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Purpose: Even though the use of color in the interpretation of medical images has increased
significantly in recent years, the ad hoc manner in which color is handled and the lack of standard
approaches have been associated with suboptimal and inconsistent diagnostic decisions with a
negative impact on patient treatment and prognosis. The purpose of this study is to determine if
the choice of color scale and display device hardware affects the visual assessment of patterns that
have the characteristics of functional medical images.
Methods: Perfusion magnetic resonance imaging (MRI) was the basis for designing and performing
experiments. Synthetic images resembling brain dynamic-contrast enhanced MRI consisting of
scaled mixtures of white, lumpy, and clustered backgrounds were used to assess the performance
of a rainbow (“jet”), a heated black-body (“hot”), and a gray (“gray”) color scale with display
devices of different quality on the detection of small changes in color intensity. The authors used
a two-alternative, forced-choice design where readers were presented with 600 pairs of images.
Each pair consisted of two images of the same pattern flipped along the vertical axis with a small
difference in intensity. Readers were asked to select the image with the highest intensity. Three
differences in intensity were tested on four display devices: a medical-grade three-million-pixel
display, a consumer-grade monitor, a tablet device, and a phone.
Results: The estimates of percent correct show that jet outperformed hot and gray in the high and
low range of the color scales for all devices with a maximum difference in performance of 18%
(confidence intervals: 6%, 30%). Performance with hot was different for high and low intensity,
comparable to jet for the high range, and worse than gray for lower intensity values. Similar
performance was seen between devices using jet and hot, while gray performance was better for
handheld devices. Time of performance was shorter with jet.
Conclusions: Our findings demonstrate that the choice of color scale and display hardware affects the
visual comparative analysis of pseudocolor images. Follow-up studies in clinical settings are being
considered to confirm the results with patient images. [http://dx.doi.org/10.1118/1.4921125]
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1. INTRODUCTION

In medical imaging procedures, clinicians base their diagnoses
and treatment decisions on the assessment of image data. In
most cases, the final stage of the imaging process is the
human interpretation of data using visualization approaches
and display devices. In the past few years, the use of color
in medical images has increased significantly1,2 in support of
sophisticated visualization approaches. However, the ad hoc
manner for handling color and the lack of standardization and
common methodologies used to display medical images are
often cited as contributing to suboptimal medical decisions
with direct impact on patient treatment and prognosis.3–6 In
this topic, a recent expert consensus paper concluded that
more research is needed to quantify the associated variability
and to develop standards and common practices.7

In addition, the advent of wide-scale implementations of
easily accessed picture archive and communication systems
(PACS) as well as the availability of wireless connectivity
has increased the presence of telemedicine applications
opening a range of new image reading options complementing

dedicated clinical workstations.4,8,9 This has in turn created
the need for understanding the suitability of handheld devices
including laptops, tablets, and phones, which are gaining
popularity in everyday consultation workup of medical
professionals.3,4,10–14 Most current mobile phones and tablet
devices have pixel densities and spatial resolution similar
to the characteristics of medical-grade displays,15 while not
being limited by memory or computational power connected
to high bandwidth networks.4

However, consumer-grade devices and handheld image
readers have several limitations. Among them, recent work
has demonstrated limited primary stability leading to color
gamut shrinkage16 underlining that proper calibration is
necessary to guarantee stability of display characteristics
over time and to ensure similar and consistent behavior
between different devices. Currently, color management
methods for characterizing and calibrating color displays
for medical image interpretation are not common resulting
in inconsistent presentation.3–6 Moreover, tablet and phone
calibration methods bring about additional difficulties since
most of these devices do not currently support ICC profiling
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or calibration tools and, most importantly, are typically used
in environments with widely variable illumination.4,7,17–19

Although there has been no clinical evidence that color
calibration increases diagnostic efficacy, some studies have
demonstrated significant improvements in practitioner reading
time.4,5 The small size of the screen has also been cited as
a major drawback of using handheld devices for diagnostic
imaging purposes although devices that support zooming in
tools have been reported as having similar performance than
medical devices when evaluating anatomical detail.4,17

One medical imaging modality of current interest that
relies on color is the assessment of functional images.20–26

Even though significant effort is being directed at developing
software for automatic image interpretation, computer-aided
diagnosis (CAD) tools are still semiautomatic, and human
reader studies are necessary for initial setup and validation
as reported in a recent example27 on the development of
an automatic segmentation methodology considering manual
tracing as the gold standard.

