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Purpose: M5L, a fully automated computer-aided detection (CAD) system for the detection and
segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on
several image datasets.
Methods: M5L is the combination of two independent subsystems, based on the Channeler Ant
Model as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural
approach. The lungCAM was upgraded with a scan equalization module and a new procedure to
recover the nodules connected to other lung structures; its classification module, which makes use
of a feed-forward neural network, is based of a small number of features (13), so as to minimize
the risk of lacking generalization, which could be possible given the large difference between
the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The
lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans
from three independent datasets, including a detailed analysis of the full Lung Image Database
Consortium/Image Database Resource Initiative database, which is not yet found in literature.
Results: The lungCAM and M5L performance is consistent across the databases, with a sensitivity
of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable
annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for
subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems
is also presented.
Conclusions: The M5L performance on a large and heterogeneous dataset is stable and satisfactory,
although the development of a dedicated module for GGOs detection could further improve it, as
well as an iterative optimization of the training procedure. The main aim of the present study was
accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate
for supporting radiologists on large scale screenings and clinical programs. C 2015 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4907970]
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1. INTRODUCTION

Lung cancer accounts for about 19% and 28% of cancer-
related deaths in Europe1 and the United States of America,2

respectively. An improved prognosis would likely save
thousands of lives every year, with a very relevant impact
on global health statistics. As it happened for other types of
cancer (e.g., breast cancer), an early diagnosis is expected to
help in optimizing the effectiveness of treatment, improving
its outcome and reducing the mortality.

Since lung cancer is most frequently detectable as non-
calcified pulmonary nodules, computed tomography (CT)

is the most appropriate imaging modality for its early
detection.3 The concept of screening, already adopted for
breast cancer, is being considered for lung cancer as well:
several pilot programs based on low-dose high-resolution CT
were operated worldwide4–6 during the last decade. Recent
results reported by the National Lung Screening Trial (NLST)7

show a statistically significant reduction (about 20%) of the 5-
yr mortality in the branch subject to CT screening as compared
to chest x-ray. The design and operation of large scale lung
cancer screening programs are now being considered, with
the goal of maximizing their effectiveness and minimizing
their cost.
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Among the relevant issues to be addressed are as follows.

• The optimization of the nodule detection performance,
in terms of sensitivity and specificity, which could be
based on double-reading. It was indeed observed that
a relevant fraction of lung nodules (20%–35%) are
missed in single-reader screening diagnoses.8 Moreover,
the radiologist performance is strongly dependent on
experience and physical conditions such as stress and
fatigue, which cause fluctuations in the inter- and
intraradiologist sensitivity, respectively.

• The size of imaging data that must be coherently
handled, since multidetector helical CT with thin colli-
mation generates up to 600 2D images per scan.

• The amount of human resources (i.e., the number of
radiologists) involved in the annotation process, since
a careful reading of a high-resolution CT requires an
average time of several minutes.

In such a scenario, computer-aided detection (CAD)
algorithms could support radiologists with an automated
identification and segmentation of small nodules, a signature
of possible early stage disease. Several studies9–11 reported an
improvement in the sensitivity of radiologists when assisted
by CAD systems, in addition to a relevant time saving.
Other studies12,13 observe that the increase in detection
rate is associated to an increase in the number of false-
positive findings. However, CAD systems act as detection
rates equalizers between observers of different levels of
experience.12

In order to be effectively introduced in the report-
generating process, CAD systems must provide an adequate
performance [high sensitivity and as low as possible rate of
false positives (FP)], properly validated on as large as possible
a sample of CTs, so as to keep under control the main sources
of performance variability and degradation:

• the intercenter variability of acquisition setups, which
turns into different properties for the images (one above
all: the reconstruction-related equivalent thickness of the
2D slices);

• the different annotation criteria adopted by different
screening programs and/or by different sites;

• the definition of a training sample that is representative
of the features of the entire population of the structures
being searched for.

While the annotation-related variability can—to some
extent—be parametrized with a proper algorithm configu-
ration (e.g., selection of findings with a radius larger than
a protocol-related minimum value), the slice thickness and
the lack of generalization issues are related to two main
conditions: the size and heterogeneity of the training, testing
and validation samples, and the algorithm design.

With the goal of providing an adequate overall performance
averaged over different types of nodules, given the relatively
small training sample size, a small number of key features
were selected. However, should a CAD system be optimized
for a specific category of nodules, like ground glass opacities

(GGO), a training sample larger than the presently available
one would be required.

The paper aims at validating the M5L CAD, which
combines the lung channeler ant model (lungCAM) and voxel
based neural approach (VBNA) subsystems and includes
segmentation, nodule hunting, and classification, on the
largest and most heterogeneous dataset available, so as to
evaluate its readiness for application as a support for screening
programs and clinical practice.

The upgrade of the lungCAM subsystem with respect to
the channeler ant model (CAM) segmentation algorithm is
discussed in detail; the VBNA subsystem, on the other hand,
was already described.14,15

2. MATERIALS

Among the required features of a system for clinical
and screening applications is the capability to provide a
performance independent of the dataset source: for that reason,
several datasets were analyzed, collected both from screening
programs and from clinical practice.

