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Purpose: This paper derives a ray-by-ray weighted filtered backprojection (rFBP) algorithm, based
on our recently developed view-by-view weighted, filtered backprojection (vFBP) algorithm.
Methods: The rFBP algorithm directly extends the vFBP algorithm by letting the noise weighting
vary from channel to channel within each view. The projection data can be weighted in inverse pro-
portion to their noise variances. Also, an edge-preserving bilateral filter is suggested to perform post
filtering to further reduce the noise. The proposed algorithm has been implemented for the circular-
orbit cone-beam geometry based on Feldkamp’s algorithm.
Results: Image reconstructions with computer simulations and clinical cadaver data are presented to
illustrate the effectiveness and feasibility of the proposed algorithm. The new FBP-type algorithm is
able to significantly reduce or remove the noise texture, which the conventional FBP is unable to do.
The computation time of the proposed rFBP algorithm is approximately the same as the conventional
FBP algorithm.
Conclusions: A ray-based noise-weighting scheme is introduced to the FBP algorithm. This
new FBP-type algorithm significantly reduces or removes the streaking artifacts in low-dose CT.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4790696]
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I. INTRODUCTION

The filtered backprojection (FBP) algorithm has been in use
for several decades.1–5 It is the work horse in x-ray CT and
nuclear medicine image reconstruction. A drawback of the
FBP algorithm is that it produces very noisy images when
the data are noisy. By contrast, the iterative algorithms are
able to incorporate the projection noise model and produce
less noisy images than the FBP algorithm.6–10 As a trend, the
FBP algorithm is gradually getting replaced by iterative algo-
rithms. However, iterative algorithms have long computation
times. In order to shorten the computation times, effort has
been made to transform a regular iterative algorithm into an
iterative FBP algorithm.11

Recently we developed a noniterative FBP algorithm that
can model the projection noise on a view-by-view basis, in
which an average or a maximum noise variance is used for
all projection rays in each view.12 It was an initial attempt
to use the FBP algorithm to model data noise. In the view-
by-view weighted FBP (vFBP) algorithm, a single weighting
factor, w(view), is assigned to all projection rays in a view.
This noise-weighting scheme is not as accurate as ray-by-ray
noise weighting, which is now proposed in the current paper.

The regularization term in our previous vFBP algorithm
was quadratic. We realize that a quadric regularization term
is unable to perform edge-preserving smoothing. The cur-
rent paper therefore uses an edge-preserving bilateral fil-
ter as a post filter to further reduce the noise. The ray-
wise weighting FBP (rFBP) algorithm will be developed in

Sec. II. A specially designed bilateral filter is also presented in
Sec. II. Computer simulations and an application to low-dose
clinical cone-beam CT image reconstruction are presented in
Sec. III. Discussion and conclusions are given in Sec. IV.

II. METHODS

II.A. Ray-by-ray noise weighted FBP algorithm

Statistical weighting in iterative reconstruction algorithms
is a well-established practice.13–15 Because the iterative algo-
rithms use long computations times, in CT imaging, noise
control is normally achieved using either prefiltering or
postfiltering.16–20 In prefiltering methods, a lowpass filter or
a nonlinear filter can be used, where the filtering strength
or bandwidth for each measurement is determined by the
model.16, 19 We have previously introduced a view-by-view
weighting FBP algorithm (referred to as the vFBP algorithm)
by minimizing a weighted least-square objective function.12

The vFBP algorithm is almost the same as the conventional
FBP algorithm, except that the ramp filter |ω| is replaced by

Hk,α,β,w(ω) =
1 − (

1 − αw
|ω| − αβR

)k

1 + β R
w
|ω| |ω|,

with ω �= 0,

and Hk,α,β,w(0) = 0, (1)

where ω is the frequency variable in the projection space, k
corresponds to the iteration number in an iterative algorithm,
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α corresponds to the step-size in an iterative algorithm, β is
the contributing factor of the regularization term in the ob-
jective function, w is the weighting function varying with the
view angle [i.e., w = w(view)], and R is the filter function
in the regularization term. In this paper, the minimum norm
regularization is assumed and R is a constant 1 in (1). The
generalized ramp-filter (1) is used for projection data filter-
ing, and the filtered data are backprojected to obtain the final
image. No modification is required for the backprojector, for
the vFBP or for the new rFBP algorithm.