Functional images are often read using a pseudocolor
presentation. Pseudocolor is defined here as the display of
color-coded scalar imaging data with no direct correlation
with the actual color of the object being imaged. The
technique is typically used as a means of highlighting image
features of interest. Because color is used as an indication
of the quantitative value in the image data, color output
needs to be consistent across devices and images while
maximizing the transfer of information from image to reader.
An example of a pseudocolor application is perfusion studies
based on magnetic resonance imaging (MRI) or computed
tomography (CT) where color-coded maps are used for
qualitative and quantitative assessment. Perfusion images
have a critical role in the therapy decision tree for stroke
patients and in noninvasive diagnosis, staging, and therapy
response assessment of tumors.20–26 Typical clinical color-
based assessment tasks include comparison between healthy
and pathological areas and between the same area at different
time points in a sequential study protocol. The usefulness of
pseudocolor presentation has also been recently highlighted
by Saba et al.,28 in the evaluation of noncontrast computed
tomography imaging for possible carotid artery dissection.
Using a receiver-operating characteristic approach, the authors
concluded that the accuracy and interobserver agreement were
improved when the traditional grayscale was changed to a
color presentation.

Other studies regarding choice of color scales for medical
images include Li and Burgess study on color scale
performance in synthetic images resembling nuclear medicine
imaging, CT and MRI. The authors found that the best
signal detection performance was obtained when using the
gray and heated body scale, and that detectability with the
spiral scales was typically 20% lower.29 To our knowledge,
no study addressing side by side comparison (different from
signal detection task) using images mimicking functional MRI
patterns has been published in the literature. The investigation
reported in this paper is meant to serve as a pilot study for a
follow up study in a clinical setting using real patient medical
images.

Even though clinical decisions are increasingly made based
on color visualization of medical images, there is to date no
consensus over which color scale is more appropriate in
representing data obtained with different medical imaging
techniques in terms of diagnostic and quantitative task
performance.

Clinicians base their selection on personal preferences for
a given software platform and/or on institutionally adopted
practices. In this paper, we report on a laboratory study
on the effect of color scale and display device hardware
on the ability of human readers to detect small intensity
changes in images resembling a functional medical imaging
modality. Using synthetic images that mimic the anatomical
and functional structures found in perfusion studies, we
describe a reader study aimed at determining changes in the
ability of readers to discriminate small intensity differences
using color visualization approaches. In addition, we report
results in terms of a range of display hardware used in the
visualization including a medical-grade display, a consumer-
grade monitor, a tablet device, and a mobile phone.

2. METHODS

Perfusion MRI was selected as the basis for designing
the synthetic patterns and the study paradigm as an example
of a functional medical imaging modality that uses color
maps and requires qualitative and quantitative determinations.
Specifically, we used brain dynamic, contrast-enhanced MRI
images as models for the design of synthetic patterns mimic-
king patient data.