2.A. Lung Image Database Consortium (LIDC)/Image
Database Resource Initiative (IDRI)

The LIDC and IDRI provide the largest publicly available
collection of annotated CTs:16 1018 CT scans are available
since 2011. LIDC/IDRI is a multicenter and multimanu-
facturer database, with CTs taken at different collimation,
voltage, tube current, and reconstructed slice thickness. It
provides a sample likely to realistically represent the input
from a large scale multicenter screening program as well as
clinical practice. In order to capture the inter-reader variability
LIDC/IDRI provides, for each CT scan, four annotations made
by different expert radiologists, obtained with a two phase
reading modality.

2.B. ITALUNG-CT

The ITALUNG-CT study,5 carried on in Italy over the last
decade, aimed at verifying the effectiveness of screening in
reducing the lung cancer mortality rate. A sample of 20 low-
dose high-resolution CTs, acquired in the so-called screening
setting (140 kV, 70–80 mA, 1.25 mm reconstructed slice
thickness) was made available for the validation. The scans
were annotated by two experienced radiologists, who were
requested to identify nodules by defining a cue point and a
radius and by labeling the finding as relevant (diameter larger
than 5 mm, type 1) or not (diameter in the 3–5 mm range, type
2, a possible recent cancer formation to be kept under control
in follow-up sessions).

2.C. ANODE09

The ANODE09 (Ref. 17) data set consists of 55 anonym-
ized CT scans provided by the Utrecht University Medical
Center and originates from the NELSON study, the largest
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lung cancer screening trial in Europe. Five CT scans are made
available together with the radiologist annotations and can be
used for training a CAD system; fifty scans can only be used
for a blind validation. Most of the database was randomly
selected; however, some CTs with a large number of nod-
ules were deliberately included. The ANODE09 annotation
protocol foresees the labeling of relevant nodules when their
diameter is larger than 4 mm.

2.D. Training dataset

The M5L CAD neural-network classifiers, for lungCAM
and VBNA, were trained on 69 lung CT scans from
LIDC/IDRI, 5 from ANODE09 and 20 from ITALUNG-
CT, as discussed in Ref. 18. The 69 LIDC/IDRI CTs had
already been used for training M5L to submit the results to
the ANODE09 challenge. For the full LIDC/IDRI dataset
analysis, we decided to keep the same training dataset so
as to make the results directly comparable across the three
databases. Since one of the main purposes of this validation
is to show that even without changing parameters the system
performance is satisfactory, the algorithm parameters were
not changed and were the same for all three datasets for the
present analysis.

The results were obtained on 949 CT scans from the
LIDC/IDRI database (excluding the 69 CT scans randomly
selected from the training subset) 50 scans from ANODE09
and 20 from ITALUNG-CT.

For further reference, the shared lists corresponding to each
LIDC/IDRI subset have been saved in The Cancer Imaging
Archive online database by the National Cancer Institute and
are available for download at http://cancerimagingarchive.net
with the following names:

• LIDC_training_lungCAM: 69 cases for training;
• LIDC_test_lungCAM: 949 cases for the validation.

3. THE lungCAM ALGORITHM

The lungCAM was developed by the MAGIC-5 Project19

as part of a multithread CAD system for radiologist support in
the lung cancer diagnosis, that also includes algorithms based
on Region Growing (RGVP)20 (not supported anymore) and
voxel-based neural analysis (VBNA).14,15

At the highest abstraction level, the lungCAM structure
is a standard approach, as shown by the algorithm block
diagram (Fig. 1): the preprocessing stage (equalization and
lung volume segmentation) is followed by a search for Regions
Of Interest (ROIs), an analytical filter, and a neural classifier.

Before starting the actual analysis, CT scans in DICOM
standard format are preprocessed to reduce the noise contribu-
tion: each 2D slice is analyzed with a Savitzky–Golay filter21,22

that provides noise reduction without loss of resolution. Figure
2 shows an example of a 2D slice before and after the filtering
stage.

From then on, every step of the lungCAM algorithm,
including the features evaluation, is intrinsically 3D.

F. 1. lungCAM block diagram.

3.A. Lung segmentation

The lung segmentation, described in detail elsewhere,23

proceeds according to four main steps:

1. analysis of the CT Hounsfield unit (HU) level distri-
bution and evaluation of the intensity threshold to be
applied in the following stages;

2. 3D region growing of the lung volume with the detected
threshold;

3. wavefront algorithm for the definition of the lung
surface on the inner side and the removal of the trachea
and the main bronchi;

F. 2. (a) Original slice image, (b) slice image after 2-D Savitsky–Golay
filter.
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4. morphological closing with a cylinder from the outside
in order to include pleural nodules and close the holes
left by vessels.

A check on the training/testing and validation data-sets
confirmed that none of the radiological findings were rejected
at this stage.

3.B. Nodule segmentation

The segmentation algorithm is performed with the CAM,24

based on virtual ant colonies and conceived for the segmenta-
tion of complex structures with different shapes and intensity
range in a noisy 3D environment. The CAM exploits the
natural capabilities of virtual ant colonies to modify the
environment and communicate with each other by pheromone
deposition. The ant life cycle is a sequence of atomic time
steps, during which the behavior is determined by a set of
rules that control the pheromone release, the movements and
the variations of the ant energy, a parameter related to breeding
and death.

