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Abstract

The prospective multi-center ACRIN 6691 trial was designed to evaluate whether changes from 

baseline to mid-therapy in a Diffuse Optical Spectroscopic Imaging (DOSI)-derived imaging 

endpoint, the Tissue Optical Index (TOI), predict pathologic complete response (pCR) in women 

undergoing breast cancer neoadjuvant chemotherapy (NAC). DOSI instruments were constructed 

at the University of California, Irvine and delivered to 6 institutions where 60 subjects with newly-

diagnosed breast tumors (at least 2 cm in the longest dimension) were enrolled over a 2-year 

period. Bedside DOSI images of the tissue concentrations of deoxy-hemoglobin (ctHHb), oxy-

hemoglobin (ctHbO2), water (ctH2O), lipid, and TOI (ctHHb × ctH2O/lipid) were acquired on 

both breasts up to 4 times during NAC treatment: baseline, one-week, mid-point, and completion. 

Of the 34 subjects (mean age 48.4 ± 10.7 years) with complete, evaluable data from both normal 

and tumor-containing breast, 10 (29%) achieved pCR as determined by central pathology review. 

The percent change in tumor to normal TOI ratio (%TOITN) from baseline to mid-therapy ranged 

from −82% to 321%, with a median of −36%. Using pCR as the reference standard and receiver-

operating characteristic curve methodology, %TOITN AUC was 0.60 (95% CI 0.39 to 0.81). In the 

cohort of 17 patients with baseline tumor oxygen saturation (%StO2) greater than the 77% 

population median, %TOITN AUC improved to 0.83 (95% CI 0.63 to 1.00). We conclude that the 

combination of baseline functional properties and dynamic optical response shows promise for 

clinical outcome prediction.

Keywords

Functional imaging; metabolic imaging; near infrared spectroscopy; breast cancer; neoadjuvant 
chemotherapy

1. Introduction

Neoadjuvant chemotherapy (NAC), or preoperative systemic therapy, offers unique 

opportunities for patient care and cancer drug development [1]. In addition to improving 

breast tissue conservation and cosmetic outcome, NAC can cause down-staging of the pre-

surgical tumor and reduce the required extent of axillary dissection [2]. Studies have shown 

that pathological complete response (pCR) predicts patient survival [3, 4], and the US Food 

and Drug Administration now allows use of the pCR endpoint to support accelerated 

approval of drugs for high-risk early-stage breast cancer [5]. Importantly, NAC enables 

tumor response and chemotherapy effectiveness to be assessed on an individual patient basis, 

allowing oncologists to optimize treatment strategy and improve patient outcome.

In current clinical practice, NAC response assessment is determined predominantly by serial 

physical examination, mammography and/or ultrasound. Yeh et.al. [6] showed that 
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palpation, mammography, ultrasound and magnetic resonance imaging (MRI) had 19%, 

26%, 35%, and 71% agreement, respectively, with final pathological response. These and 

other studies have shown that anatomical changes in tumor presentation are not reliable 

predictors of final pathological state [7–9]. Functional measurements of tumors from 

contrast-enhanced MRI [10], magnetic resonance spectroscopy (MRS) [11, 12], and positron 

emission tomography (PET) [13, 14] have shown substantial improvement over conventional 

anatomic imaging. However, the cost, radiation exposure, and/or potential toxicities of 

contrast agents limit the frequency of these scans. Optical imaging offers a low-cost, risk-

free approach that could be used as a “bedside” adjunct to these methods.

Currently, morphological criteria are the only clinical care standards for evaluating 

therapeutic efficacy of NAC. Prior studies have indicated that functional and molecular 

measures may provide an early indicator of breast cancer therapy response in the neo-

adjuvant setting. Studies support the potential value of proliferation biomarkers, including 

imaging markers [15], as predictors of therapeutic response [16, 17]. Other imaging studies 

indicate that early changes in blood flow and tumor metabolism predict subsequent response 

and provide an early marker for cellular response to treatment [10–12, 18]. Taken together, 

evidence suggests that early (24 to 72 hours) tumor biochemical changes precede volumetric 

changes in response to cancer therapies [19, 20]. These early biochemical changes may 

provide a pathway for predicting final pathological outcome [20]. Early classification of 

therapeutic effectiveness could increase patient survival and minimize unnecessary damage 

to sensitive tissues (e.g. heart, liver, brain) caused by ineffective therapeutic strategies. This 

opportunity motivates the development of accurate imaging predictors of pCR and 

pathological non-response.