Next, we will extend the view-by-view noise weighting
to ray-by-ray noise weighting in an ad hoc manner. For
the ray-based noise weighting, w is a function of the ray:
w = w(ray). A popular approach to assigning the weighting
factor is to let w(ray) be proportional to the reciprocal of the
noise variance of the ray measurement. At each view angle,
we quantize the ray-based weighting function into N + 1 val-
ues: w0, w1, . . . , wN , which in turn give N + 1 different filters
as defined in (1). They are

Hk,α,β,wn
(ω) =

1 − (1 − αwn

|ω| − αβ)k

1 + β
|ω|
wn

|ω|,

with

ω �= 0, and Hk,α,β,wn
(0) = 0, (2)

for n = 0, 1, 2, . . . , N. Using these N + 1 filters, N + 1 sets of
filtered projections are obtained. Before backprojection, one
of these N + 1 projections is selected for each ray according to
its proper weighting function, which will be further explained
when implementation issues are discussed later in this paper.
Only one backprojection is performed using the selected fil-
tered projections.

II.B. Edge-preserving bilateral filter

One drawback of the rFBP algorithm is that its Bayesian
(regularization) prior must be quadratic and it is unable to
incorporate edge-preserving filtering during image recon-
struction. The objective function and the Bayesian prior are
not shown in this paper; the interested reader should refer
to Ref. 12 for its setup. Our strategy is to apply a nonlinear,
edge-preserving, bilateral filter to the result of the rFBP
reconstruction.

Bilateral filters are a class of nonlinear filters that are spec-
ified by both domain (Fdomain) and range (Frange) functions.21

A general form of the input/output relationship of a bilateral
filter is

x
output

k =

∑
j∈�(k)

x
input

j Fdomain(k, j )Frange

(
x

input

k − x
input

j

)
∑

j∈�(k)
Fdomain(k, j )Frange

(
x

input

k − x
input

j

) ,

(3)

where x
input

j represents the jth pixel of the input (unfiltered)

image, x
output

j represents the jth pixel of the output (filtered)
image, �(k) is a neighborhood around pixel k, Fdomain is a
“domain” function, and Frange is a “range” function. In many

applications, Fdomain and Frange are chosen to be Gaussian
functions.

Bilateral filters can be specially designed according to the
application. The edge-preserving bilateral filter in this paper
is described as follows.

� Specify a small neighborhood �(k) centered at pixel k,
for example, an r x r region in a two-dimensional (2D)
image. At each image pixel k, filtering is performed only
in this region.

� Specify a threshold value Th. This value Th represents
the smallest edge jump or smallest detectable contrast.
Image variation smaller than this value Th is considered
noise.

� At each image pixel k, the filtered image value xk is the
average value of all pixels in the set {xj: j ∈ �(k) and
|xk − xj| < Th}.

Using the notation in (3), our design is as follows:

�(k) = an r × r region, centered at pixel k, (4)

Fdomain(k, j ) = 1 if j ∈ �(k),

and

Fdomain(k, j ) = 0 if j /∈ �(k), (5)

Frange(xk − xj ) = 1 if |xk − xj | < T h,

and

Frange(xk − xj ) = 0 if |xk − xj | ≥ T h. (6)

Our strategy is to use the average value to replace the orig-
inal image value. Not every image pixel is allowed to partic-
ipate in the “average” operation. To be qualified, a pixel xj

must satisfy two conditions: it must be in the close neighbor-
hood of the pixel of interest xk, and its value xj is close enough
to the value of xk. One could use a larger neighborhood �(k)
or use a smaller neighborhood �(k) but apply the smaller filter
multiple times.

A drawback of this bilateral filter is that if the noise influ-
ence is larger than the smallest contrast Th, the noise influence
cannot be filtered out. Any edge whose contrast is smaller
than Th will be smoothed out.

II.C. Implementation of the new rFBP algorithm

Let the inverse Fourier transform of Hk,α,β,w (ω) be
hk,α,β,w (t), which is the spatial-domain kernel of the 1D mod-
ified ramp filter. In the rFBP algorithm, w is a function of the
projection ray, therefore, w = w(t, θ ). Let p(t, θ ) be the pro-
jection at view θ and location t on the detector, and q(t, θ ) be
the filtered projection. Then q(t, θ ) is defined by the following
integral:

q(t, θ ) =
∫ ∞

−∞
p(τ, θ )hk,α,β,w(t,θ ) (t − τ ) dτ, (7)

which is not a convolution, because the kernel hk,α,β,w(t,θ ) (τ )
depends on t. The final image is obtained by backprojecting
q(t, θ ) into the image domain, and the backprojector is the

Medical Physics, Vol. 40, No. 3, March 2013



031113-3 G. L. Zeng and A. A. Zamyatin: FBP algorithm with ray-wise noise weighting 031113-3

same as that in a conventional FBP algorithm. Therefore, the
only thing new in implementing the rFBP algorithm is to cal-
culate q(t, θ ), which will be discussed in detail as follows.