The lung internal structures are segmented by iteratively
deploying ant colonies in voxels with intensity above a pre-
defined threshold (anthills). Ants live according to the model
rules until the colony extinction: the pheromone deposition
generates pheromone maps.

Each voxel visited by an ant during the life of a colony
is removed from the allowed volume for future ant colonies.
New ant colonies are iteratively deployed in unvisited voxels
that meet the anthill requirement. By an iterative thresholding
of pheromone maps, a list of ROI candidates is obtained. ROIs
with a radius larger than 10 mm are postprocessed in order to
disentangle nodules attached to internal lung structures like
vessels and bronchi.

In order to speed up the ant deployment, the probability Pi j

for a voxel to become the actual ant destination was changed
from

Pi j(vi→ v j)= W (σ j)
n=1,26W (σn) (1)

to

P′i j(vi→ v j)= 1−Pi j(vi→ v j)+PInt
i j (vi→ v j), (2)

where W (σ j) depends on the amount of pheromone in
voxel v j and in PInt

i j (vi → v j) is the same as Pi j(vi → v j)
but substituting W (σ j) by the intensity of the voxel I j. The
resulting probabilities P′i j(vi→ v j) are normalized to a unitary
total probability.

The new rule favors destination voxels with low integrated
pheromone deposition and high HU values, i.e., voxels with
few visits: therefore, the colony expands faster in the 3D
environment and the algorithm speed increases.

A limit to the maximum number of voxel visits Nv(I j) that
a voxel j with HU intensity I j receives from ants was also set
to

Nv(I j)= Nmin

(
1+

Imax− I j
Imax

)
, (3)

where Imax is the maximum HU intensity value in the lung
volume and Nmin is a free parameter related to the algorithm
speed, set to 5 for the present application.

Another limitation was related to the fact that for small low-
intensity nodules, the ant colony would extinguish too quickly
to produce a pheromone image that could be identified by the
threshold-based pheromone map analysis. The ant capability
to explore low intensity voxels depends on the energy variation
rate Eq. (4), i.e., on how many steps in low intensity voxels
ants can take on average before their energy drops to the death
level. When objects are very small, also the initial random
movement can play an important role in causing the premature
colony extinction

εkt+1−ε
k
t =−α*

,
1−
∆kph

⟨∆ph⟩
+
-
. (4)

The issue was addressed with a change in the ant colony
evolution dynamics: the ant energy parameters (the initial
energy ε0 and its variation rate α) are initially set to values
that cause a quick ant reproduction rate. Only when the colony
population grows above 100 units, the parameter values switch
to the model default values, so as to avoid the exponential
increase of the colony population: in such a way, a better
pheromone image for small and low-intensity nodules is ob-
tained without affecting the segmentation of large structures.

3.B.1. Structure segmentation

The CAM is iteratively deployed in the right and left lungs,
separately, as a segmentation method for the vessel tree and
the nodule candidates. The first ant colony segments the vessel
tree, starting from an anthill in the vicinity of its root. The
segmented object is then removed from the original image
and the coordinates of all its voxels are stored as a single ROI.

In the remaining image, iteratively, any voxel with intensity
above a predefined threshold (−700 HU) is a new anthill and
a colony deployed from there generates a pheromone image.
When no more voxels meet the condition to become an anthill,
the information provided by the global pheromone map is
analyzed.

3.B.2. Nodule hunting

The pheromone map analysis is also iterative: each voxel
with a pheromone content above a minimum accepted value is
used as a seed for a region growing with an adaptive threshold
which is iteratively lowered until a minimum growth rate of
the region is reached.

Every grown region with a radius in the 0.8–25 mm range
is considered as a nodule candidate.

3.B.3. Juxta-vascular nodules

About 20% of relevant pulmonary nodules are segmented
together with a vascular structure they are connected to. If fea-
tures were evaluated for the whole ROI, these nodules would
typically be rejected by further filtering and classification.
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In order to address the problem, a dedicated algorithm
module was developed. All the structures obtained from the
pheromone map analysis with radius larger than 10 mm are
further analyzed in order to identify and disentangle spherical-
like substructures. The 10 mm value was empirically set based
on the minimum size for attached structures that causes a
relevant change in the ROI feature values.

Each voxel that belongs to the structure being analyzed
is averaged with the neighbors inside a sphere of radius R.
Then, the average map is thresholded at the Tph pheromone
value again, resulting in a thinner object. Structures with a
diameter smaller than R disappear (e.g., thin vessels attached
to the nodules). However, also the nodules shrink. In order
to recover the nodule original size, the neighbors of each
remaining voxel in the average inside a sphere of radius R/2
with value above Tph+Tph/3 in the original map are restored
as part of the structure.

The procedure is repeated three times, with spheres
of increasing radius (R = 1.5, 2.5, 3.5 mm) that generate
substructures of increasing size. The output voxels of the
three iterations are combined in logical OR to generate a final
nodule candidate output mask, which is then treated as a ROI
for further analysis.

Figure 3 shows an example of separation of a juxta-vascular
nodule from the vascular tree.