Diffuse optical imaging (DOI) technology, a potential candidate to address this clinical need, 

uses red and near-infrared (NIR) light (~600 to 1000 nm) to probe tissue absorption and 

scattering properties at depths up to several centimeters [21]. Absorption and scattering 

properties in this regime characterize tissue structure and function. Analogous to MRS and 

MRI, diffuse optical spectroscopic imaging (DOSI) is a specialized DOI technology that 

performs high-resolution spectroscopy from 650–1000nm where oxy- and deoxy-

hemoglobin, water and lipid have prominent absorption features. These endogenous 

components vary significantly in abundance and molecular state between breast cancer and 

normal tissue [22–26] and unique cancer-specific absorption signatures not found in normal 

breast have been observed [27]. DOSI-measured tumor water concentration and water 

binding state were shown to scale with the Nottingham Bloom-Richardson histopathology 

score and appear to be proportional to tissue cellularity and extracellular matrix composition 

[22, 28]. Hemoglobin, water and bulk lipid components have been shown to be sensitive to 

microvasculature, cellular metabolism, angiogenesis, edema, hypoxia, and necrosis in 

several single-center studies and provide tumor contrast that can change significantly with 

the growth and regression of tumors [22, 29–35]. Quantitative, optical functional endpoints 

are easy to interpret and offer objective measures to predict therapeutic outcome and 

minimize patient toxicity. For instance, Tissue Optical Index (compound function of deoxy-

hemoglobin, water and lipid tissue concentrations), which describes tissue metabolism, 

structure and cellularity, has been shown to be a promising imaging endpoint that 

significantly decreases by mid-therapy and can be used for predicting neoadjuvant 
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chemotherapy response [36]. Response to chemotherapy significantly correlated with a 

decrease in TOI by mid-therapy. The biological origins of this TOI signal change are NAC-

induced reductions in tumor cellular density and edema (reduced water content), re-

normalization of breast adipose displaced by the tumor (increased lipid fraction), and 

decreased levels of deoxyhemoglobin due a loss of metabolically active tumor cells. Any 

diffuse optical imaging instrument that uses the appropriate wavelength bands to retrieve 

hemoglobin, water and lipid information can calculate TOI. Because DOSI is a relatively 

inexpensive, portable, risk-free technology, it can be used frequently at the bedside, 

potentially creating new opportunities for patients to receive personalized treatment and for 

physicians to gain insight into response mechanisms. These features have been highlighted 

in several single-center studies and they motivated American College of Radiology Imaging 

Network (ACRIN) 6691, which was designed to evaluate whether quantitative DOSI 

measurements can be conducted in a prospective, multi-center trial setting to predict 

therapeutic response in breast cancer patients undergoing NAC. The primary aim was to 

evaluate whether the baseline to mid-therapy change of the DOSI-derived tissue optical 

index (TOI) could predict pCR. The secondary aims investigate the utility of additional 

DOSI measurements of tumor biochemical composition, obtained both at baseline and other 

time-points, for predicting pCR.

2. Materials and Methods

2.1. Subject eligibility and enrollment

Seven institutions were approved to enroll a total of 60 female breast cancer patients: 

Dartmouth Hitchcock Medical Center (Dartmouth), Massachusetts General Hospital 

(MGH), University of California Irvine (UCI), University of California San Francisco 

(UCSF), University of Pennsylvania (UPenn), Boston University (BU) and MD Anderson 

Cancer Center (MDACC). Enrollment began in June 2011 and completed in June 2013. All 

institutions activated concurrently, except MDACC and BU which joined the study in 

January and May 2013, respectively.

Eligible subjects were females age 18 years or older with biopsy-proven invasive breast 

cancer of at least 2 cm in the greatest dimension (as measured by palpation or standard 

breast imaging techniques), who planned to receive NAC followed by surgery. No 

restrictions were placed on menopausal status, tumor stage, or tumor subtype/pathology. For 

this study, the chemotherapy regimen was determined by the treating oncologist, and 

regimens containing at least one cytotoxic chemotherapeutic agent were required. 

Neoadjuvant hormonal therapy or other targeted agents alone in the absence of cytotoxic 

chemotherapy was not allowed. Potential subjects who received previous treatments, such as 

chemotherapy, endocrine therapy, radiation, or surgery (excluding breast augmentation) to 

the involved breast were excluded from the study. In addition, women who were pregnant or 

nursing were excluded. All subjects provided written informed consent. The HIPAA-

compliant protocol and informed consent were approved by the American College of 

Radiology Institutional Review Board, the NCI Cancer Therapy Evaluation Program 

(CTEP), and each site’s Institutional Review Board.
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2.2. DOSI – Instrumentation

DOSI measurements were performed with systems that combine frequency domain photon 

migration (FDPM) and broadband near-infrared (NIR, 650–1000 nm) spectroscopy for 

quantitative, model-based measurement of tissue absorption and scattering properties and 

recovery of tissue oxy-hemoglobin (ctHbO2), deoxy-hemoglobin (ctHHb), water, and lipid. 

The full technical details of the system are described elsewhere [37]. Standardized 

procedures were developed for data collection and to monitor instrument performance. 

