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Purpose: T2-weighted magnetic resonance imaging (MRI) is commonly used for anatomical visual-
ization in the pelvis area, such as the prostate, with high soft-tissue contrast. MRI can also provide
functional information such as diffusion-weighted imaging (DWI) which depicts the molecular
diffusion processes in biological tissues. The combination of anatomical and functional imaging
techniques is widely used in oncology, e.g., for prostate cancer diagnosis and staging. However,
acquisition-specific distortions as well as physiological motion lead to misalignments between T2 and
DWI and consequently to a reduced diagnostic value. Image registration algorithms are commonly
employed to correct for such misalignment.
Methods: The authors compare the performance of five state-of-the-art nonrigid image registration
techniques for accurate image fusion of DWI with T2.
Results: Image data of 20 prostate patients with cancerous lesions or cysts were acquired. All
registration algorithms were validated using intensity-based as well as landmark-based techniques.
Conclusions: The authors’ results show that the “fast elastic image registration” provides most accu-
rate results with a target registration error of 1.07±0.41 mm at minimum execution times of 11±1 s.
C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4903262]
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1. INTRODUCTION

Prostate cancer is the most common tumor, and the second
most common cause of cancer related death in American men.1

Magnetic resonance imaging (MRI) is currently regarded as
the best, noninvasive modality for localization and staging of
prostate cancer due to its superior soft-tissue contrast and high
resolution.2

However, the T2-weighted imaging alone is reported to have
a wide range of sensitivity and specificity of 22%–85% and
50%–99%, respectively.3,4 Consequently, additional MR tech-
niques have been explored to improve the localization and
characterization of prostate cancer. Diffusion-weighted imag-
ing (DWI) has shown great benefits in clinical MR exams
because it can visualize the molecular diffusion process of
water and hence can provide additional information about the
tissue structure on a cellular level.

In most clinical applications, the diffusion process can be
modeled by an exponential decay over a series of images
acquired at different diffusion gradient strengths/durations,
so-called b-values.5 With a negligible contribution of pseu-
dodiffusion, the exponential decay can be modeled by

Sb = S0(1− f )e−bD+b2D2K/6, (1)

where S0 is the signal intensity at b-value equal to zero,
i.e., without diffusion gradient, Sb is the signal intensity at
b-value b, D is the diffusion coefficient, f is the perfusion
fraction, and K is the diffusion kurtosis. Applying the nat-
ural logarithm to both sides of Eq. (1) and assuming that
b2D2K/6 << bD (see Ref. 5 for details) results in

ln
(

Sb
S0

)
≈ ln(1− f )−bD. (2)

The linear Eq. (2) can be used to approximate the unknown
variables f and D in the least squared sense. With the above
assumption b2D2K/6 << bD, D is called the apparent diffusion
coefficient (ADC). In practice, Eq. (2) is applied to each image
voxel over varying b-values to produce an ADC map where
each voxel is encoded with the estimated diffusion coefficient.

Diffusion images are commonly overlaid onto or fused
with a T2 anatomical reference image so that functional infor-
mation from DWI can be correlated to the corresponding
anatomical information derived from T2. However, accurate
alignment of DWI and T2 images is hindered by the follow-
ing two problems. First, physiological motion might lead
to misalignments within the DWI series (inner-DWI distor-
tions), so that the exponential fit as described in Eq. (1)
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is distorted. Second, physiological motion as well as B0-
inhomogeneity induced image distortions caused by echo-
planar image (EPI) acquisitions can lead to misalignments
between DWI and T2 (DWI to T2 distortions), and accurate
fusion of ADC with T2 is hindered.

Intensity-based nonrigid image registration techniques
have been developed to estimate and correct for deforma-
tions and motion between scans.6–8 These deformations can
be estimated using parametric approaches (e.g., spline-based
approaches) or using nonparametric approaches that estimate
motion on a voxel-wise basis (e.g., optical flow methods). In
this paper, we correct the DWI series for inner-series distortions
using a simple affine motion correction. While researchers have
corrected for EPI-specific distortions resulting from B0 field
variations,9 physiological motion between DWI and T2 will
always remain. Here, we capture susceptibility induced defor-
mations as well as deformations resulting from physiological
motion at once by using nonrigid image registration. We inves-
tigate the performance of five different state-of-the-art algo-
rithms (two B-spline approaches, one local affine approach, the
Demons algorithm, and an elastic image registration approach)
to correct for interseries deformations, i.e., between the regis-
tered DWI series and a T2 reference scan. All registration
algorithms were validated on 20 diseased patients showing
cancerous lesions and cysts within the prostate.