3.C. ROI features

The choice of a suitable set of ROI features is a key to
the success of the filtering and classification stages. Ideally,
any computable quantity which is expected to show a different
pattern for true nodules and false candidates would be a useful
feature. However, the use of a large number of features on a
small training dataset could bias the classifier and cause a loss
of generality.

The choice to select a small number of features for the
neural classifier training aims at optimizing the generality and
keeping the performance stable as the validation dataset size
increases.

A set of 13 features was selected for the nodule candidate
analysis, according to the following criteria:

• 3D spatial features which are invariant to rotation and
translation and can disentangle spherical-like structures
from ROIs originating from vessel parts or lung walls;

• features based on the voxel HU intensity, so as to capture
density patterns;

• the fraction of ROI voxels attached to the walls of
the lung volume is crucial in distinguishing internal
and juxta-pleural nodules, which are characterized by a
different shape; therefore, its use allows the classification
of both the subsamples with the same neural network.

The radius R is defined as the average distance of ROI
voxels from the center of gravity times 4/3, so as to be equal
to the radius of the sphere if the ROI was perfectly spherical.

The center of gravity coordinates Xi are computed using
the HU values as weights, with an extra weight-factor of 0.1
for the voxels on the ROI surface

Xi =

N
k=1Ikrk, iεkN
k=1Ikεk

, εk =



1, k ∈ inside voxel
0.1, k ∈ surface voxel



, (5)

where the k index runs over all the voxels in the ROI, Ik
is the intensity associated with the voxel k in HU units, i is
equal to 1, 2, and 3 for x, y , and z, respectively, and rk, i is the
position vector of voxel k. The extra weight factor εk helps to
better locate the center of gravity in case of ROIs that include
some pieces of vessel or pleura surface, by suppressing the
contributions of nodule substructures with a high surface to
volume ratio.

The Sphericity is defined as the ratio of the ROI volume to
the volume of a sphere with radius R equal to that of the ROI.

The Fraction of voxel connected to the lung volume surface
is calculated by dividing the number of voxels connected to the
lung mask by the number of surface voxels of the segmented
object.

The features labeled with outside mask in Table I are
computed by enlarging the original segmentation using a
spheroidal structuring element of 1.5 mm of radius.

In the present work, a further optimization of the set
of features was not carried on, although the size of the
training and validation dataset would allow it: our goal is to
demonstrate that, even with a training based on a fairly small
number of lung nodules, a CAD system can be predictive
and keep its performance on large validation datasets such as
LIDC/IDRI.

3.D. Filtering

The average number of ROIs after the nodule hunting,
depending on the number of slices, ranges between several
hundreds to few thousands per CT scan, a number far too large
to be used as an input for a neural-network classifier. The vast

F. 3. Steps of separation procedure for juxta-vascular nodules. (a) Original image. (b) Pheromone segmentation. (c) Pass 1 with R = 1.5 mm. (d) Pass 2 with
R = 2.5 mm. LIDC/IDRI case LIDC-IDRI-0039, nodule at 207, 206, 175.
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T I. List of features extracted from the nodule output mask. Features
labeled with the asterisk were not used in the classification stage.

Geometrical features Intensity-related features

Center of gravity Xi=x, y,z (*) Average
Radius (mm) Average outside mask
Sphericity Standard deviation
Skewness of distance from Xi Standard deviation outside mask
Kurtosis of distance from Xi Maximum
Volume (mm3) (*) Entropy
Fraction of voxel connected
to lung cage

Entropy outside mask

majority of findings is easily rejected with an analytical filter
based on correlations between the radius, the sphericity, and
the fraction of voxels connected to the lung mask. Figure 4
shows the correlation between the Sphericity and the Radius
of nodule candidates, with the true nodules highlighted as
black squares: it is clear that the correlation can be used to
filter most of the FP findings.

However, the discrete nature of the CT images implies
that geometrical features depend to some extent on the voxel
size, particularly for small ROIs with few voxels. Some CAD
systems25 have adopted a downsampling approach, so as
to obtain a comparable slice spacing in all the dataset. In
LIDC/IDRI, the CT slice spacing ranges from 0.6–3.0 mm:
as a consequence, the distribution of values for some features,
like the Sphericity, shows different values depending on the
slice spacing.

Figures 4(a) and 4(b) show the correlation between Sphe-
ricity and Radius values for nodule candidates obtained from
CTs with a slice spacing of 1.25 and 2.5 mm, respectively:
the correlation depends on the slice spacing and the Sphericity
shifts to higher values in the 2.5 mm case. It is therefore not
possible to use the same filter function on the whole dataset
without compensating for this effect.

The correlation between the ROI Sphericity and Radius
was then equalized by fitting it for each single CT with the
S = a/Rb+c function, represented by the red line in Fig. 4.

The equalized global distribution is then obtained, for all
the CT scans, as the difference between the original Sphericity
of a nodule candidate and the threshold Sphericity obtained
from the single CT fit (Fig. 5). For each bin along the x
axis, the black crosses correspond to the average value plus 2
standard deviations of the sphericity difference and were used
as reference points to fit the final filter function, represented
by the red dashed line. All the ROIs with sphericity differences
smaller than the filter function value were then discarded.