2.A. Image generation

Synthetic images were obtained using the following
expression: g= (ccgc+ clgl + cwgw)U p2

p1 (go)(1+α), where gc

represents a clustered lumpy statistical background and30 gl

and gw are lumpy31 and white noise backgrounds, respectively.
The scaling factor α generates a difference in intensity
between two otherwise identical patterns to form a trial
pair. In the study, we used α values of 0, 0.05, 0.08, and
0.12 based on preliminary testing to obtain a 75% correct
performance for an initial set of images. We denote by go
a uniformly randomly sampled maximum intensity value
between presets (p1 and p2) used to locate g within a range
of the scale. The presets were determined to obtain two levels
of intensity. The patterns were then mapped directly into
a 256-level scale. The first level (denoted as low level or
LL) randomized the maximum pattern intensity in the range
between 0.25 and 0.4 of the maximum scale value. This
LL pattern was designed to simulate areas of low perfusion
typical of normal and hypoperfused white matter regions. The
values for the second level (denoted as high level or HL)
randomized the maximum value of the pattern between 0.8
and the maximum value in the scale. This HL pattern was
chosen to represent areas of high perfusion rate typical of
gray matter and some brain tumors. The synthetic pattern
resembling magnetic resonance perfusion images obtained
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using a mixture of clustered lumpy, lumpy, and white
noise statistical background mimic the characteristic spatial
frequency content of perfusion MRI and its characteristic
gradients.

Sets of 4 images of each pattern with α values of 0, 0.05,
0.08, and 0.12 were generated using  ( R2014a
version). An example of the synthetic patterns generated using
our technique is showed in Fig. 1. The patterns used for our
experiments resemble patterns found in real brain perfusion
images through the manual selection of the weights cc, cl, and
cw corresponding to the clustered lumpy, lumpy, and white
noise layers of the random background image. All patterns
were obtained using a unique set of weights. To provide
a quantitative validation of our approach, twelve 80× 80-
pixel patches were manually selected from patient perfusion
maps with high-grade glioma from The Cancer Imaging
Archive’s (TCIA) public database.32 Areas representative of
normal white and gray matter as well as tumor areas were
included in this selection. The patches were fast Fourier
transformed and radially averaged. The comparison for twelve
synthetic patterns of the same size randomly selected from the
generated experiment set indicates that the spatial frequency
content of synthetic and patient brain perfusion MRI images
is similar.

Although patterns are similar to perfusion MRI from
other body regions and other functional imaging modalities
by observation, further quantitative analyses are needed to
quantify the similarity in order to generalize our findings. As
preliminary evidence of the similarity between our synthetic
images and patient images, we present a graphic comparison
with brain perfusion images (Fig. 2) and with perfusion
images from other organs (Fig. 3).

2.B. Study design and data analysis

Six patterns were selected from the synthetic images creat-
ing two groups of three patterns each. The first group resem-
bled the appearance typical of white matter perfusion. They
were assigned to test the low intensity level mimicking a task
associated with the clinical assessment of a stroke patient.
The second group was selected to visually mimic perfusion
in gray matter or tumor areas to test high levels of intensity.
The patterns had a size of 200× 200 pixels to simulate the
approximate size of perfusion imaging features when evalu-
ated in the default settings of standard image processing plat-
forms. The experimental user interface presented the reader
with two patterns, side by side, in a two-alternative-forced-
choice (2AFC) paradigm. The study and data analyses were
coded using . In addition, the patterns were displayed
in a device of choice using a TCP/IP communication protocol
for handheld devices. Each 2AFC trial displayed two images
of the same spatial pattern, one with an α value of 0 and the
other with an α value of 5%, 8%, or 12%. The right pattern was
flipped along the vertical axis to simulate the clinical setting
of comparing the two hemispheres of the brain as done in
common practice when assessing brain perfusion studies.

Readers were asked to use the keyboard to select the image
with the highest intensity based on a reference colorbar which
was available on the right side of the user interface during
the entire experiment. They were trained to consider colors
in the colorbar ranging from lowest (bottom) to highest (top)
intensity.

A random white noise field was displayed for 500 ms to
delete the retinal latent image between trial images. Figure 4
shows the user interface with an example 2AFC trial.

F. 1. Example of the synthetic patterns used in this study. (a) α = 0 and (b) α = 0.12.
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F. 2. Synthetic [(b), (d), (e), (g), (i), and (k)] and patient [(a), (c), (f), (h), (j) and (l)] brain perfusion MRI images (Ref. 33).

