inherent detector noise. It has a SD of 0.12%. Of the step-and-
shoot fields, all but one exhibit similar distributions, with SDs
of 0.48%–0.63%. These values are comparable to the 6 MV
and 18 MV SDs for the dynamic field [Fig. 1(a)]: 0.38% and
0.42%.

The outlier in Fig. 7 is once again field 2e, which has
a substantially wider PID distribution (purple line) with a
SD of 1.01%. Anecdotally, that field took the longest to de-
liver, by virtue of being the most heavily modulated. The
10 step-and-shoot fields collectively illustrate the effect of
small positional deviations on the PID distribution. Each time
a field is delivered, the jaws and MLC leaves can move to
slightly different positions. The residual positional deviations
interact with image gradients (in modulated fields) to widen
the PID distribution. If the field is heavily modulated and
taxes the MLC, resulting in greater disparity between actual
and intended leaf positions, the PID distribution could be-
come appreciably wider. However, it appears that this is not
the primary explanation for the notably wider distribution of
field 2e.

Gradient analysis—of the type performed in Fig. 5 for the
dynamic field—produces a range of values for σ B, σ x, and
σ y. Excluding field 2e, the range of σ B is [0.23, 0.46], the
range of σ x is [0.02, 0.12], and the range of σ y is [0.05, 0.12].
(Note that the dynamic field has values at the lower end of
these ranges.) For field 2e, σ x and σ y fall within these same
ranges, but σ B is substantially larger at 0.94. The quantities σ x

and σ y represent the SDs of local positional offsets, in units
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FIG. 4. For the dynamic field of Fig. 1(a), aggregate 6 MV PID and gamma distributions with respect to a mean reference image, for registered images into
which 53 × 53 pixel +2% and +5% anomalies are inserted at random locations. (a) Aggregate GSPID distribution. (b) Aggregate continuous and discrete
gamma distributions. (c) For +2% anomalies, aggregate gamma distributions with discrete gammas (denoted discreten) calculated on progressively finer grids
of n = 1, 5, and 10 sub-pixels per original pixel. (d) Same as c, but on an expanded scale. (e) For +5% anomalies, aggregate gamma distributions. (f) Same as
e, but on an expanded scale. These results show that anomalies are more readily detectable (by eye) in the PID distributions than in the gamma distributions.

of pixels. The results suggest that positional offsets for field
2e are within the same range as the other fields. However, σ B

represents baseline (i.e., gradient-independent) noise, which
is substantially greater for field 2e. A tentative explanation is
that field 2e has a low mean intensity, and therefore exhibits
relatively high quantum noise. Quantum noise is proportional
to the inverse of the square root of image intensity. Figure 8
plots σ B versus the inverse of the square root of image in-
tensity, restricted to low gradient pixels (those with relative
gradient in the range [0,2.5]). The plot shows reasonable cor-
relation, lending support to the above explanation.

III.E. Gamma distributions for dynamic images

Figures 4(b)–4(f) show the continuous and discrete gamma
distributions obtained in the presence of 53 × 53 pixel, +2%
and +5% anomalies. These are obtained by taking each of
the fifty-seven 6 MV patient field images, inserting a 53
× 53 pixel +2% or +5% anomaly at a random location (such
that the entire anomaly overlaps the region of above-threshold
pixels), and aggregating the resulting gammas. All gamma
distributions are calculated using registered images and
3%/3 mm criteria. (Gamma is calculated using the relative
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FIG. 5. Gradient results for the dynamic field of Fig. 1(a) shot at 6 MV. (a) Plots of PID SD versus relative gradients RX in the x/jaw direction and RY in the
y/leaf direction, for 6 MV patient field images that are for 6 MV patient field images that are output variation corrected but not registered (OVC) and output
variation corrected and registered (OVCR). To generate these plots, PIDs are calculated for the 57 OVC or OVCR images, and binned according to the pixel’s
RX or RY value. The SD is then calculated per bin. (b) Plots of PID variance versus R2

Xand R2
Y for 6 MV OVCR patient field images.

dose formulation—see details in Gordon et al.11 For gamma
analysis, images are output variation corrected and regis-
tered, but no gradient scaling or median filtering is performed.
While necessary for PID-based detection, registration does
not have a dramatic effect on gamma-based detection. The
DTA search makes gamma somewhat robust to offsets.)