One way to calculate q(t, θ ) is to use (7) to filter the projec-
tions in the spatial domain. However, we currently do not have
an analytical expression for the integration kernel hk,α,β,w (t).
Our strategy is to implement (7) in the Fourier domain and
to quantize the weighting function w(t, θ ) into 11 values of
exp(− 0.1 · n · pmax), where pmax is the maximum projection
value, and n = 0, 1, 2, . . . ,10. The efficient fast Fourier trans-
form (FFT) is used. The implementation steps of calculating
q(t, θ ) are given below.

Before the projections data are ready to process, form
11 Fourier domain filter transfer functions Hk,α,β,wn

(ω) as
defined in (2) with wn = exp(−0.1 · n · pmax), n = 0, 1, 2,
. . . ,10, respectively. Note that in implementation, ω is a dis-
crete frequency index and takes the integer values of 0, 1, 2,
. . . and so on.

Step 1: At each view angle θ , find the 1D Fourier
transform of p(t, θ ) with respect to t, obtaining
P(ω, θ ).

Step 2: Form 11 versions of Qn(ω, θ ) = P(ω, θ )
Hk,α,β,wn

(ω) with n = 0, 1, . . . , 10.
Step 3: Take the 1D inverse Fourier transform of Qn(ω, θ )

with respect to ω, obtaining qn(t,θ ) with n = 0,
1, . . . , 10.

Step 4: Construct q(t,θ ) by letting q(t,θ ) = qn(t,θ ) if p(t,
θ ) ≈ 0.1 · n · pmax.

II.D. Low-dose cadaver CT study

To illustrate the feasibility of the proposed rFBP algorithm,
a cadaver torso was scanned using an x-ray CT scanner with
a low-dose setting. The images were then reconstructed by a
conventional FBP (the Feldkamp) algorithm23 as well as the
proposed rFBP algorithm. Data were collected with a diag-
nostic scanner (Aquilion ONETM, Toshiba America Medical
Systems, Tustin, CA, USA; raw data courtesy of Leiden Uni-
versity Medical Center).

The imaging geometry was cone-beam, the x-ray source
trajectory was a circle of radius 600 mm. The detector had
320 rows, the row-height was 0.5 mm, each row had 896 chan-
nels, and the fan angle was 49.2◦. A low-dose noisy scan was
carried out. The tube voltage was 120 kV and current was
60 mA. There were 1200 views uniformly sampled over 360◦.

The Feldkamp algorithm is an FBP algorithm. The data
were first weighted with a cosine function, and then a 1D
ramp filter was applied to each row of the cone-beam projec-
tions. Finally a cone-beam backprojection was used to gen-
erate a 3D image volume. In our implementation, the 1D
ramp filter was replaced by the newly developed ramp fil-
ter (2). The parameter β was selected as 2.6 × 10−5, itera-
tion index k was chosen as infinity, and the step-size α was
not needed. The noise weighting function was defined by
w(t, θ ) = exp(−p(t, θ )), in which we assumed that the trans-
mission measurement was approximately Poisson distributed

and the line-integral p(t,θ ) was the logarithm of the transmis-
sion measurement.

The image volume was reconstructed in a 512 × 512 × 320
3D array, and one axial slice is used for display in this paper.
The bilateral post filtering was performed slice by slice, using
a 9 × 9 neighborhood and the threshold of 70 HU.

II.E. Computer simulation

The image array was 800 × 800, the pixel size was
0.575 mm × 0.575 mm, the number of views was 900 over
360◦, the number of detection channels was 896, and the fo-
cal length was 600 mm. The x-ray source flux had 106 counts.

The images were reconstructed by both the conventional
FBP algorithm and the proposed rFBP algorithm. In the rFBP
reconstruction, the parameter k was chosen as 1 000 000 and
the parameter α was 0.5. The noise weighting was chosen as
w = e−0.3p, where p was the converted line-integral measure-
ment for a ray. Noise weighting w is a double-edged sword.
It can suppress some noise that is caused by anisotropic noise
contribution from different projections; it can also cause some
shadow artifacts if the noise weighting function w fluctu-
ates too much. Since the standard noise weighting function
w = e−p introduces some severe shadow artifacts, we re-
placed it by w = e−0.3p that has less dynamic change than
w = e−p.