2.C. Color scales and devices

Studies report that there is no universally suitable color
scale and that the choice depends on the kind of data
displayed.1 In his paper, Borland states that hue can be
considered as a tool for absolute measurements such as
categorization or localization within a range of values,
while luminance can be a tool for relative measurements
like revealing fine local detail and introducing perceptual
ordering.39 Among the available scales, the rainbow-like
palette is popular among medical imaging, prevalent in
scientific publications, and the default color scale in most
visualization toolkits.1,2 Colors in this scale are sorted
following the order in the visible spectrum. It has been
criticized for lacking natural perceptual order and uniformity,
forcing readers to refer more frequently to the color bar
and thus increasing time of interpretation, for obscuring
details in data through its uncontrolled perceived luminance

variation, especially in the green–cyan range where humans
have lower perception of changes, and for actively misleading
interpretation through the introduction of non-data-dependent
gradients that tend to introduce false boundaries.1,40,41

Another scale that is commonly seen in medical imaging
is the heated black-body, showing a linear increase in chroma,
a close to linear increase in luminance and a smooth hue
variation reproducing the order in which color changes in a
heated black-body through red and yellow to white. Because
of its perceptual order and use of color to avoid contrast
effects, it has been considered a good choice for ultrasound
images.42

Finally, the standard color scale in medical images remains
the gray scale, often described as suitable for representing
linear data due to its perceptual uniform linearity.

A grayscale (gray), a heated black-body (hot), and a
rainbow-like palette (jet) were selected for our study. The
red, green, and blue components of the jet, hot, and gray

F. 3. Synthetic [(c), (f), and (j)] and perfusion MRI images from different body regions: breast [(a) and (b)], ovarium [(d) and (e)], prostate (g), liver [(h) and
(i)], brain [(k), (l), and (m)], and kidney [(n) and (o)] (Refs. 34–38).
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F. 4. 2AFC user interface for the study showing the mirrored synthetic patterns and the colorbar for reference.

colormaps in  are depicted in Fig. 5. In each plot, the
x-axis is the image data to visualize while the curves show
the digital driving levels, integers between 0 and 255, for the
red, green, and blue channels of a display pixel. The pixel
value is sent to the display via the operating system, which
may optionally apply color management. In this study, the
color management was deactivated so the pixel values were
sent from  to the display without manipulation.

As indicated in Fig. 5, the jet color map is composed by
hue transitions from blue, green, and then red, similar to a
rainbow. When driving a perfect sRBG (Ref. 43) display,
the luminance is monotonically nondecreasing because green
carries higher luminance than blue and red. On the other
hand, hot is composed by gradually adding the red, green,
and then blue component. The intended luminance of the
hot colormap on a perfect sRGB display is supposed to be
monotonically nondecreasing because every channel increases
monotonically. The hue changes from red to yellow (red
mixed with green), and then white (yellow mixed with
blue). The gray color map is composed by transitioning
from dark to bright with equal amount of the red, green, and
blue components. The luminance increases monotonically
and perceptually uniformly from dark to bright. The hue
is neutral gray. Assuming a perfect display, the color maps
can be converted into the CIELAB color space, as shown in
Figs. 6 and 7 for observing their lightness, hue, and chroma

attributes. Consider the CIELAB color space as a cylindrical
coordinate system. The height (L∗) represents the lightness,
the angular coordinate tan−1(a∗/b∗) indicates the hue, and the
radial distance (a∗2+b∗2)0.5 shows the chroma.44

We tested four display devices including a medical display
(EIZO R31), a consumer-grade device (HP ZR2240W), a
tablet (SAMSUNG Tab 10.1), and a phone (SAMSUNG S3)
(see Table I for details on the specifications for each device).
The color responses of all devices were fully measured as
shown in Figs. 6 and 7.