Figure 4(b) shows that most continuous gamma values fall
close to zero, but the distribution has a long tail extending up
to ∼1.7. Discrete gammas fall further from zero with a dis-
tribution tail extending up to ∼1.9. The substantial difference
between the continuous and discrete gamma distributions is a
result of the errors inherent in gamma calculations on finite
grids. The discrete gamma distribution has spikes at gamma
values: (0.37 mm/3 mm) *

√
i2 + j 2 ≈ 0.12

√
i2 + j 2, where

i and j are discrete pixel offsets obtained from the DTA
search. Pixels whose minimum gamma value is found at off-
sets (i,j) = (0,1) or (1,0) fall into the spike at 0.12, and so
on. When discrete gammas are calculated on a progressively

finer grid [Figs. 4(c) and 4(e)], the number of spikes increases
and the discrete distribution converges to the continuous
distribution.

Figures 4(d) and 4(f) show the same plots as in Figs. 4(c)
and 4(e), but with modified x- and y-scales. Anomalous pixels
are not easy to identify in the gamma distributions. In the con-
tinuous distribution the 2% anomaly shows up as a low hump
around 0.2, and the 5% anomaly as a low hump around 0.4.
In the discrete distributions, they are obscured by the spikes
described above. Note that although the inserted anomalies
differed by +2% or +5% from the reference image, the cor-
responding anomalous gamma values are not centered around
2.0/3.0 = 0.67 or 5.0/3.0 = 1.67 as one might expect. Al-
though the residual global offsets between (unregistered) im-
ages are fractions of a pixel, the DTA search (performed out
to a distance of 10 mm) finds minimum gamma values at large
pixel offsets. For the 5% anomaly, calculated on 0.37 mm
grid, these range from 0 to 14 pixels, with a mean of ∼3 and a

(a) (b) 

FIG. 6. Pixel intensity deviation (PID) images for the dynamic field of Fig. 1(a) shot at 6 MV. (a) The (PID) image derived from a 6 MV patient field image
in which intensity has been artificially increased by 2% in a 20 × 20 pixel region (the yellow rectangle). (b) The corresponding gradient scaled PID (GSPID)
image, with the anomaly showing as a red rectangle. In the case of the PID image, identification of the anomaly is made more difficult by the presence of outlier
PID values extending to −3 and +6. In the GSPID image the anomaly is more easily detectable because it lies outside the range of GSPIDs in the remainder of
the image.
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FIG. 7. PID distributions for the step-and-shoot fields of Fig. 2, and for an
open 6 MV field. The 6 MV open field exhibits the tightest distribution. All
but one of the step-and-shoot fields exhibit similar distributions. The outlier
is the field of Fig. 2(e), which has a substantially wider distribution.

SD of ∼2. The end result of the DTA search is that anomalous
gamma values are reduced, and end up having a mean of ∼0.2
(+2% anomalies) and ∼0.4 (+5% anomalies). This reduction
occurs for both continuous and discrete gammas.

III.F. Gamma distributions for step-and-shoot images

Gamma distributions for step-and-shoot fields (not shown)
are similar to those for the dynamic image, though the mean
and SD are generally a little larger. For example, for the dy-

FIG. 8. Plot of the baseline noise parameter σB (see Eq. (2)) versus the in-
verse of the square root of image intensity, restricted to low gradient pixels
(those with relative gradient in the range [0,2.5]) for the step-and-shoot fields
of Fig. 2. Quantum noise is proportional to the inverse of the square root of
image intensity. To the extent that the plot exhibits a possible linear relation-
ship, it suggests that σB is a surrogate for quantum noise.

namic image the mean and SD of continuous gamma val-
ues is ∼0.02. For the step-and-shoot fields except field 2e,
means and SDs are in the range [0.03,0.05]. Field 2e is again
an outlier, by virtue of having mean and SD that are sig-
nificantly larger than (approximately triple) the other nine
fields.

III.G. Detection study for the dynamic field

Results of the detection study for 6 MV images are given
in Tables III and IV. Results for 18 MV images are quali-
tatively similar, so are not shown. Table III gives results for
detection strategies based on gamma and PID values calcu-
lated with respect to a reference image that is the mean of
output-variation-corrected registered images. Table IV gives
corresponding results when gamma and PID values are calcu-
lated with respect to a reference image that is the first of the
fifty-seven 6 MV images.