Three sets of three calibration measurements on two custom-fabricated solid breast-tissue 

simulating phantoms (Institut National d’Optique, Quebec, Canada and UC Irvine Beckman 

Laser Institute, CA, USA) and on one reflectance standard (SRS-99–020, Labsphere, Inc, 

NH, USA) were performed before, mid-way and after each subject measurement. The breast 

tissue simulating phantoms and reflectance standards used at all sites were identical. These 

measurements were used for determining instrument response-function, cross-calibration 

between instruments, and monitoring instrument performance over the duration of the study 

[38]. Dartmouth, MGH, UCI, UCSF, and UPenn used identical DOSI instruments. MDACC 

and BU, which joined the trial about 1.5 years after the first patient enrollment, used a 

smaller, portable version with equivalent features and performance to the original 5 DOSI 

instruments. The handheld DOSI probe that is scanned on the breast for data collection was 

identical for all instruments. A group of trainers from UCI, who developed the DOSI 

instruments, traveled to each site for initial instrument setup and training.

2.3. DOSI – Spectroscopy

The approach to DOSI data acquisition and analysis has been previously described [22], and 

is briefly summarized here. Concentrations of oxy-hemoglobin (ctHbO2), deoxy-

hemoglobin (ctHHb), water (ctH2O), and bulk lipid were calculated by fitting a linear 

combination of their known molar extinction coefficient spectra to the tissue μa values 

derived from model-based fits of DOSI data [22]. From these quantities, the total blood 

volume (THb = ctHHb + ctHbO2), percent oxygen saturation (StO2) and tissue optical index 

(TOI) were calculated. The StO2 is the ratio of ctHbO2 to THb. TOI is defined as TOI = 

ctHHb × ctH2O/lipid. Prior single-center studies have shown that TOI can provide high 

tumor to normal (T/N) tissue contrast and that changes in T/N TOI are sensitive to 

chemotherapy response [22, 36]. Quantitative images of these local tissue concentrations and 

contrast function were formed on a generic 3D breast surface for visualization.

2.4. Imaging Procedures

DOSI scans were performed prior to the start of the chemotherapy treatment (baseline), 5 to 

10 days after the first cycle (early-), at a change in chemotherapy regimens or mid-way 

through a single regimen protocol (mid-), and within 3 weeks after completion of the 

chemotherapy treatment but prior to surgery (post-therapy). The mid-therapy DOSI 

measurement was performed at least 5 days after the completion of the last cycle prior to the 

mid-point, and prior to the first cycle after the mid-point. Early- and post-therapy scans were 

optional as they were not required to analyze the primary aim.

DOSI measurements were performed using a standard protocol. Subjects were measured in a 

supine or reclining position. The DOSI probe was placed against the breast tissue, and 
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sequential measurements were recorded in a rectangular grid pattern using 10-mm spacing. 

Both breasts were specified to be measured at each visit. The dimension of the grids ranged 

from 7×7 to 15×16 cm2 (i.e. 49 to 240 measurement locations). The grid size was chosen to 

fully encompass the tumor anatomical extent (by US or palpation) and to capture 

surrounding normal tissue. The grid on the non-cancerous contralateral breast (normal side) 

was mirrored from the grid on the cancerous breast (tumor side). An example of DOSI 

imaging grid locations and the resulting images is provided in Figure 1. For consecutive 

DOSI visits, individual static landmarks such as moles or freckles were recorded on a 

transparency sheet and provided a fixed reference to co-register the imaging grid at follow-

up DOSI sessions. After initial processing performed centrally by the UCI/ACRIN core lab 

(see image analysis below), DOSI data from each session were plotted using grid 

coordinates and heat map functions in MATLAB. Linear interpolation was used to account 

for 10 mm spacing of grid points. The colored 2D maps were then overlaid on a 3D textured 

mesh of a realistic breast anatomic model with grid points drawn on it. The initial 3D image 

was obtained by using an X-box Kinect scanner for windows and accompanying software 

development kit (Microsoft, WA, USA). Colored heat maps obtained from MATLAB were 

warped and overlaid on the textured mesh using Photoshop CS6 Extended (Adobe, CA, 

USA) to create the final images.

2.5. Histopathological Assessment

Histopathological analysis of surgical specimens was performed locally by each institution’s 

pathologist. One central pathologist (UCI core) then reviewed all pathological reports to 

assess individual tumor response. The binary determination of pathological complete (pCR) 

or non-complete (non-pCR) response was made based on evaluation of the pathology 

reports, and if needed, standard-of-care imaging reports. All determinations were made 

blinded to DOSI imaging data. Pathological complete response was standardized and 

defined as no residual of invasive disease present in the surgically resected tissue (breast and 

lymph nodes) as per FDA guidelines (http://www.fda.gov/downloads/drugs/

guidancecomplianceregulatoryinformation/guidances/ucm305501.pdf). Non-pCR included 

both partial and non-responders. For the purposes of this report, only pCR status (0 or 1) was 

used to evaluate clinical outcome. Partial response characteristics will be further 

characterized in future analyses of secondary aims.

2.6. Image Analysis

A single analyst from UCI processed the de-identified raw DOSI data centralized from all 

participating institutions, and recovered the mean and standard deviation in tumor and 

normal tissue of all DOSI parameters. All DOSI data processing, including model-based fits 

to raw data, calculation of breast tissue composition, and image generation, was performed 

blinded with respect to clinical outcome on de-identified data by the UCI data core team. 