In addition to the sphericity-related selection, two other
filtering conditions were applied to the nodule candidates: the
Fraction of voxels connected to lung surface is required to be
less than 0.6 and the Radius must be larger than 1.2 mm.

Irregular structures are filtered with these criteria. The CT
equalization and filtering procedure dramatically reduce the
average number of FP findings per scan, from about 1000 to
about 50, a value which is appropriate as input for training
and running a neural classifier.

The filtering process also reduces the preclassification
sensitivity to about 75%–90%, depending on the input dataset.

3.E. The neural classifier

A feed forward neural network (FFNN) was selected as
nodule candidate classification method. The training sample
was made of 20, 5, and 69 CTs from the ITALUNG-CT,
ANODE09, and LIDC/IDRI databases, respectively, for a
total of 216 relevant nodules. The training was carried on in
cross-validation mode. The FFNN configuration was defined
as follows: 13 input neurons, 1 hidden layer with 25 neurons,
and 1 neuron in the output layer, representing the probability
of the finding to be relevant.

The choice implies that the overall performance is not fully
optimized, since it aims at proving the algorithm generality
in realistic training conditions (i.e., a training sample much
smaller than the validation one). In view of a future application
of the lungCAM CAD in screening programs or clinical
practice, the optimization can be achieved by iteratively
using training samples of increasing size. Furthermore,

F. 4. Distribution of Sphericity as a function of Radius for two scans from LIDC/IDRI, with slice spacing of 1.25 mm (a) and 2.5 mm (b). Black square
markers are used for the candidates corresponding to true nodules.
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F. 5. Merged plot of the difference between Sphericity and Sphericity-fit
as a function of the Radius for all training scans. The black crosses are two
standard deviation above the average for each bin and were used as reference
to fit the final filter function represented by the red line.

demonstrating a generalization capability is, at the present
development stage, even more important than optimizing the
sensitivity on a selected dataset.

4. RESULTS

M5L was validated on the datasets described in Sec. 2.
The observed performance is fairly stable, both as a function
of the dataset and as a function of the number of scans (for
LIDC/IDRI).

Since the improvements described in this paper are related
to the lungCAM subsystem upgrade, results for lungCAM
alone are discussed in detail, while the M5L performance is
presented on the overall dataset.

4.A. Labeling and score

The labeling rule proposed in Ref. 25 was adopted: the gold
standard information for the ITALUNG-CT and ANODE09
includes cue points near the center of each nodule and its
radius, while for the LIDC/IDRI dataset, the available manual
segmentation is used. A candidate is labeled a TP if its
segmentation includes a true cue, a FP otherwise.

Since cue points for the LIDC/IDRI nodules are not
provided, a different labeling method was adopted: a CAD

T III. Average Jaccard index between the lungCAM nodule candidates
and the manual segmentations.

Consensus/probability map (PMAP) level Average Jaccard index

At least 2/>50% 0.50 ± 0.20
At least 3/>75% 0.57 ± 0.19
4/=100% 0.60 ± 0.18

finding is considered a TP if the centroid of the segmented ROI
is contained within (any of) the radiologist segmentation(s).

The Gold Standard reference for the LIDC/IDRI dataset
used for training the FFNN was defined as the group of nodules
with diameters >3 mm annotated by at least two radiologists.
This definition is the closest to the annotation protocols of the
ITALUNG-CT and ANODE datasets, both based on double-
reading.

Nodules with a diameter >3 mm that were annotated
by 1 radiologist and non-nodules were considered as “not-
relevant” structures, i.e., neither true nor false findings, and
were ignored in the evaluation of the free-response receiver
operating characteristic (FROC) curves.

4.B. Nodule detection and segmentation performance

Table II shows the sensitivity of the lungCAM segmenta-
tion stage, after filtering, for each database.

The ANODE09 (50) sample is excluded, since information
about true nodules is not publicly available.

The lungCAM performance is quite stable on the different
databases, within the statistical error, even though the image
parameters, the acquisition and reconstruction conditions,
and the annotation protocol are heterogeneous. This feature
is particularly important in case of both screening and
clinical environment, with imaging studies coming from many
sources.

Table III shows the average Jaccard index computed for
three different consensus levels by the radiologists, expressed
in terms of PMAP levels. A PMAP level, associated to each
voxel belonging to a nodule, is defined as the ratio between
the number of radiologists that included the voxel in the
nodule and the total number of radiologists that performed
the annotation.

Messay et al.25 declare an average value of about 63% for
68 nodules reported by three radiologists at PMAP > 50%.

T II. lungCAM nodule detection performance after filtering. Numbers marked with asterisk in the ANODE09
dataset were estimated from the FROC curve.

Database Scan True nodules TP FP/CT Sensitivity (%)

ITALUNG-CT 20 39 32 38.6 82
ANODE09 test 5 39 30 16.5 76.9
LIDC training 69 138 (at least 2 rad.) 123 38.5 89.1
LIDC test 949 1747 (at least 2 rad.) 1421 52.1 81.3
TOTAL 1043 1943 1606 50.7 82.6
ANODE09 50 207 (∼149)∗ (∼18.7)∗ (∼72.4)∗
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The nodule hunting sensitivity as a function of the nodule
size is quite stable between 80% and 90%, with the excep-
tion of small and large nodules for which it drops to about
70%. The actual nodule size for LIDC/IDRI is obtained by
taking the largest Radius, obtained from the radiologist con-
tour/segmentation of each nodule.