The numbers in Tables III and IV are the percentages
of images that are correctly classified as good / bad (i.e.,
max_acc(A) as defined in Sec. II.E). For example, Table III
shows that for 3 × 3 pixel anomalies, in which dose is
raised or lowered by 5% (i.e., the 3 × 3, 5% row), PID-
based detection strategies can correctly classify up to 99%
of images. (The value max_acc = 99 is achieved in the PID
1 × 1 column.) In contrast, for this size anomaly, the in-
vestigated gamma-based detection strategies correctly clas-
sify 51% and 50% of images, which is what one would ex-
pect if one were to randomly guess whether an image is
errored.

Table III shows that if one requires maximum classifica-
tion accuracy ≥95%, PID-based classifiers can detect fluence
anomalies ≥5% in ∼1 mm2 regions, ≥2% in ∼5 mm2 re-
gions, and ≥1% in ∼10 mm2 regions. Gamma-based classi-
fiers (with 3%/3 mm criteria and threshold of one) can detect
anomalies ≥10% in ∼20 mm2 regions. Table IV shows the
effect on detection of using the first measured image (e.g.,
a sampled image) as the reference image. Detection perfor-
mance is poorer than in Table III, which we attribute to the
additional noise in the reference image. Using the mean im-
age as the reference has the effect of suppressing some detec-
tor noise.

The detection study is additionally performed while com-
pletely omitting the step of output variation correction. Re-
sults are not shown here, but are inferior to those in Table III.
Even though the SD of output variations in 6 MV patient field
images is only 0.3%, failure to perform output variation cor-
rection significantly degrades the ability of PID-based strate-
gies to detect larger anomalies (e.g., 53 × 53 pixel anoma-
lies). It has much less impact on PID-based detection of small
anomalies—for smaller anomalies detection is degraded only
slightly.

III.H. Detection study for the step-and-shoot fields

Table V shows the maximum accuracy obtained over
all PID-based classifiers for the dynamic field of Fig. 1(a)
and the ten step-and-shoot fields of Fig. 2. For PID-based
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TABLE III. Maximum classification accuracy for anomalies of varying sizes inserted into 6 MV dynamic field images, when PID and gamma values are
calculated with respect to a reference image that is the mean of the measured images. Small text in the lower half of each cell gives the optimum range for
parameter κ . Cells with maximum accuracy ≥95% are in bold.

Classifier  γ PID 

Anomaly  Disc Cont No RG No G 1×1 6×1 13×1 6×6 13×13 

3 × 3,  1% 52 
  

50 
  

53 
 

53 
 

56 
 

53 
 

53 
  

52 
  

52 
 

3 × 3,   2% 54 
  

50 
  

54 
 

55 
 

77 
 

69 
 

53 
  

53 
  

53 
 

3 × 3,  5% 51 
  

50 
  

56 
 

65 
 

99 
 = 8–10

96 
 = 7–9

53 
  

54 
  

53 
 

3 × 3,  10% 53 
  

50 
  

63 
 

69 
 

100 
 = 8–10 

100 
 = 7–10 

54 
  

58 
  

53 
 

6 × 6,  1% 52 
  

50 
  

54 
 

56 
 

59 
 

70 
 

53 
  

71 
  

52 
 

6 × 6,  2% 51 
  

50 
  

54 
 

60 
 

86 
 

94 
 

54 
  

93 
  

54 
 

6 × 6,  5% 51 
  

50 
  

57 
 

78 
 

100 
 = 7–10

100 
 = 6–10

54 
  

100 
 = 6–10

53 
 

6 × 6,  10% 50 
  

50 
  

68 
 

85 
 

100 
 = 7–10 

100 
 = 6–10 

66 
  

100 
 = 6–10 

55 
 

13 × 6,  1% 53 
  

50 
  

55 
 

56 
 

62 
 

79 
 

77 
  

77 
  

53 
 

13 × 6,  2% 52 
  

50 
  

54 
 

67 
 

93 
 

97 
 = 5–8 

97 
 = 5–8 

96 
 = 5–8 

54 
 

13 × 6,  5% 51 
  

50 
  

61 
 

89 
 

100 
 = 6–10

100 
 = 5–10

100 
 = 5–10 
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 = 5–10

67 
 

13 × 6,  10% 50 
  

50 
  

75 
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 = 9–10 

100 
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100 
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50 
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99 
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90 
  