These processed data were transferred to the central ACRIN facility for further statistical 

analysis by the ACRIN Biostatistics Center. From the DOSI images, two regions of interest 

(ROI) representing tumor and normal tissue were defined using an automated algorithm. 

DOSI parameters were determined by calculating the mean of the measurement locations in 

each ROI. In this work, we focus on the tumor to normal ratio, which accounts for 

chemotherapy-induced changes in normal tissue.
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As described in previous studies, the tumor ROI consisted of the full-width-at-half-

maximum (FWHM) region around the baseline TOI tumor peak [36]. The DOSI 

measurement locations that had greater TOI values than a threshold equal to half the peak 

were included in the tumor ROI. In addition, a continuity rule was implemented to define the 

tumor ROI: any location calculated as part of the ROI but spatially disconnected (> 2cm 

away) was excluded from the ROI, and any location not meeting the threshold but 

surrounded by at least three other included points was incorporated. The tumor ROI size was 

fixed for all time-points, but the tumor ROI could be translated up to 2 cm at later time-

points to account for a shift in tumor TOI enhancement (due to asymmetric tumor shrinkage 

or grid misplacement on the breast). This method was designed to capture the entire tumor 

region, but since the tumor size was longitudinally fixed, it overestimates the tumor extent at 

later time-points in responders.

The normal tissue ROI was selected in the contralateral breast to mirror the ipsilateral tumor 

ROI.

2.7. Statistical Methods

Summary statistics including the mean, standard deviation, median and range were 

computed for all DOSI markers. Logistic regression was used to model the association 

between percent change in tumor to normal (T/N) TOI ratio (%TOITN) from baseline to 

mid-therapy and pathological response status (pCR vs. non-pCR). The resulting odds ratio 

and 95% CI were reported. In addition, a receiver operating characteristic (ROC) curve was 

derived for %TOITN with pathological response status as the reference standard. Area under 

the ROC curve (AUC) and the associated 95% confidence interval were computed 

empirically. If the lower limit of the 95% CI for AUC was at least 0.50, then the marker was 

considered capable of differentiating pCR vs. non-pCR.

To account for the heterogeneous cohort, the predictive power of %TOITN was evaluated 

further on two subsets of patients stratified by baseline tumor tissue oxygen saturation 

(StO2), which is an optical parameter reflective of the tumor biophysical state. Tumor 

baseline StO2 has been shown to be a promising predictor for pCR at early time-points [33, 

39]. The median value of baseline StO2 was used to stratify the subsets, with ROC curve and 

corresponding AUC reported for each subset. Evaluation of baseline StO2 alone and in 

combination with midpoint %TOITN was a planned secondary aim of the study.

ACRIN 6691 was powered to detect an odds ratio of 3.0 using a two-sided hypothesis test, a 

type I error rate of 0.05, and 90% power (PASS 2008). The resulting sample size was 

determined to be 47 evaluable subjects. All tests were two-sided with p-value < 0.05 

considered statistically significant. Statistical computations were done using SAS 9.3 (SAS 

Institution, Cary, NC) and R v3.1.0 (R project, http://www.r-project.com).

3. Results

3.1. Enrollment information

The target accrual was met with 60 subjects enrolled in ACRIN 6691. As depicted in Figure 

2, three subjects withdrew from the study. An additional 12 subjects were not included in the 
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imaging analysis because of the following DOSI scan issues: mandatory baseline DOSI not 

performed (n = 1), baseline DOSI non-evaluable (n = 8), mandatory mid-therapy DOSI not 

performed (n = 3). A DOSI scan was considered non-evaluable in case of unrealistic 

physiological values, or incorrect instrument configuration. This decision was made on 

blinded, de-identified data using instrument calibration and raw data QC reports. Of the 45 

eligible subjects with evaluable DOSI scans, one surgical pathology report after 

chemotherapy was not available. For another 10 subjects, the DOSI scan of the contralateral 

breast was not performed due to insufficient time during the measurement session to 

complete the normal side breast scan, which was required in this analysis for tumor to 

normal (T/N) values. The analysis therefore included 34 subjects with evaluable DOSI scans 

and available pathologic response data from 5 different institutions (Supplementary Table 1). 

Measurements at the two mandatory time-points to assess the primary aim, baseline and 

mid-therapy, were performed in 97% and 88% of all enrolled subjects, respectively 

(Supplementary Table 2). Despite being optional, measurements at early-therapy and post-

therapy were performed in 73% and 82% of all enrolled subjects, respectively.

3.2. Subject and tumor characteristics

Table 1 presents the characteristics of all enrolled subjects (n = 60), and those subjects 

included in the analysis of the primary aim (n = 34). Among analyzed subjects, the average 

age was 48.4 ± 10.7 years (range 30–67 years), with 50% pre-menopausal, 3% peri-

menopausal, and 47% post-menopausal. The racial distribution was 56% White, 24% Black, 

12% Asian, and 9% of unknown race; 15% of analyzed subjects were of Hispanic or Latino 

ethnicity. Pre-chemotherapy tumor characteristics are also reported in Table 1. IDC 

accounted for approximately 85% of the tumors (with or without a DCIS component, and 

including 6% of cases mixed with an ILC component) in the analysis group. Notably, 

approximately 71% of the tumors in the analysis group were ER positive.