2.D. Protocol

Experiments were divided in sessions that tested one
color scale in one device. A split-plot design was used for
the experiments to reduce the number of reader interpreta-
tions.45 Readers were distributed among the different color
scale/device combinations depending on their availability to
perform experiments. We used three color scales and four
devices. Combinations using gray, jet, the medical device, and
one of the handheld devices (Samsung S3) were assigned more
often in an attempt to collect more data in those categories
and thus increase power in the statistical analysis.

Seventeen readers participated in the study including two
doctoral students, one radiology resident, one pathologist, and
many computer science students. A description of the number

F. 5. Red, green, and blue components of the jet, hot, and gray colormaps in . (a) Jet, (b) hot, and (c) gray.
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F. 6. Color path of -designed scales measured on 4 displays. (a) Jet, (b) hot, and (c) gray.

of readers per combination of device and color scale can be
found in Table II. The group included 11 male and 6 female
readers with ages between 22 and 78. Two of the readers
performed the complete set of experiments testing 4 display
devices, each of them with three color scales. One reader
tested all three color scales in one device, one reader did only
one session, and the rest of them tested one device with two
color scales.

The complete experiment included twelve sessions which
were performed in random order. Each session consisted of
600 2AFC trials (100 per level and per intensity) presented
to the readers in random order. Readers were asked to take
a 15-min break between sessions. The time of performance
was recorded for each trial. The experiments were performed
under controlled lighting conditions with an illuminance at the
face of the devices of less than 5 lx. Experiments began with
a 5-min adaptation period before trials. Also, readers were
asked to adjust the viewing distance per device according to
their preference and to keep it constant for the duration of
the experiment. Handheld devices were supported by a fixed
laboratory stand.

F. 7. Measured CIELAB L∗ of -designed gray on 4 displays.

Readers were tested for color deficiencies using the
Farnsworth–Munsell 100 Hue Color Vision Test.46 One of
the participants showed mild color vision impairment; the
results did not show any significant difference compared to
those participants with normal color discrimination and thus
were not removed from the pool of results for statistical
analysis.

Data were statistically analyzed using the iMRMC tool
which has been reported as the most suitable for the experi-
mental design we selected.47

In addition, experiments run in the R31 medical display
were performed under sRGB mode. One of the readers tested
gray and jet using the sRGB and the GSDF modes to compare
performance levels. All participants received training using a
shorter version (20 images) of the 2AFC experiment prior
to the beginning of the experiments. The results of the
training session were analyzed and discussed with the readers
previous to the real 2AFC tests. Those with impaired vision
accuracy used their eyeglasses for the experiments. Readers
were informed of the conditions of participation following the
directives of the FDA RIHSC under a categorical exemption
for studies involving no patient data.

3. RESULTS
3.A. Per image analysis

Responses for each trial image in every experiment are
presented in Fig. 8 for a full view of the acquired data in the
entire study. Since significant differences were found when
testing HL and LL patterns, results are visualized for each
one of these groups. Each column in the graph represents an
individual experiment set, i.e., a combination of device and
color scale. Each row corresponds to a 2AFC trial image sorted
in order of intensity difference from bottom to top (0.05, 0.08,
and 0.12, respectively). Black and white represent wrong and
right answers, respectively. Significantly fewer mistakes are
made using jet. As an example, for R31, the difference in
performance between jet and gray in HL was 0.16 (p < 0.05,
CI 0.0004, 0.31), and in LL Delta AUC was 0.18 (p < 0.05,
CI 0.06, 0.3). Performance under a hot scale is comparable to
gray in LL and to jet in HL. Gray performs similarly in both
intensity levels. The average result for all readers for each
device and color scale combination can be seen in Fig. 9.
Similar performance is seen between devices, except when
using gray in handheld devices.
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T I. Principal characteristics of the devices included in the study.