97 
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 = 4–7 
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100 
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70 
 

87 
 

97 
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94 
 

95 
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95 
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96 
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83 
 

100 
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 = 3
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100 
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 = 2–3 
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 = 2–3 
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 = 3 

100 
 = 3 
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 = 3 
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 = 3 

  

classifiers utilizing gradient scaling, image-specific gradient
parameters σ B, σ x, and σ y are employed. For anomalies with
dose differences ≥5% (including 3 × 3 and 6 × 6 pixel
anomalies), detection performance for the step-and-shoot
fields is roughly comparable to the dynamic field. For smaller
dose differences (1% and 2%), even for large 26 × 26 and

53 × 53 pixel anomalies, detection performance is poorer
than for the dynamic field. This is attributed to the higher
level of baseline (gradient-independent) noise in the step-and-
shoot fields. Figure 9 plots detection accuracy for 26 × 26,
1% anomalies against the baseline noise SD σ B. Except for
the outlier field 2e, all points exhibit a linear relationship
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TABLE IV. Maximum classification accuracy for anomalies of varying sizes inserted into 6 MV dynamic field images, when PID and gamma values are
calculated with respect to a reference image that is the first of the measured images. Small text in the lower half of each cell gives the optimum range for
parameter κ . Cells with maximum accuracy ≥95% are in bold.