The chemotherapy protocols undergone by the subjects were not controlled in this study and, 

as a result, were highly heterogeneous. Treatments for all subjects were based on cytotoxic 

therapies. Targeted agents, such as Avastin (Bevacizumab) or Herceptin (Trastuzamab), 

could be used in combination of the cytotoxic agents. Hormonal therapies were not allowed. 

A total of 17 different chemotherapy protocols, including 12 different drugs, were 

administered in the 34 evaluable cases. HER2 status was known in 25/34 (74%) analyzable 

subjects. Trastuzamab was administered to 10/11 (91%) HER2 positive tumors, and 

Bevacizumab was administered to 1/2 (50%) triple negative tumors.

3.3. Pathologic outcome statistics

At surgery, 10 (29%) pathological complete responses (pCR) and 24 (71%) non-pCRs were 

included in the analysis group. A similar distribution of 15 (25%) pCRs was observed in all 

60 enrolled subjects, with 5 (8%) not undergoing surgery/lost to follow-up.

3.4. DOSI during neoadjuvant chemotherapy

Figure 3 presents 2 typical examples of a pCR and a non-pCR measured using DOSI during 

NAC. The corresponding %TOITN is shown across NAC for both responses. Both subjects 

exhibited relatively high baseline TOI levels of ~3–4 at tumor and arealor regions. The pCR 
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subject demonstrated a greater %TOITN decrease at midpoint than the non-pCR subject 

(~46% and ~14%, respectively). Peak areolar TOI levels for subjects remained 

approximately the same throughout therapy.

3.5. Response Prediction – Tumor to Normal TOI change from baseline to mid-therapy

Among analyzable subjects the distribution of %TOITN from baseline to mid-therapy ranged 

from −82.4% to 320.8%, with a median of −36.2%. The corresponding mean (standard 

deviation) was −25.9% (67.2%). Figure 4 A) presents the distribution of %TOITN from 

baseline to mid-therapy by pathologic response category. On average, the pCR group 

exhibited a greater decrease in %TOITN than the non-pCR group; however, large variability 

occurred in %TOITN in the non-pCR group.

The protocol-planned logistic regression analysis demonstrated an odds ratio for pCR 

prediction of 1.4 (95% CI 0.7 to 2.9, p = 0.40) per standard deviation increase in %TOITN. 

As strong evidence of model lack of fit existed using continuous %TOITN, we explored 

using −40% to dichotomize the population for the purpose of logistic regression, which was 

approximately equal to the median %TOITN across all subjects. Patients who had a 40% or 

larger decrease in TOITN from baseline to mid-therapy were more likely to be complete 

responders than patients who experienced smaller decreases or increases, with an estimated 

odds ratio for pCR prediction of 4.7 (95% CI 0.9 to 23.0, p = 0.059), see Table 2. The ROC 

AUC for pCR using %TOITN was 0.60 (95% CI 0.39 to 0.81), suggesting this marker does 

not exhibit good discriminatory ability for pCR in the entire cohort (Figure 5 A).

In the subset analysis, subjects were further stratified using the median tumor StO2 at 

baseline (76.9%) as another binary marker. Note that this median baseline tumor StO2 is 

similar to the threshold value reported by Ueda et al. [39], 76.7%, which has been shown to 

correlate with NAC response. Figure 4 B) and C) show the distributions of %TOITN from 

baseline to mid-therapy by pathologic response category in each subset. While %TOITN in 

patients with low baseline tumor StO2 did not correlate with pathologic response, a large 

decrease in %TOITN from baseline to mid-therapy in patients with high baseline tumor StO2 

was associated with pathologic complete response. For 17 subjects with baseline StO2 

greater than 76.9%, AUC was 0.83 (95% CI 0.63 to 1.00, Figure 5 C). These subjects were 

more likely to be complete responders than patients who experienced smaller decreases or 

increases, with an estimated odds ratio for pCR prediction of 16.5 (95% CI 1.1 to 250.2 p = 

0.043), see Table 2.

Discussion

ACRIN 6691 is the first multi-center breast imaging trial utilizing DOSI technology. As its 

primary aim, the trial was designed to evaluate whether %TOITN from baseline to mid-

therapy was predictive of the final pathologic response of breast cancer during neoadjuvant 

chemotherapy. DOSI measurements were successfully performed longitudinally throughout 

NAC at 6 different institutions across the USA.