R31 ZR2240W Tab 10.1 Phone S3

Pixel array 2048×1536 1920×1080 1280×1024 1280×720

Size (in.) 20.8 21.5 10.1 4.8

Pixel (mm) 0.207 0.2475 0.170 0.109

Lmin (cd/m2) 1.05 1 0.471 0.174
Lmax (cd/m2) 271 250 280 341
Ratio 258 250 595 1962

CIE x red 0.6351 0.6319 0.5944 0.6728
CIE y red 0.3345 0.3304 0.3402 0.3265
CIE x green 0.2919 0.3068 0.3159 0.2177
CIE y green 0.6167 0.6232 0.5633 0.7239
CIE x blue 0.1446 0.1525 0.1491 0.1394
CIE y blue 0.1019 0.0729 0.1155 0.0508

3.B. Effect of color scales

As expected, performance with all color scales decreased
with lower differences in intensity between the two images
in the trial. This behavior is more evident with gray and hot
in the LL, where results show more than a 15% difference in
performance as expressed by the percentage of correct (PC)
answers. Results for jet and hot in HL are consistently higher
with PC above 93%. Both jet and hot perform better than gray
in HL independently of the device tested. This difference is
not clearly observed in LL where there is more variability
particularly with gray and especially in experiments using
the tablet and phone. In LL, hot has a tendency to perform
similarly or worse than gray which may be related to poor
range of luminance and hue gradients (Fig. 10).

The statistical analysis performed on the reader data
is conclusive for a number of comparisons. From all the
possible comparisons between devices, scales, and intensity
levels that this study investigated, the following resulted in
a significant effect with positive confidence intervals (CI)
using the iMRMC tool. The comparison of jet versus gray
resulted in a significant effect in R31, S3, and Tablet for both
intensity levels LL (CI 0.06, 0.3; 0.01, 0.13; and 0.06, 0.37,
respectively) and HL (CI 0.0004, 0.31; 0.17, 0.26; and 0.11,
0.18, respectively). The study presented in this paper is not
a definitive investigation of the effects of color visualization
but rather an initial laboratory study to determine if these
effects are worth considering in a follow-up study with a
more clinically relevant task for a particular modality. In this
context, our statistical analysis demonstrates that the results
of the study warrant further investigations.

3.C. Effect of devices

Figure 11 shows similar performance across devices.
Overall, results are consistent for all combinations of device
and color scale with some variations that are confounded by
the uncertainty in the calculated PC.

In addition, we show results comparing the performance
of a sRGB grayscale presentation and a GSDF OSD setting

in the R31 display device (see Fig. 12). Although the results
included in this paper are only for one reader, the data suggest
that there is a small effect of the grayscale model used in the
context of the visual task studied in these experiments.

3.D. Differential performance

We further analyzed the data in terms of the performance
of each reader with respect to the results of the same reader
using a different color scale. Hot and gray were compared
to jet considering performance with jet as a reference. Gray
performance was compared against hot. Figure 13 shows
the difference in percent correct between each reader’s
performance (delta PC). Results near zero mean that both
color scales have similar performance (as it is observed for jet
and hot in HL). The more positive (or negative) the value, the
better (or worse) the performance the scale had compared to
the reference color scale. For all devices, readers had similar
performance with jet and hot and better results with both of
these color scales than with gray in HL. For LL, readers’
results using jet were better than gray and hot. For handheld
devices, gray results in LL were better than those with hot.

3.E. Left-answer bias

During the experiment, correct answers were uniformly
randomized to be on the left or right side. We then expect
to measure around 50% of wrong answers on each side.
However, most readers seemed to preferentially select the left
image as the correct answer. To address this possible bias, we

T II. Split-plot design. Number of readers per device/color scale
combination.