2. METHODS

In Sec. 2.A, the registration strategy to compensate for
inner-DWI as well as for DWI to T2 deformation is described.
The subsequent Sec. 2.B describes the five registration algo-
rithms that are compared with each other with respect to their
registration accuracy.

2.A. Registration strategy

Figure 1 illustrates the registration strategy to align the DWI
series with the anatomical reference T2 image. Two steps are
performed. Registration step1 compensates for affine inner-
series deformations within the DWI series. Registration step 2
compensates for the deformation between DWI and T2 using
the nonrigid registration algorithms. Note that the comparison
of the five registration techniques is only applied in Registra-
tion step 2. Sections 2.A.1 and 2.A.2 describe these two steps
in further detail.

2.A.1. Registration step 1 (inner-DWI registration)

In this step, the first image from the DWI series with
b-value b= 0, D0, is selected as reference image. The remain-
ing images from the DWI series might be motion corrupted
with respect to D0 by physiological motion. We observed
that an affine correction showed robust results even for high
b-value images. When applying nonrigid registrations with
a large number of degrees of freedom to those images, the
signal drop and hence the decrease in structural information
leads to unreliable deformations. Consequently, we decided

to choose an affine registration algorithm11 to compensate
for inner-DWI deformations. All Db (b> 0) are registered to
the reference DWI image D0 leading to a new set of inner-
series motion compensated DWI images. In the following,
this affine registration algorithm will be referred to as areg.

2.A.2. Registration step 2 (DWI to T2 registration)

In this step, D0 is registered to the reference T2 to cor-
rect for nonrigid physiological motion as well as EPI-specific
distortions between DWI and T2. Since all DWI (b, 0) were
aligned with D0 in Registration step 1, the resulting deforma-
tion is applied to D0 and all Db (b> 0) to align the complete
DWI series with T2. In this nonrigid registration step, the
comparison of the five different nonrigid registration algo-
rithms (described in Sec. 2.B) is performed.

2.B. Nonrigid registration algorithms

Image registration is based on deforming a moving or
floating image F(x⃗) so that its transformation FT(x⃗) aligns
with a nonmoving or reference image R(x⃗), for all voxels
x⃗ = (x,y,z)T in the overlap region of F and R. The resulting
deformation field mapping from R(x⃗) to F(x⃗) is commonly
denoted as u⃗(x⃗).

In the following, we give an overview about five different
nonrigid registration algorithms that were applied in Registra-
tion step 2. Three parametric approaches were considered: a
B-spline algorithm with a gradient descent optimizer12 pro-
vided by the elastix toolbox,13 a B-spline algorithm with a
Levenberg–Marquardt optimizer,14 and a hierarchical local
affine registration approach;15 and two nonparametric ap-
proaches: the demons deformable registration algorithm16 im-
plemented in the plastimatch toolbox, and the fast elastic image
registration approach.10 These algorithms are now described
in further detail.

2.B.1. B-spline registration with gradient descent
optimizer (bsp)

The B-spline registration algorithm,12 or so-called free-
form deformation (FFD) algorithm, estimates soft-tissue defor-
mation on a regular grid of control points defined by the control
point spacing c. Deformation between the control points is
interpolated via B-splines. Compared to other spline-based
approaches such as thin plate splines, B-splines are compu-
tationally attractive since each control point only affects its
local surroundings, and effective implementation schemes are
available.17 The final deformation of a coordinate x⃗ on the
complete image grid is modeled by cubic B-splines

u⃗(x⃗) = ⃗FFD(x⃗)

=

3
l,m,n=0

βl(vx)βm(vy)βn(vz)φi+l, j+m,k+n, (3)

where φi+l, j+m,k+n = ⌊ x⃗/c⌋−1 is a grid coordinate, (vx,vy,vz)
= x⃗/c− ⌊ x⃗/c⌋, and (βl, βm, βn) are the cubic B-spline functions.
In the following, this algorithm will be referred to as bsp.
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F. 1. Overview plot illustrating the applied image registrations to align a DWI series (with b-values bi) with an anatomical reference T2 image. After image
acquisition (top), EPI-specific distortions and physiological motion occurs within the DWI series as well as between DWI and T2. The first Registration step 1
compensates for inner-DWI motion and aligns all Db (b > 0) with the reference D0. This is illustrated by a global translation for each Db to the horizontal image
center. The subsequent Registration step 2 estimates local nonrigid deformations between D0 and T2. The resulting deformation is applied to all remaining Db

(b > 0). This is illustrated by local shape changes of prostate and rectum. In this last registration step, the comparison of five different state-of-the art registration
algorithms is performed.