 γ PID 

 Disc Cont No RG  No G  1 × 1 6 × 1  13 × 1  6 × 6  13 × 13

3 × 3,  1% 52 
  

50 
  

53 
 

53 
 

52 
 

52 
 

51 
  

52 
  

52 
 

3 × 3,   2% 52 
  

50 
  

53 
 

52 
 

55 
 

52 
 

51 
  

52 
  

51 
 

3 × 3,  5% 51 
  

55 
  

53 
 

55 
 

94 
 

84 
 

52 
  

52 
  

52 
 

3 × 3,  10% 55 
  

64 
  

56 
 

83 
 

99 
 = 7–10 

97 
 = 5–8 

52 
  

52 
  

52 
 

6 × 6,  1% 50 
  

50 
  

52 
 

52 
 

52 
 

52 
 

52 
  

52 
  

52 
 

6 × 6,  2% 52 
  

50 
  

53 
 

52 
 

64 
 

70 
 

52 
  

67 
  

52 
 

6 × 6,  5% 55 
  

59 
  

56 
 

63 
 

97 
 = 5–8

98 
 = 5–9

53 
  

98 
 = 5–8

52 
 

6 × 6,  10% 62 
  

74 
  

59 
 

91 
 

100 
 = 5–10 

100 
 = 5–10 

54 
  

100 
 = 5–10 

52 
 

13 × 6,  1% 52 
  

50 
  

53 
 

52 
 

52 
 

52 
 

53 
  

53 
  

52 
 

13 × 6,  2% 50 
  

50 
  

54 
 

56 
 

73 
 

77 
 

77 
  

73 
  

53 
 

13 × 6,  5% 57 
  

62 
  

59 
 

70 
 

99 
 = 5–9

100 
 = 5–9

100 
 = 5–9 

100 
 = 5–9

52 
 

13 × 6,  10% 72 
  

83 
  

66 
 

96 
 = 9 

100 
 = 5–10 

100 
 = 5–10 

100 
 = 5–10 

100 
 = 5–10 

63 
 

13 × 13,  1% 52 
  

50 
  

53 
 

54 
 

54 
 

54 
 

53 
  

54 
  

53 
 

13 × 13,  2% 52 
  

50 
  

53 
 

59 
 

77 
 

83 
 

83 
  

82 82 
 

13 × 13,  5% 61 
  

68 
  

67 
 

82 
 

100 
 = 4–8

100 
 = 4–9

100 
 = 4–9 

100 
 = 4–9

100 
 = 5–9

13 × 13,  10% 80 
  

88 
  

73 
 

100 
 = 7–8 

100 
 = 4–10 

100 
 = 4–10 

100 
 = 4–10 

100 
 = 4–10 

100 
 = 5–10

26 × 26,  1% 51 
  

50 
  

54 
 

64 
 

57 
 

60 
 

63 
  

60 
  

61 
 

26 × 26,  2% 52 
  

50 
  

64 
 

68 
 

84 
 

86 
 

88 
  

87 
  

88 
 

26 × 26,  5% 73 
  

82 
  

82 
 

100 
 = 4

100 
 = 4–6

100 
 = 4–6

100 
 = 4–6 

100 
 = 4–6

100 
 = 4–7

26 × 26,  10% 94 
  

98 
 

100 
 = 4 

100 
 = 4-6 

100 
 = 4–7 

100 
 = 4–7 

100 
 = 4–7 

100 
 = 4–7 

100 
 = 4–8

53 × 53,  1% 53 
  

50 
  

62 
 

79 
 

71 
 

69 
 

69 
  

68 
  

71 
 

53 × 53,  2% 52 
  

50 
  

89 
 

87 
 

91 
 

72 
 

75 
  

74 
  

81 
 

53 × 53,  5% 93 
  

97 
  

97 
 = 2 

100 
 = 2

100 
 = 3

100 
 = 3

100 
 = 3 

100 
 = 3 

100 
 = 3

53 × 53,  10% 
100 

 
100 

 
100 
 = 2–3 

100 
 = 2–3 

100 
 = 3 

100 
 = 3 

100 
 = 3 

100 
 = 3 

100 
 = 3

Classifier  

Anomaly 

between detection accuracy and σ B. Because the dynamic
field achieves the lowest value of σ B, it also achieves the
highest detection accuracy. For outlier field 2e, σ B = 0.94%.
When the SD of background image noise approaches 1%,
it is intuitively clear that the task of detecting small (1% or

2%) dose differences becomes much more difficult, if not im-
possible. In contrast, larger dose differences (≥5%) can still
be detected. In all cases PID-based classifiers out-perform
3%/3 mm gamma detection, with gamma calculated either
discretely or continuously.
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TABLE V. Maximum classification accuracy obtained with PID-based detection for anomalies of varying sizes inserted into dynamic (dyn) and step-and-shoot
(a–j) images. Results are maxima over all analyzed classifiers (e.g., all sizes of median filters). Results are obtained using image-specific gradient scaling
parameters σB, σ x, and σ y.