A bilateral post filter with r = 9 and Th = 50 HU was used
to further reduce the noise.

III. RESULTS

III.A. The cadaver data

Figure 1(a) shows the conventional FBP Feldkamp’s re-
construction of a transverse slice in the abdominal region of
the cadaver. This study used low dose. The cadaver arms were
outside the display field of view; the arms further attenuated
the x-rays, creating streak artifacts in the middle of the image
from left-to-right across the torso. Figure 1(b) shows the rFBP
reconstruction, with β = 2.6 × 10−5, k = ∞, and w = e−p.
The ray-based noise weighting in the rFBP algorithm effec-
tively removes the streaking artifacts that appear in Fig. 1(a).

Figure 1(c) shows the result of the bilateral post filtering,
using the rFBP result as the input. The image in Fig. 1(c) is
less noisy than Fig. 1(b) while it maintains the main edges
in Fig. 1(b) un-smoothed. The images are displayed from
−400 HU to 400 HU.

III.B. Computer simulation data

Figure 2 shows a real-size phantom study, which compares
the conventional FBP reconstruction (see Fig. 2(a)) with the
proposed rFBP reconstruction (see Fig. 2(b)), using β = 0, k
= 1 000 000, α = 0.5, and w = e−0.3p. It is observed that
streaking artifacts that appeared in the FBP reconstruction
have been reduced in the rFBP reconstruction. The bilateral
post filtering result is shown in Fig. 2(c); the input image for
the bilateral filter is the result of the rFBP reconstruction. The
images are displayed from −400 HU to 400 HU.
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FIG. 1. Reconstruction results for the clinical cadaver data: (a) The conventional FBP reconstruction, (b) The rFBP reconstruction, and (c) The rFBP recon-
struction with bilateral post filtering. Display window is from −400 HU to 400 HU.

IV. DISCUSSION AND CONCLUSIONS

IV.A. Reduction of the number of parameters

Both parameter k and parameter β can be used for noise
regularization. A smaller k or a larger β can blur the image
more. It is not clear how these two parameters interact with
each other.

In order to make the rFBP algorithm more user-friendly,
one can set k to infinity (as in our clinical study exam-
ple), which also makes α unnecessary. Only one parame-
ter β needs to be adjusted. In the case of k being infinity,
β cannot be 0 otherwise the noise weighting is not effec-
tive. It is suggested to use a very small β value, approxi-
mately 10−5. Using optimization analogy, this method gives
a Bayesian optimization solution, and its associated objective

function has a weighted least-squares term and a Bayesian
term.12 The Bayesian term encourages a minimum norm
solution.

Another way is to set β = 0 and keep k finite (as in our
computer simulation example). The step-size α can be set as
a fixed value as long as α satisfies |1 − α/|ω| | < 1 for all
nonzero discrete frequencies ω. In the case of β being 0, k
cannot be infinity; otherwise the noise weighting is not effec-
tive. We would point out that the terms “iteration number k”
and “step size α” are borrowed from iterative algorithm ter-
minology. Our rFBP algorithm is noniterative; however, the
function of k and the function of α are similar to those in
an iterative algorithm.12, 22 Using optimization analogy, this
method gives an “early stopped” solution of a weighted least-
squares problem that is solved by an iterative algorithm.12
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FIG. 2. Reconstruction results for the computer simulation data: (a) The conventional FBP reconstruction, (b) The rFBP reconstruction, and (c) The rFBP
reconstruction with bilateral post filtering. Display window is from −400 HU to 400 HU.

The above two methods have similar effects, and the user
has the freedom to choose a preferred approach.

IV.B. Adaptive filter vs rFBP

Various adaptive filters have been in use for more than
10 years.16–18 Like the rFBP algorithm, the strategies of all
these methods are the same, that is, to apply more smoothing
for noisier measurements and to apply less smoothing (or no
smoothing at all) for less noisy measurements.

The closest adaptive filter to the filter used in the rFBP al-
gorithm was developed by Kachelrieß et al.18 Their adaptive
filter uses a spatially varying triangular kernel. In x-ray imag-
ing, the ray-sum p represents the total attenuation along the
ray, and a larger value of p is associated with a noisier mea-
surement.