4.C. lungCAM performance

The performance is evaluated in terms of FROC curves.
The LIDC test and the ANODE09 databases, not used at all
in the training or optimization processes, provide a large and
heterogeneous validation dataset.

The trained FFNN was applied to 949 LIDC/IDRI and 50
ANODE09 scans and the lungCAM performance (Fig. 6) is
very similar despite the differences between the datasets.

Since the LIDC/IDRI is a very heterogeneous database
and only 69 out of 1018 were used scans for training (and
similarly 5 out of 55 for ANODE09), the results indicate a
satisfactory generalization capability of the lungCAM system.
The ITALUNG-CT FROC, obtained with a training set that
only included nodules from the 69 LIDC training and the 5
ANODE09 CT scans, is also compatible.

A full statistical comparison across the three datasets is
difficult, mostly because of the different requirements in the
annotation protocol: LIDC/IDRI, ANODE09, and ITALUNG-
CT foresee a nodule cutoff at a diameter of 3, 4, and 5 mm,
respectively, introducing a systematic difference which cannot
be neglected and is hard to evaluate with the available
information. When possible, the statistical uncertainty was
evaluated in terms of confidence interval: both in the relevant
working range (6 < FP/scan < 8) and in the sensitivity rising
edge (FP/scan < 2), the statistical uncertainty on FP/scan for
ANODE09 and ITALUNG-CT dominates, given the relatively
low number of true findings, so the results are fully compatible
with LIDC/IDRI.

The error bands, showing the statistical uncertainty for
LIDC/IDRI and ITALUNG-CT, confirm the compatibility of
the results, although at least two large-size datasets would

F. 6. lungCAM FROC curves for the LIDC test and the ANODE09 valida-
tion datasets. The ITALUNG-CT FROC, obtained excluding its 20 scans from
the training dataset, is also included for reference. The error bands show the
statistical error on the LIDC/IDRI and ITALUNG-CT sensitivity.

be required for a more stringent verification. The ANODE09
error band cannot be evaluated as the number of true findings
is unknown.

4.C.1. LIDC/IDRI

In order to validate the approach based on the equalization
of dimensional parameters (expressed in mm) via the fitting
procedure on FP findings before the filtering stage, the FROC
curves for three ranges of slice spacing were computed sepa-
rately and compared (Fig. 7): the results show a compatibility
within 5% over the full FP range, with a slightly better
sensitivity for larger (smaller) slice spacing below (above)
2 FP/scan.

The LIDC/IDRI database provides the detailed nodule
segmentation for nodules with a diameter >3 mm, as well as
information on several features: radiologists ranked subjective
characteristics of the nodules such as subtlety, internal
structure, spiculation, lobulation, shape sphericity, solidity,
margin, and likelihood of malignancy.

The availability of this classification allows the analysis
of results as a function of the nodule type, helping in
understanding the strengths and weaknesses of the lungCAM
algorithm.

Figure 8 shows the FROC curves for three groups out of five
available malignancy rating: unlike cancer (values of 1 and 2),
intermediate (3), and highly suspicious (4 and 5), represented
by 526, 798, and 423 nodules, respectively. No information
about malignancy in the training part was provided to the
FFNN, so the classifier is expected to perform comparably for
each type of lesion. The better performance at low FP values
for unlike cancer nodules is probably related to the fact that
they are typically calcified and therefore easier to detect.

Texture features are not directly included as input to the
classifier; however, spherical-like objects are expected to be
detected better than others. The analysis of nonsolid lesions
or GGO, which represent about 12% of the sample, shows

F. 7. FROC curves on LIDC test subsets corresponding to different scan
slice spacing ranges (SR < 1 mm, 1 mm < SR < 2 mm, SR > 2 mm). The
number of TP nodules and the number of scans for the different subsamples
are statistically comparable.
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F. 8. FROC curves for different malignancy ratings on the LIDC test
dataset. Malignancy scores were grouped as follows: unlike cancer (1 and
2), intermediate (3), and highly suspicious (4 and 5), corresponding to 526,
798, and 423 nodules, respectively.

they are poorly segmented and normally rejected during the
filtering stage.

Another interesting characteristic that could affect the
system performance is the subtlety score. Subtle nodules
are hard to detect by both CADs and radiologists, since in
general, their HU intensity is very similar to the surrounding
background and they are likely to be missed.

Subtle nodules represent about 7% of the LIDC test dataset
and only about 20% of them are detected at 8 FP/scan. In
general, CADs need a fine tuning to improve the detection
of subtle nodules without increasing significantly the FP rate.
However, since also the radiologist sensitivity is likely to be
smaller for subtle nodules, before starting any optimization the
CAD FP findings should be carefully analyzed by radiologists,
so as to identify possible subtle TP findings overlooked in the
first round of annotation.

4.C.2. ANODE09

The purpose of the ANODE09 challenge17 was to provide
a database of CT scans from a lung cancer screening trial
that would allow a fair blind evaluation of CAD algorithms
under the same conditions and with the same metric. The only
factor causing differences in results would then be the intrinsic

CAD system performance, not the data or the details of the
evaluation procedure.