Anomaly  Dyn a b c d e f g h i j 

3 × 3,  1% 56 
  

56 
  

56 
  

54 
 

54 
 

53 
 

54 
 

55 
 

60 
  

53 
 

60 
 

3 × 3,   2% 77 
  

84 
  

84 
  

80 
 

67 
 

54 
 

65 
 

68 
 

88 
  

64 
 

84 
 

3 × 3,  5% 99 
  

98 
  

98 
  

96 
 

93 
 

75 
 

97 
 

97 
 

98 
  

99 
 

95 
 

3 × 3,  10% 100 
  

100 
  

100 
  

99 
 

98 
 

99 
 

99 
 

100 
 

100 
  

100 
 

98 
 

6 × 6,  1% 71 
  

63 
  

60 
  

58 
 

55 
 

54 
 

55 
 

54 
 

65 
  

54 
 

67 
 

6 × 6,  2% 94 
  

89 
  

88 
  

87 
 

74 
 

55 
 

67 
 

75 
 

93 
  

78 
 

88 
 

6 × 6,  5% 100 
  

99 
  

100 
  

99 
 

98 
 

78 
 

98 
 

100 
 

100 
  

100 
 

98 
 

6 × 6,  10% 100 
  

100 
  

100 
  

100 
 

100 
 

100 
 

100 
 

100 
 

100 
  

100 
 

100 
 

13 × 6,  1% 79 
  

66 
  

67 
  

57 
 

57 
 

54 
 

55 
 

56 
 

69 
  

54 
 

67 
 

13 × 6,  2% 97 
  

93 
  

89 
  

91 
 

82 
 

53 
 

72 
 

82 
 

94 
  

83 
 

92 
 

13 × 6,  5% 100 
  

100 
  

100 
  

100 
 

99 
 

81 
 

99 
 

100 
 

100 
 

100 
 

100 
 

13 × 6,  10% 100 
  

100 
  

100 
  

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

13 × 13,  1% 92 
  

68 
  

77 
  

59 
 

62 
 

54 
 

57 
 

60 
 

74 
  

56 
 

75 
 

13 × 13,  2% 100 
  

95 
  

97 
  

94 
 

83 
 

54 
 

75 
 

89 
 

96 
  

88 
 

95 
 

13 × 13,  5% 100 
  

100 
  

100 
  

100 
 

100 
 

81 
 

99 
 

100 
 

100 
 

100 
 

100 

13 × 13,  10% 100 
  

100 
  

100 
  

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 

26 × 26,  1% 96 
  

80 
  

88 
  

66 
 

66 
 

54 
 

63 
 

61 
 

77 
  

58 
 

87 
 

26 × 26,  2% 100 
  

96 
  

100 
  

94 
 

89 
 

57 
 

86 
 

95 
 

97 
  

85 
 

98 
 

26 × 26,  5% 100 
  

100 
  

100 
  

100 
 

100 
 

90 
 

99 
 

100 
 

100 
 

100 
 

100 

26 × 26,  10% 100 
  

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 
 

100 

53 × 53,  1% 97 
  

80 
  

85 
  

86 
 

76 
 

57 
 

67 
 

81 
 

79 
  

74 
 

90 
 

53 × 53,  2% 100 
  

99 
  

99 
  

98 
 

93 
 

65 
 

95 
 

91 
 

98 
  

88 
 

98 
 

53 × 53,  5% 100 
  

100 
  

100 
  

100 
 

100 
 

95 
 

100 
 

100 
 

100 
 

100 
 

100 

53 × 53,  10% 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

IV. DISCUSSION

IMRT pretreatment QA is one of the checks on the safety
and accuracy of radiation therapy. The EPID is an attractive
device for performing this task due to its dosimetric accu-
racy and high spatial resolution. The aS1000 EPID as used
here had an effective 0.37 mm pixel spacing at the isocenter

plane, and therefore has the potential for submillimeter spa-
tial resolution. Other devices currently used for IMRT PTQA
include ion chamber arrays with detector spacing of, e.g.,
7 mm, which provide coarser spatial resolution. Image-guided
radiation therapy is seeking to achieve delivery accuracy on
the order of a few millimeters. It therefore makes sense to use
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FIG. 9. Plot of the maximum detection accuracy achieved for 26 × 26, 1%
anomalies, as a function of the measured baseline noise parameter σB. The
red point represents the accuracy achieved for the dynamic field of Fig. 1(a).
Blue points are for the step-and-shoot fields of Fig. 2. All fields except the
outlier 2(e) exhibit a linear relationship between detection accuracy and σB.

QA devices that are accurate below this limit. Referring to ba-
sic engineering principles,9 with an accuracy requirement of
2 mm the measurement device should be capable of discern-
ing ∼0.2 mm positional offsets. Use of appropriate quality
assurance devices with sufficient dosimetric (or fluence) and
spatial resolution is required to verify that techniques provide
the claimed accuracy.

There are two conceptual approaches to defining what con-
stitutes a PTQA fluence anomaly (i.e., delivery error). From
dosimetric accuracy requirements, one can work backwards to
deduce the level of fluence anomalies that can be tolerated in a
single IMRT field while still achieving the intended therapeu-
tic outcome. This is a difficult process which, to the authors’
knowledge, has not been done. (For insight, see the analysis
by Nelms et al.8 of the correlation between clinical and QA
metrics.) Conventional gamma analysis, typically performed
with gamma calculated on a discrete grid, has not been jus-
tified in this way. It tends to be used without justification, or
used in conjunction with parameter values that give accept-
able (i.e., manageable) numbers of “errored” images, rather
than rigorously verified detection accuracy.17, 18

The other conceptual approach is to define a fluence
anomaly as any deviation that can be reliably detected above
“normal” background fluence deviations. This approach is
adopted for the present work. It has the practical advantage
of providing a well-defined answer, based on measureable
characteristics of acquired images. Accordingly, this work at-
tempted to characterize background fluence deviations using
repeat images of IMRT fields, and then to rigorously quan-
tify the anomalies that can be detected for those fields us-
ing PID- or gamma-based classifiers. This approach permits
a logical separation between the tasks of detecting fluence
anomalies, evaluating their dosimetric impact, and determin-

ing if the dosimetric impact is of clinical concern. If one can
reliably detect anomalies, separate analysis and criteria can
then be used to evaluate whether or not the anomalies are dosi-
metrically significant.