Standard-of-care NAC response is currently assessed using changes in anatomical tumor 

size. However, anatomical assessment has been shown to be an unreliable metric of 
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pathological response and arises after a measurable change in functional characteristics [7, 

19, 20]. Functional imaging techniques, such as dynamic contrast enhanced (DCE) MRI and 

PET have shown better predictive value than anatomical imaging methods [10, 40], but they 

are costly, involve lengthy scan times, and require injection of a contrast agent, which limit 

availability and measurement frequency. DOSI is a portable, non-invasive intrinsic-signal 

technique that monitors functional tumor response during NAC and may predict early 

clinical outcome. Frequent longitudinal DOSI measurements were first reported to reveal 

dynamic tumor physiology [41], and validated the TOI endpoint in a single-site 34-subject 

study by showing %TOITN is significantly different at mid-therapy for pCR vs. non-pCR 

NAC patients [36]. Additional studies by several groups have confirmed the sensitivity of 

diffuse optical methods to breast cancer NAC response using both baseline and dynamic 

response measures [30–32, 42–48]. Although these studies were completed with different 

instruments and NAC protocols, their common findings indicate that tumor cell metabolism 

and vascularity are significantly altered during chemotherapy and optical methods are 

sensitive to several markers of these changes. For example, NAC-induced cellular damage 

alters tumor oxygen consumption and lowers tumor ctHHb; vascular damage causes a 

decrease in tumor ctHbO2, and progressive loss of cellularity and edema results in a 

decrease in tumor water content.

The current multi-center clinical trial was devised to evaluate NAC response using a single, 

standardized DOSI platform and TOI endpoint. Extensive validation and performance 

assessment features were built into the study in order to evaluate the potential use of DOSI 

technologies in patient management. As expected, we observed that the 10 subjects 

achieving pCR exhibited dramatic decreases in TOITN from baseline to mid-therapy. 

However, while many non-pCR tumors exhibited lesser TOITN changes, significant TOITN 

decreases were, nonetheless, observed in some of the non-pCR tumors. Although a previous 

single site study using identical DOSI technology showed %TOITN was significantly 

different at mid-therapy for pCR vs. non-pCR patients [36], the variability among non-pCR 

subjects limited the ability of %TOITN to discriminate between pCR and non-pCR in the 

multi-center setting. This outcome may be due to factors that were not controlled for in the 

current study including diverse tumor biology, widely varying chemotherapy regimens, and 

the fact that pathological response is performed on a microscopic level. Nevertheless, pCR 

has been recognized by the FDA as a validated endpoint for evaluating drug efficacy and it is 

a surrogate for 5-year survival. The pCR endpoint has been used in a similar manner to test 

and validate several imaging technologies including PET, MRI, and ultrasound for 

monitoring and predicting NAC response. Several previous ACRIN NAC trials of 

experimental imaging endpoints have been based on pCR including ACRIN 6657 for MRI 

and ACRIN 6688 for PET.

The importance of studying individual NAC treatment response is supported by recent work, 

which suggests that pCR may not be correlated with disease-free survival in certain NAC 

agents [49]. The %TOITN variability we observe is primarily a result of the diverse 

responses observed in the non-pCR group, which includes subjects who have a significant 

tumor burden, as well as subjects with only small clusters of remaining tumor cells. A more 

refined clinical assessment of the non-pCR group using a continuously variable endpoint, 

such as the residual cancer burden [50] or the Miller-Payer system [51], could lead to a 
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better understanding of the non-pCR TOITN changes, and to a better separation of %TOITN 

between response groups. The total number of non-pCR subjects is too small, however, to 

conduct such an examination in this study. In addition, 17 out of the 34 evaluable tumors 

were involved to some degree in the areolar complex. In pre-menopausal females, the areolar 

region is metabolically active, and, in some cases, it has been shown to exhibit NAC induced 

changes in metabolism measured using DOSI [52]. Our results suggest that there is a trend 

toward differential performance of %TOITN in areolar vs. non-areolar tumors, with better 

discriminatory ability in non-areolar tumors [ROC AUC=0.52 95% CI (0.18, 0.85) vs. 0.70 

95% CI (0.43, 0.97)]; however, given the small sample size in each subset (N=17), there was 

large variability in the point estimates and this difference was not statistically significant 

(p=0.41). A larger sample size would be needed to confirm this trend. Nevertheless, the large 

magnitude of tumor changes observed in non-pCR subjects with retroareolar tumors may, in 

part, be due to the response of metabolically active areolar breast tissue combined with 

adjacent involved tumor. These factors impact the magnitude of the tumor response 

measured using DOSI and they underscore the importance of controlling the environment 

(tumor type, chemotherapy protocol, etc.) in order to optimally predict therapeutic response.

Hypoxia, characterized in part by low StO2 levels, is often present in locally advanced breast 

tumors due to a combination of abnormal tumor microvessels, elevated tumor metabolism, 

and high tumor osmotic pressures [53]. Previous studies have shown that pre-chemotherapy 

tumor oxygen saturation [39] and total hemoglobin [48] may be good prognostic tools for 

predicting therapeutic outcome. Here, the data also suggest that tumor oxygen saturation 

plays an important role in predicting pCR. Improved pCR prediction was observed when 

performing the primary analysis on tumors with baseline tumor oxygen saturation greater 

than the median value (77%). This prediction was not possible in subjects with baseline 

tumor oxygen saturation <77%. These results suggest that baseline tumor oxygen saturation 

may be important in stratifying the population for evaluating DOSI response. Overall, 

baseline tumor StO2 appears to be an important imaging biomarker that can be used in 

combination with dynamic changes to predict clinical outcome. However, the underlying 

origin of this response is not yet known. The predictive power of the %TOITN dynamic 

response may be restricted to well-oxygenated tumors because of technical reasons related 

to DOSI, or because of the biological advantage of oxygenation. Establishing threshold 

criteria for baseline DOSI measurements could play an important role in interpreting the 

tumor dynamic response and, ultimately, employing DOSI to improve patient outcome. 