ANODE09 results were scored with a metric that empha-
sizes the performance at low FP values: the overall score of
a system is calculated as the average of sensitivity values
sampled at specificities 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan.

The lungCAM sensitivity at these FP/scan values for all
the relevant nodules and for subsets related to different nodule
features is summarized in Table IV, while the FROC curves
for each type of nodule are shown in Figs. 9, 10, and 11. The
early development version of the CAM algorithm, that joined
the ANODE09 challenge in 2009 scored 0.254; the lungCAM
as described in this work now scores 0.564, with a remarkable
improvement.

4.D. Combining CADs

From the results of each system presented in Sec. 4, it
is clear that lungCAM could be improved in the future, as
any other CAD system, focusing on specific weaknesses.
However, one quick and effective way to improve is to
combine the results of different algorithms, as demonstrated
in Ref. 17 for the ANODE09 challenge participants.

Figure 12 shows the results obtained when combining the
lungCAM and VBNA M5L subsystems on the 949 scans of
the LIDC test dataset (949 scans).

The M5L sensitivity at 8 FP/scan reaches 80% which, given
the size and heterogeneity of the dataset, is quite remarkable.

In the case of ANODE09, the combined performance on
the validation set, whose FROC is shown in Fig. 13, reaches
a sensitivity score of 0.619. If the RGVP subsystem is added,
M5L slightly outperforms IsiCAD with a score of 0.64.
Further combinations provide even better results: M5L and
IsiCAD score 0.752, which further improves to 0.760 when
adding FlyesScan.

5. DISCUSSION

CAD systems developed by academic research groups were
reviewed in various papers:26,27 it is extremely difficult to
make a fair comparison between all these CAD systems,
mainly because of the difference in the definition of the
properties of training, testing and validation datasets, the
use of private datasets, insufficient statistics, and sometimes

T IV. ANODE09 scoring: lungCAM sensitivity at the seven sampling points on the FROC curve and average
score value.

FPs/case 1/8 1/4 1/2 1 2 4 8 Average

Small nodules 0.359 0.436 0.478 0.513 0.572 0.658 0.718 0.533
Large nodules 0.478 0.555 0.566 0.566 0.666 0.689 0.711 0.605
Isolated nodules 0.428 0.524 0.547 0.547 0.595 0.714 0.762 0.588
Vascular nodules 0.430 0.488 0.535 0.570 0.628 0.663 0.721 0.576
Pleural nodules 0.440 0.491 0.491 0.508 0.559 0.610 0.644 0.535
Peri-fissural nodules 0.314 0.457 0.485 0.514 0.714 0.771 0.828 0.584
All nodules 0.410 0.488 0.517 0.536 0.613 0.671 0.715 0.564
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F. 9. FROC curves for different texture ratings on the LIDC test dataset.
Texture score were grouped as follows: nonsolid/GGO (1 and 2), part
solid/mixed (3), and solid (4 and 5), corresponding to 141, 92, and 1512
nodules, respectively.

different performance evaluation metrics. Some of them28–31

have analyzed LIDC/IDRI subsets, but none was tested on the
full dataset.

Recently, two papers based on large validation datasets
were published. One of them discusses the performance of
a CAD system in the NELSON (Ref. 4) screening trial.32

A direct full comparison with the results presented in this
work is not possible, as we do not have access to the full
NELSON dataset; however, the results will be compared to a
subsample of data from the NELSON screening program,
made available through the ANODE09 study.17 The other
paper25 presents results on ANODE09 and on the LIDC/IDRI
(Ref. 16) database, the largest available public database. This
represent the opportunity to compare performance in almost
the same conditions.

Commercially developed systems are usually bound to a
specific hardware, so they are tuned for specific acquisition
and reconstruction conditions. Besides, available algorithms
are certified for reporting nodules above 4 mm in diameter33,34

and usually have a fixed threshold, so the comparison on the
same dataset is not possible.

F. 10. FROC curves for different subtlety ratings on the LIDC test dataset.

F. 11. FROC curves on the 50 CTs ANODE09 validation dataset for the
different nodule types.

In the following discussion, only published data are
considered for a comparison with our results.

The easiest comparison of lungCAM and M5L is with
other participants in the ANODE09 study. The FROC curves
for IsiCAD,32 FlyerScan,25 lungCAM, and M5L on the 50
ANODE09 validation scans are presented in Fig. 14. The over-
all sensitivity score for the four systems is 0.632 (IsiCAD),
0.552 (FlyerScan), 0.564 (lungCAM), and 0.619 (M5L).
Values of sensitivity scores and FROCs curves on ANODE09
were provided by the ANODE09 challenge organizers,35 as
they are not publicly available on the ANODE09 website yet.