The main focus of this work is on understanding PID-
based anomaly detection. PID values across an image are
the result of two effects: (i) baseline noise that is approxi-
mately statistically uniform across the image, and (ii) large
PID values occurring in regions of high gradients, caused by
interaction between intensity gradients and small positional
deviations of jaws and MLC leaves. Relative gradients in
the patient field of Fig. 1(a) extend up to 45 (i.e., 45%
change in intensity per pixel). These large gradients are due to
the EPID’s low-scatter conditions (i.e., low water-equivalent
depth of image capture), and the high resolution of the detec-
tor array.

Global positional variations in EPID images, which can be
reduced via accurate registration, are less than 0.4 pixels or
0.15 mm (Table II). Residual local positional deviations are
estimated in Secs. III.C and III.D to fall within 3σ bounds
of ∼0.3 pixels or ±0.1 mm. These shifts are so small that by
themselves they are likely to have small dosimetric impact.
However, they can still interact with high gradients to produce
PID values of 5%–10% or more. These large PID values in
turn make it more difficult to detect larger anomalous regions
(e.g., missing or misweighted segments), which might be
dosimetrically significant. This work shows that gradient
scaled PIDs can significantly reduce this problem, enabling
smaller dose differences to be detected. This is illustrated in
Fig. 6, which shows PID and GSPID images of a measured
image into which a 20 × 20 pixel, +2% fluence anomaly
has been inserted. The anomaly is detectable in the GSPID
image due to the suppression of large gradient-associated
PID values.

Further observations and qualifications regarding this
study are as follows. Results are expected to be generally ap-
plicable to aSi EPIDs. Commercial aSi EPIDs have compa-
rable dosimetric properties and therefore detection capabil-
ities. However, results may depend on the detector spacing
and detector properties. Optimal detection parameters may
need to be determined for other EPIDs. Similarly, different
linacs and/or MLCs may exhibit different characteristics, e.g.,
different ability to faithfully deliver highly modulated fields,
or modulated fields at high dose rates. The results presented
here are for a Varian Trilogy linac. Results may vary for other
linacs. However, the methods presented here are general, and
can be applied to all linacs, MLCs, and EPIDs.

This study used standard dark/flood field calibration as
described in vendor (Varian) documentation. This type of
calibration is satisfactory for the present study because all
images are taken at 105 cm SID, and reference images are
obtained from measured images. More elaborate calibration,
as described, e.g., by Greer,19 may be required in a clinical
workflow where images are acquired at different SIDs and/or
reference images are computed.

In this work PID-based classifiers are compared with two
gamma classifiers utilizing commonly adopted 3%/3 mm cri-
teria. Although the gamma classifiers performed relatively
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poorly, this is due to the fact that the 3%/3 mm gamma criteria
are sub-optimal. The follow-on paper11 shows that if gamma
is used with optimal parameters, parameters that are based on
measured image properties instead of intuitive appeal, gamma
classifiers perform as well as the PID-based classifiers ex-
plored here. Detailed examination of gamma detection is out-
side the scope of the present paper.

This study used a relatively small sample of 11 images and
found some variation in image properties, such as the base-
line noise SD σ B. In particular, it found that the ten step-
and-shoot fields exhibited larger values of σ B than the dy-
namic field, with field 2e being a notable outlier. Possible
reasons for the increased baseline noise in the step-and-shoot
images include: the higher dose rate at which the step-and-
shoot fields are delivered resulted in greater deviations be-
tween actual and intended MLC leaf positions; the step-and-
shoot fields happened to have lower mean intensity resulting
in increased quantum noise; the less rigorous registration of
the step-and-shoot images, utilizing translations but not ro-
tations, resulted in noisier reference images; and, the lower
number of measured step-and-shoot fields resulted in noisier
reference images leading to greater baseline PID variability.
Going forward, it is desirable to apply the analysis techniques
of this work to a larger population of IMRT images, in or-
der to determine the normal range of IMRT image properties.
The techniques developed here provide a framework for im-
age analysis.