R31 ZR2240W Tab 10.1 Phone S3

Jet 6 2 3 8
Gray 8 5 3 8
Hot 4 5 3 3
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F. 8. Comprehensive set of all the experiment results. White represents correct answers and black wrong answers. Each column represents a reader session.
The device and the color scale used are in the x and x2 axes labels, respectively. Each row represents a 2AFC trial, in ascending order of intensity difference
(represented by alpha in the y2 axis). Performance in high level (top) and low level (bottom) are plotted separately. The number of readers per device and color
scale combination varies.

calculated the subtraction of the corresponding answers (see
Fig. 14). A result of zero means readers have the same number
of wrong answers on the left side than on the right side, while
positive values show a bias toward deciding the correct answer
was on the left whereas it was on the right. Negative answers
mean the opposite. The calculated bias seems to be salient in
some devices and preferentially in the LL image sets with the
gray scale.

3.F. Effect on decision time

A secondary outcome of this study is the difference in
performance time observed with different color scales and
devices (see Fig. 15). Experiments with jet were completed
consistently in less time than with other color scales. This
finding is consistent with results from Li29 and Krupinski.5

4. DISCUSSION

In spite of the numerous drawbacks described for rainbow
color scales, jet appears to be the most suitable for functional
image data sets. Our results show a noticeably better
performance of jet compared to gray in all intensity levels
and with all devices. These results can explain the popularity
of jet in medical imaging despite having been reported as
inadequate.1,40,41 A possible explanation for the differential
performance is the better contrast perception between hues
than perceived brightness of human vision, which would make

smaller intensity differences easier to detect with jet. The same
applies to the different performance of hot in the two levels
of intensity. In LL, hot behaves similar to gray, which could
relate to the poor perceived contrast between black and red,
and the little change in luminance in this range of the color
scale. On the other hand, in the HL, contrast between reds and
yellows, together with higher levels of luminance, improves
hot performance and makes it comparable to that of jet.

Even though results cannot be generalized to all handheld
devices, performance with the tablet and the phone used
in our study was comparable to that of the medical and
the consumer-level display device. The better performance
using gray in handheld devices may be attributed to the
deviation seen in their luminance mapping, which results in
an improved local contrast between darker grays and makes
it easier to detect smaller differences in amplitude. Another
possible explanation could be the smaller screen size in the
handheld devices, which made trial images in the 2AFC
interface appear smaller and closer to each other affecting the
reader’s strategy. Size of screen in mobile devices has been
described as a disadvantage for medical image interpretation,
although devices with the possibility of zooming in and out
have shown similar performance than medical devices when
evaluating anatomical detail.4 Our study did not provide the
reader with the possibility of zoom; however, the kind of
task involved only contrast discrimination and this task might
have been even facilitated since the small size of the entire
trial image might have fit within the foveal area of the retina.
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F. 9. Averaged results. (a) Number of readers per device/color scale combination. (b) Averaged PC of all readers in a combination in HL (top row) and LL
(bottom row) intensity range. The device and the color scale used are labeled in the x and x2 axes, respectively. [(c) and (d)] Average PC across readers for each
trial image in each combination for HL (c) and LL (d). Each row represents a 2AFC trial, in ascending order of intensity difference (represented by alpha in the
y2 axis). Steps of gray were selected to represent the PC value, where black corresponds to 50% PC and white to 100% correct answers.

Less saccadic eye movements between both trial images and a
better general impression of the patterns might have helped in
the comparison improving the results for gray. In this context,
eye tracking would be a valuable complement for future

work on this topic since the readers’ pattern of interpretation
might shed light on the reason for this and other observed
differences. In addition, the physical size of the patterns was
not kept the same across devices. This change in the field of

F. 10. Percent correct (PC) for each device and scale and level. Error bars depict two standard deviations of the sample variability among readers that
performed the experiment.
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F. 11. Percent correct (PC) for each device. Error bars depict two standard deviations of the sample variability among readers that performed the experiment.

view and therefore in the angular frequencies involved might
have implications for the strategy the subjects used during the
task (i.e., a smaller search area in the handheld devices).

With respect to the time of performance, jet has been
criticized for lacking perceptual order and increasing reading
times because of more frequent color key consultation.
However, our results are not consistent with that observation.
Jet appears to make differences in intensity between trial
images more evident than the other color scales tested and
readers take less time to make a decision. Eye tracking could
be useful for the interpretation of these results here as well.