Establishing predictive thresholds is expected to be sensitive to both the technology 

employed and the patient population. Their practical use in clinical management and 

outcome prediction will depend on whether baseline parameters can be clearly defined both 

within and across technology platforms and this should be the focus of future studies.

In order to assess the uniqueness of DOSI endpoints, our results were evaluated for the 

possible confounders of pre-treatment molecular subtype and tumor size. Both have been 

used previously to stratify patient therapeutic response predictions [54, 55]. No association 

was found between baseline tumor oxygen saturation and molecular subtype in the 31 out of 

34 evaluable patients where these data were available (p=0.41 for ER status and p=1.0 for 

PR status from Fisher’s exact test). Low correlation also occurred between baseline tumor 
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oxygen saturation and tumor size (measured by ultrasound, US) in the 19 out of the 34 

patients where baseline tumor size was available (Spearman correlation = −0.39, p=0.10).

Studies have shown that diffuse optical techniques are sensitive to breast tissue composition 

changes during the menstrual cycle [56–58]. To account for these biological changes and for 

chemotherapy-induced changes in normal tissue, the tumor-to-normal ratio was reported. 

This resulted in ten subjects excluded from the analysis due to the absence of contralateral 

tissue measurement. As part of the secondary aims, changes of tumor values rather than 

tumor to normal ratio will be reported in future analysis. However, the preliminary results 

were not as promising as the ratiometric analysis.

Study limitations

Important study limitations were the diversity of the patient population, heterogeneity of 

tumor molecular subtypes, and lack of standardized chemotherapy regimens. In addition, the 

adequate sample size was determined to be 47 subjects; however, only 34 out of the 60 

enrolled cases were assessed as analyzable. Since this study was the first multicenter trial 

that tested longitudinal DOSI measurements during NAC, much effort was focused on 

instrument and procedure standardization. Each instrument was fabricated and tested at UC 

Irvine using a common set of tissue-simulating phantoms before delivery to the study site. 

These phantoms were used to assess instrument performance throughout study. Preliminary 

analysis demonstrated <1% variability in broadband DOSI over 1 hour (typical patient 

measurement time-frame), <5% over 4 months (typical chemotherapy measurement time-

frame), and <6% over the 2-year study duration. Although operators at all institutions were 

trained to perform standard measurement procedures, clinical DOSI data were in general of 

poor quality for the first few subjects. Data quality improved with more practice and 

feedback, nevertheless, the number of non-evaluable cases was primarily due to operator 

error that led to incorrect instrument settings and poor data quality, as well as clinical work-

flow time pressures that resulted in lack of normal side data on several subjects. Also, a large 

disparity in subject enrollment occurred across institutions: UCI and MDACC enrolled about 

two thirds of the subjects, while MGH and UCSF enrolled a total of 3 and 2 subjects, 

respectively. As the technique and instrument become more standardized, and through the 

experience gained with this study, ease-of-use is expected to improve, and the number of 

non-evaluable cases is expected to decline in future multi-center studies. Finally, tumor 

dimensions by ultrasound matching the DOSI scan date at +/− 2 weeks (at baseline and mid-

therapy) were available for only 12 subjects. Of those, only 2 were pCR, limiting our ability 

to make a DOSI-Ultrasound comparison.

Future Analysis

Analysis of ACRIN 6691 secondary aims is ongoing, including examining other DOSI 

dynamic response endpoints, baseline parameters, and molecular subtype. Further analyses 

will also explore the development of new indices to report tumor changes. Finally, the tumor 

ROI used in this study was obtained with an algorithm based on the full-width-at-half-

maximum (FWHM) around the baseline (pre-chemotherapy) TOI peak. While some groups 

have explored the impact of different ROIs on NAC prediction of diffuse optical imaging 
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[31, 32], currently no standardized method exists to determine tumor ROI in DOSI data. The 

effect of ROI choice will, therefore, be examined in future work.