This work used reference images derived from measured
images. This side-stepped any errors that could be introduced
into the reference image through the use of analytic or Monte
Carlo EPID image prediction algorithms. Collection of re-
peated images of the same field is not feasible in a clinical set-
ting, and so the reference image must be modeled/computed.
Detection performance with computed reference images re-
mains to be determined through further research. To the
extent that a computed reference image reproduces an indi-
vidual measured image, or the mean of multiple measured
images, detection performance will be similar to results given
here. By definition, the best reference image is the one that
produces the greatest detection accuracy, when sampled over
a sufficiently large number of measured images.

This work considered rectangular-shaped anomalies in
which intensity is uniformly increased or decreased by some
percentage. Detection performance with other error shapes or
profiles could vary. However, contiguous errored regions are
likely to conform to fairly simple shapes, and so detection
strategies which have been validated for rectangular anoma-
lies are likely to provide a good starting point for detect-
ing more generally shaped errors. In particular, the detec-
tion strategies discussed here can be used to detect irregu-
larly shaped anomalies, as long as they contain a rectangular
anomaly of sufficient size.

Accurate image registration reduces spurious noise in PID
distributions, and is therefore an important component of
PID-based detection approaches. The cross-correlation algo-
rithm performed very well at detecting translations, and can
easily be employed in a clinical implementation. The PF al-
gorithm requires picket fence images to be acquired at the

same time as the IMRT images. In a clinical implementa-
tion, rotations and scale changes can alternatively be detected
by employing IMRT image features—specifically, MLC leaf
gaps and jaw edges, which are easily resolvable in the IMRT
images—thus avoiding the need for picket fence images. Im-
portantly, this type of approach appears to significantly out-
perform cross-correlation methods for detecting rotations and
scale changes.

This work makes no judgment about the levels of anoma-
lies that are dosimetrically (i.e., clinically) significant. It fo-
cuses on the sizes of anomalies that can be detected, not what
size anomalies need to be detected in order to maintain tumor
control or normal tissue complications at acceptable levels.
Further research is needed to address this question. However,
this work assists by establishing rigorous lower bounds on the
sizes of anomalies that can be reliably detected.

Once fluence deviations can be reliably detected, we ex-
pect the next step to be the development of methods for trans-
lating those fluence deviations into corresponding 3D patient
dose deviations. This could be done, e.g., by using measured
fluences to reconstruct “delivered” dose to the patient plan-
ning anatomy. (See the section in van Elmpt2 on “3D dose
reconstruction based on nontransmission images.”) Although
this step is outside the scope of the present work, we note that
it motivates performing IMRT QA on a field-by-field basis,
instead of looking only at composite 2D fluence which is the
practice at some institutions. Ultimately one would like to as-
sess the accuracy of 3D dose delivery, and for this one needs
to preserve field-by-field information.

The anomaly detection investigated in this work need not
(should not) be the only type of pretreatment QA that is per-
formed. Anomaly detection is but one part of the QA chain.
Using the EPID images, one could also, for example, flag out-
put variations as delivery errors if they exceed a threshold.
Similarly, one could flag image alignment values, or look for
shifts in high gradient contours in the image that do not result
in dose being raised or lowered over a significant contigu-
ous area. We believe the approach proposed here will com-
plement rather than displace other QA tests. In fact, detec-
tion of smaller anomalies using the proposed approach should
occur only after one has done preliminary tests to rule out
grosser anomalies (e.g., output variations or whole missing
segments), which could distort the results of finer-grained
anomaly detection.

V. CONCLUSIONS

In the context of IMRT pretreatment QA, repeat measure-
ments show that EPID images are subject to positional devi-
ations which, although small, interact with steep image gra-
dients to produce large intensity deviations with respect to a
reference image. Accurate registration and gradient scaling
can suppress these artifacts. When combined with a further
filter to suppress random background noise, it then becomes
possible to detect small fluence anomalies, e.g., anomalies of
≥5% in ∼5 mm2 regions. The approach proposed here logi-
cally separates the tasks of detecting anomalies and evaluat-
ing their clinical significance, basing detection on measurable
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image properties. The ability to resolve small anomalies will
allow the accuracy of advanced treatment techniques, such as
image guided, adaptive, and arc therapies, to be quantified.
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