One key difference between medical-grade and consumer-
grade monitors is the typically more accurate control of
the look-up tables for visualization and improved features
including lower spatial noise48 and improved temporal
response.49–51 However, in this study, the characteristics of the
display hardware were not the focus of the experiments. For

instance, the design of the study did not include any steps to
compensate differences in the absolute range of luminance that
the devices delivered. The wide range of luminance observed
among the devices does not allow the results to extrapolate
conclusions regarding the suitability of any of the devices
for the specific tasks considered in the study. The results
of this study need not be interpreted as a direct hardware
comparison but as a comparison of visualization approaches
in the context of the use of color scales. However, it has to
be noted that the manner in which display devices deliver
the color output depends significantly on the technological
characteristics of the hardware. For instance, display devices
based on liquid crystal technology suffer from spectral leakage
in the dark regions of the scale particularly at off-normal
viewing directions. On the other hand, the saturation quality
of some of the organic light-emitting devices found in today’s
handheld devices offer a wider, more saturated gamut and

F. 12. Comparison between s grayscale and GSDF OSD setting in the R31 display device.
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F. 13. Average differential performance with the different color scales for all experimental combinations.

a darker black level for a higher dynamic range. These
differences among the devices used in the study and the
results obtained warrant further investigation of the effect
of technology of the hardware on the effect of color on
quantitative visual tasks similar to those studied in this work.
Finally, the devices used in this study have been set up with
in-factory calibration. While some of the preset hardware
calibrations have been shown to be accurate,52 they provide
an inconsistent presentation in terms of luminance range and
color characteristics conferring a variability to the devices that

impede us from a direct performance comparison. Overall,
the three color scales perform better in HL. This raises the
concern of a perceived response that is not consistent across
the scale which is often a desired property of a medical image
visualization system.

Regarding the left answer tendency, one possible expla-
nation for our findings is that the reference color bar was
on the right side. Especially in trials in LL, the luminance
of the color key could have made readers underestimate
or somehow compensate the luminance of the right image,

F. 14. Average left-answer bias of readers while testing the different device/color scales combinations. Scaling rows are only for defining the presentation of
the color bar range.
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F. 15. Time to complete the study for different device/color scale combinations.

thus making the left image appear perceptually brighter. This
difference appears more evident in the HP device which could
be explained by off-normal leakage in the liquid crystal.

A weakness of this exploratory study is that the cells in
our split-plot design were not balanced. Depending on their
availability, readers were assigned experiments with different
color scale/device combinations. Gray, jet, the medical device,
and one of the handheld devices (S3) were assigned more
often to increase the power in the statistical analysis of those
comparisons. However, as pointed out by Obuchowski,45 a
reduction in the number of readers per experimental condition
does not lead to a significant effect on study power. In our study,
all experimental conditions contained 600 pairs of images.

Finally, it is important to note that the side by side compar-
ison in this laboratory study of flipped symmetric images in
the 2AFC experiment resembles to some degree clinical tasks
involved in assessing symmetric organs such as brain, breast,
or prostate, comparing a region of interest in both sides to
search for asymmetries in color intensity indicative of hypop-
erfused areas or tumor presence.

5. CONCLUSION

In our study, the jet color scale consistently outperformed
the hot and gray scales in all levels of the color range and for
all devices tested when evaluating synthetic images mimicking
functional MRI. Hot has a noticeable difference in perfor-
mance in the different intensity levels being comparable to jet
in HL and worse than gray in LL. Similar performance was
observed for the medical display, the consumer-grade monitor,
the tablet, and the phone, using jet and hot. Interestingly,
performance with gray was better with the handheld devices.
In addition, time of performance was shorter with jet.

Our findings demonstrate that the choice of color scale and
display hardware affects the visual comparative analysis of
pseudocolor images. Follow-up studies with patient images are
needed to confirm the results in a clinical setting.
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