The following explains how the adaptive filter works. A
threshold T is first selected. If a ray-sum p is less than T, no
prefiltering is needed. If a ray-sum p is greater than T, lowpass
prefiltering is performed and the prefilter has a triangle spatial
domain kernel.

The adaptive filter has the potential to have multiple thresh-
old values and multiple triangular lowpass prefilters. In this
more sophisticated case, the adaptive prefilter together with
the conventional FBP algorithm is similar to our rFBP algo-
rithm, because the generalized ramp-filter (2) can be decom-
posed into two parts: the conventional ramp filter |ω| and win-
dow function GrFBP(ω) (by assuming k = ∞ for simplicity):

GrFBP (ω) = 1

1 + β
|ω|
wn

, (8)

which is a lowpass prefilter.
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FIG. 3. Power spectrum plots for the prefilters that are used in the rFBP
algorithm and in an adaptive filtering approach. Two pairs of examples are
shown. The curve shapes are different even when they have the same half-
power bandwidth.

Notice that the Fourier transform of a triangular function
is the square of a sinc function:

Gadaptive(ω) =
[

sin(γω)

γω

]2

, (9)

where γ is a parameter to determine the bandwidth of the
lowpass adaptive prefilter. By selecting proper parameters β,
wn, and γ , prefilters (8) and (9) can give the same bandwidth.
Figure 3 shows a power spectrum plot for these two filters
(8) and (9), and two pairs of the curves are shown. One pair
has a wider half-power bandwidth than the other pair. These
two types of filters behave differently; the adaptive prefilters
(9) have a sharper transition band than the rFBP prefilters
(8). The triangular filters also have some small ripples in the
Fourier domain.

We believe that as long as one follows the principle
of “applying more smoothing for noisier measurements
and applying less smoothing (or no smoothing at all) for
less noisy measurements” one has a freedom to design a
proper filter for the applications in hand, to reach targeted
performance.

IV.C. Noise weighting

A popular approach to assigning the weighting factor is
to let w(ray) be proportional to the reciprocal of the noise
variance of the ray-sum measurement. This approach is justi-
fied by using the likelihood function (i.e., the joint probability
density function) as the objective function for an optimiza-
tion problem. The philosophy is that we should trust the less
noisy measurements more than noisier measurements. In x-
ray imaging, noise in measured data can be approximately
described by a Poisson distribution, i.e., var(I) ∼ I, where I
denotes an x-ray intensity transmission measurement. After
log conversion the noise variance is described by var(I) / I2

∼ 1/I, that is, noise variance in the line-integral projection
data is inversely proportional to the measured transmission

measurement intensity.16 If the x-ray source flux is stable
and consistent, measurement intensity I is inversely propor-
tional to exp(−p), where p is the ray-sum or the total attenu-
ation along the ray. Since the weighting function w(t, θ ) and
Cw(t, θ ) (where C is an arbitrary constant) have the same ef-
fect for any weighted least-squares scheme, the x-ray source
flux is not required to be included in the weighting function.

We notice that the noise-weighted (either iterative or non-
iterative) image reconstruction is not critically sensitive to the
noise model and noise variance. We see subtle differences be-
tween the vFBP and rFBP reconstructions. In some applica-
tions, the vFBP algorithm can still be used and is sufficient to
reduce the artifacts and noise.

In some cases, more accurate noise modeling does not al-
ways translate to better (e.g., less severe artifacts) reconstruc-
tions. Nonsmooth weighting functions can introduce new ar-
tifacts into the reconstruction. Our experience in iterative and
noniterative image reconstruction suggests that using a less-
fluctuating weighting function helps to obtain a less noisy re-
construction. This was the reason that we used w = e−0.3p

instead of w = e−p in the rFBP reconstruction of computer
simulated data.

IV.D. Conclusions

This paper introduces a ray-by-ray noise-weighting
scheme to the FBP algorithm, to obtain an rFBP algorithm.
An edge-preserving-smoothing postfilter is suggested to fur-
ther reduce noise. An important application of the rFBP al-
gorithm is in low-dose x-ray CT image reconstruction. The
computation time of the proposed rFBP algorithm is almost
the same as the conventional FBP algorithm. As illustrated by
the cadaver x-ray CT study and computer simulation study,
streaking artifacts in low-dose CT can be effectively removed
or reduced by the proposed rFBP algorithm. Evaluation of
more clinical data and comparison with other algorithms will
be topics of our future research. This rFBP algorithm is read-
ily applicable to any imaging geometries as long as an FBP
algorithm exists.
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