IsiCAD (Ref. 32) was developed at the University Medical
Center Utrecht, the Netherlands, by the group who organized
the ANODE09 study. It is based on shape index and curvedness
features and detects nodule candidates with a preclassification
sensitivity of about 97% at about 700 FP/scan. The false-
positive reduction consists of two consecutive classification
steps using k-nearest-neighbor (kNN) classifiers and the
feature selection was carried out by “Sequential Forward
Floating Selection.” IsiCAD has the best performance, but it
has the advantage of having been trained over 722 scans from

F. 12. FROC curves of the lungCAM and VBNA M5L subsystems and
their combination on the LIDC test validation dataset (949 scans).
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F. 13. FROC curves of the lungCAM and VBNA M5L subsystems and
their combination on the ANODE09 validation dataset (50 scans).

the NELSON screening program, i.e., the same data source of
the ANODE09 validation dataset.

FlyerScan25 was trained on 90 cases provided by the
University of Texas Medical Branch. It implements a simple
and powerful combination of thresholding and opening
operations to segment the nodules candidates, which are
detected at a 92.3% preclassification sensitivity at about 500
FP/scan (value provided for nodules >3 mm annotated by
at least one radiologist on 84 LIDC/IDRI cases available in
2008). The algorithm was carefully optimized to select the
best features and the results of two classifiers using a different
numbers of features were compared. With the best classifier
and using 40 features on the LIDC/IDRI 84 cases, FlyerScan
provides a sensitivity of 80.4% at 3 FP per scan. The same
conditions were used to analyze the ANODE09 validation
dataset, with the results shown in Fig. 14.

The overall performance of the lungCAM system on
the ANODE09 and ITALUNG-CT is comparable to other
algorithms. The lungCAM is more selective in the filtering
stage, with an average postfilter sensitivity of about 80%,
to be compared with about 90% reached by other methods.
However, the lungCAM classifier is then fed with a smaller
number of false positive findings and performs very well,

F. 14. FROC curves for IsiCAD (blue), FlyerScan (red), lungCAM (black),
and M5L (green) on the 50 ANODE09 validation scans.

bringing the overall sensitivity to the level of other CAD
systems.

Since no publication analyzing the full LIDC/IDRI dataset
(1018 scans) could be found, the lungCAM (and M5L)
results cannot be compared to other methods under the same
conditions.

Taking into account that the Gold Standard condition is
defined as the consensus of at least two radiologists out of four
(i.e., the less restrictive possible condition), that the algorithm
was not optimized on the validation dataset, the M5L perfor-
mance (∼80% at 6 FP/scan) is considered satisfactory.

Some other CAD systems report sensitivities larger than
80%, but those results were obtained on smaller datasets and
should probably be confirmed in a configuration closer to the
actual clinical/screening operating conditions.

The M5L main limitation affecting the sensitivity lies in the
segmentation and filtering stage, where most of the findings,
corresponding mainly to low intensity GGOs and subtle
nodules (9.5% and 5.5% of the sensitivity loss, respectively),
are missed. The remaining missing structures, accounting
for about 4% of the sensitivity, are typically rejected in the
classification stage. The development of dedicated optimized
modules for the segmentation of GGOs and subtle structures
is therefore the main task that could provide a significant
improvement. The optimization of the neural-network clas-
sifier is also likely to allow a slight improvement on the
sensitivity and a better rejection of the false positive findings,
with a shift to the left of the FROC. A larger training dataset
could also be used to improve the representation of every type
of nodule and therefore the NN performance.

The sensitivity could also be further improved by extending
the concept of subsystem result combination to other algo-
rithms, even developed by other research groups, as long
as their results are compliant with a fairly simple standard
format for the CAD findings. and integrating them in the final
combination module.

However, a FP/scan value in the 4–8 range is commonly
accepted by radiologists, as long as a quick browsing of the
CAD results is possible to minimize the FP rejection time.
In parallel, a clinical validation is planned, where the M5L
impact on the radiologist performance will be assessed: the
gold standard obtained by the revision of the radiologist initial
annotation based on the M5L results will be compared to the
initial result by the radiologist and M5L alone.

6. CONCLUSIONS

The M5L lungCAM subsystem includes two new modules,
providing

• the identification of nodules connected to internal lung
structures;

• the equalization of CT scans, that allows the use of
a common filtering function based on the correlation
between the candidate nodule Sphericity and Radius.

The above discussed results show that the M5L perfor-
mance on a large and heterogeneous dataset is stable and
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satisfactory, although the development of a dedicated module
for ground glass opacities and subtle nodules detection could
further improve it. An iterative optimization of the training
procedure, which would be possible when increasing the gold
standard dataset to be analyzed, would also likely provide a
better false positive rejection.

The main aim of the present study, which was to verify
to what extent the M5L results changed when progressively
increasing the dataset size, was accomplished.

The performance is also independent of the input dataset,
a feature that is rarely addressed in the literature: very
similar results are obtained on LIDC/IDRI, ANODE09, and
ITALUNG-CT scans.

The lungCAM overall performance is comparable and
sometimes better than that of other systems that were
optimized on large and validated on small datasets, as opposite
to our strategy.

Excellent results are obtained when combining M5L to
other systems, such as IsiCAD and FlyerScan: a multithread
CAD system based on the combination of several algorithms,
which could be made available thanks to WEB and cloud-
based services, is indeed likely to perform on standards that are
compatible with those of an experienced radiologist and would
therefore provide a remarkable added value when used to sup-
port radiologists in clinical practice and screening programs.
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