Conclusion

As an experimental cancer imaging technology, Diffuse Optical Spectroscopic Imaging 

(DOSI) has been tested for the first time in ACRIN 6691, an independently-executed, 

prospective multi-center trial of breast cancer neoadjuvant chemotherapy (NAC). The results 

demonstrated that although a range of responses to NAC were observed in this 

heterogeneous patient population, subjects exhibiting a greater drop in %TOITN from 

baseline to mid-therapy were more likely to have a pathologic complete response (pCR) to 

NAC. While this change alone was not a strong predictor of clinical outcome for the full 

patient population, its performance was substantially improved when patients were stratified 

according to baseline tumor oxygen saturation levels. Importantly, the same dynamic 

%TOITN change was unable to predict pCR in subjects with baseline tumor oxygen 

saturation lower than the median value. This finding suggests that stratification using 

baseline tumor properties, especially oxygenation, can be used to improve DOSI therapy 

response predictions for individual subjects, particularly among diverse patient populations 

and NAC treatment strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of DOSI measurement grids and the corresponding TOI images (Subject 6691-21).
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Figure 2. 
Enrollment to analysis flowchart
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Figure 3. 
DOSI Images throughout NAC for a pCR (6691-08) and a non-pCR (6691-13) subject. Scale 

bar illustrates Tissue Optical Index (TOI) values. B) Percent change in TOITN, HHbTN, 

H2OTN, LipidTN from baseline for both subjects. Error bars represent the SD of multiple 

measurement locations defined by the ROI for each subject (25 and 28 locations for 6691-08 

and 6691-13, respectively).
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Figure 4. 
Boxplot of percent change from baseline to mid-therapy in TOITN (%TOITN) by final 

pathologic status, dichotomized as pCR vs. non-pCR. A) in the overall evaluable dataset; B) 

in the subset of evaluable cases with baseline tumor oxygenation lower than the median 

value; C) in the subset of evaluable cases with baseline tumor oxygenation greater than the 

median value.
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Figure 5. 
ROC curves for pathologic complete response using percent change from baseline to mid-

therapy in TOITN (%TOITN) A) in the overall evaluable dataset, B) in the subset of evaluable 

cases with baseline tumor saturation lower than the median value, C) in the subset of 

evaluable cases with baseline tumor saturation greater than the median value. The reference 

standard is coded as follows: 0=pCR and 1=Non-pCR.
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Table 1

Subject and tumor characteristics from initial pathology - Data are numbers of subjects, with percentages in 

parentheses.

Analysis group
N=34

All enrolled subjects
N=60

Age, years

 Mean ± Std Dev (Range) 48.4 ± 10.7 (30–67) 48.9 ± 11.0 (28–69)

Menopausal status, n (%)

 Pre- 17 (50) 29 (48)

 Peri- 1 (3) 4 (7)

 Post- 16 (47) 26 (43)

 Unknown 0 (0) 1 (2)

Race, n (%)

 White 19 (56) 37 (62)

 Black/African-American 8 (24) 12 (20)

 Asian 4 (12) 7 (12)

 Native Hawaiian/Pacific Islander 0 (0) 1 (2)

 Unknown 3 (9) 3 (5)

Ethnicity, n (%)

 Hispanic/Latino 5 (15) 7 (12)

 Non-Hispanic/Latino 29 (85) 53 (88)

Histologic findings, n (%)

 IDC 16 (47%) 34 (57%)

 ILC 3 (9%) 3 (5%)

 DCIS/IDC 11 (32%) 16 (27%)

 IDC/ILC 2 (6%) 2 (3%)

 Other/Not available 2 (6%) 5 (8%)

ER status, n (%)

 Positive 24 (71%) 41 (68%)

 Negative 7 (21%) 13 (22%)

 Unknown 3 (9%) 5 (8%)

 Not available 0 (0%) 1 (2%)

PR status, n (%)

 Positive 19 (56%) 34 (57%)

 Negative 12 (35%) 20 (33%)

 Unknown 3 (9%) 5 (8%)

 Not available 0 (0%) 1 (2%)

Ki67 status, n (%) 17 (50%) 23 (38%)

 Positive 2 (6%) 3 (5%)
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Analysis group
N=34

All enrolled subjects
N=60

 Negative 15 (44%) 33 (55%)

 Unknown 0 (0%) 1 (2%)

 Not available

Her2 status, n (%)

 0 4 (12%) 9 (15%)

 1 8 (24%) 14 (23%)

 2 8 (24%) 12 (20%)

 3 4 (12%) 6 (10%)

 Unknown/Not available 10 (29%) 19 (32%)

Fish status, n (%)

 Amplified 7 (21%) 9 (15%)

 Nor Amplified 14 (41%) 29 (48%)

 Unknown/Not available 13 (38%) 22 (37%)

Areolar tumor, n (%)

 Areolar tumor 17 (50%) 31 (52%)

 Non-areolar tumor 17 (50%) 27 (45%)

 N/A (DOSI not performed) 0 (0%) 2 (3%)
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Table 2

Summary of odds ratios and significance for predicting pCR from logistic regression using percent change 

from baseline to mid-therapy in TOITN (%TOITN). A) %TOITN dichotomized at −40%, B) %TOITN 

dichotomized at −40% for the subset of evaluable subjects with baseline tumor StO2 > 76.9%. (i.e. population 

median).

DOSI endpoint binary marker Number of subjects Odds ratio (95% CI) P-value

A) % TOITN ≤ −40% 34 4.7 (0.9, −23.0) 0.059

B) % TOITN ≤ −40% and baseline StO2 >76.9% 17 16.5 (1.1, 250.2) 0.043
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