2.B.2. B-spline registration with Levenberg–Marquardt
optimizer (breg)

While common B-spline algorithms such as bsp exploit
gradient-based optimizers, a Levenberg–Marquardt optimizer
has been proposed to reduce the number of iterations of com-
mon gradient-based algorithms and consequently to reduce
computation time.14 Similar to Eq. (3), the deformation at
point x⃗ is described by cubic B-splines

u⃗(x⃗)= ⃗FFD(x⃗). (4)

In the following, this algorithm will be referred to as breg.

2.B.3. Hierarchical local affine registration (lreg)

The hierarchical local affine registration algorithm15 at-
tempts to estimate soft-tissue deformation by subdividing
the nonrigid registration problem into multiple more simple
locally affine registration problems. To allow an estimation of
large and small deformation, a hierarchical subdivision strat-
egy is employed, that successively estimates large to small
affine deformations. The estimated affine deformation at a
coordinate x⃗ is initially described as:

u⃗(x⃗)= A · x⃗+ t(x⃗)− x⃗, (5)
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F. 2. Two example 3D acquisitions from a single patient, Pat1. (a) T2-weighted anatomical reference image. (b) Diffusion-weighted image series containing
5 images Db with b-values 0 (left), 188, 375, 563, 750 s/m2 (right). All images are shown in axial (top) and coronal view (bottom).

where A is a 3×3 matrix describing three components for
rotation, three for scaling, three for shearing, and t(x⃗) is a
vector describing three components for translation. For each
hierarchical registration level, cubic B-splines are employed
to produce a nonrigid deformation as a smooth combination
of all affine components. In the following, this algorithm will
be referred to as lreg.

2.B.4. Demons deformable registration
algorithm (demons)

The demons deformable registration algorithm16 is based
on Maxwell’s effectors, so-called demons, that were origi-
nally designed for thermodynamics to regulate particle tran-
sitions at semipermeable membranes. In image processing,
object contours of the floating image F can be seen as such
membranes. Demons are located on the object’s surface and
regulate boundary attraction between the images F and R,
while image intensities are treated as particles being inside or
outside of an object. Similar to optical flow methods, the final
displacement is modeled as

u⃗(x⃗)= (F(x⃗)−R(x⃗))R′(x⃗)
(R′(x⃗))2+ (F(x⃗)−R(x⃗))2 , (6)

where R′(x⃗) is the image gradient (or force) in R that iter-
atively pushes image intensities of F to the inside or the
outside of the corresponding object in R. In the following,
this algorithm will be referred to as demons.

2.B.5. Fast elastic image registration (feir)

The elastic registration algorithm10 is based on modeling
the deformation between F and R as the one of an elastic
material. The algorithm attempts to find the deformation field
by minimizing a similarity measure based on normalized
gradient fields as well as the contribution of a Navier–Lamé
regularizer which is included for motion field regularization.
To obtain the final motion field u⃗(x⃗), the following functional
needs to be minimized

µ

2

3
i, j=1

(
δx jui(x⃗)+xiu j(x⃗)

)2
+λ(▽ ·u(x⃗))2

+


*
,
1−


▽R(x⃗)
∥▽R(x⃗)∥ ,

▽FT(x⃗)
∥▽FT(x⃗)∥

2
+
-
, (7)

where µ and λ are the Lamé constants, ▽ is the Nabla oper-
ator, ⟨·,·⟩ indicates the scalar product, and ▽R(x⃗) and ▽FT(x⃗)
are the orientation-dependent image gradients of R(x⃗) and
FT(x⃗) that are included in the similarity measure. In the
following, this algorithm will be referred to as feir.

3. EXPERIMENTS

3.A. Materials

Three-dimensional (3D) image data from 20 patients were
acquired on a 3T MRI Scanner (Philips Achieva, Best, The
Netherlands) at the National Institutes of Health, Bethesda,
MD. As anatomical reference, a T2-weighted turbo-spin echo
scan was performed with the following parameters: FOV 140
×140×80 mm, reconstructed voxel size 0.27×0.27×3 mm,
flip angle 90◦, TR/TE= 8870/120 ms. For diffusion imaging,
a single-shot spin-echo EPI sequence was employed to acquire
five diffusion-weighted images with the following parameters:
FOV 160×180×60 mm, stack of 20 image slices with axial
orientation, reconstructed voxel size 1.03×1.03×2.73 mm,
flip angle 90◦, TR/TE= 4584/59 ms, and the following b-
values: 0, 188, 375, 563, and 750 s/mm2. Figures 2(a) and 2(b)
give an example of the acquired T2 image and the acquired
DWI series (in axial and coronal views) from a single patient,
Pat1.

3.B. Image registrations

Since some of the applied algorithms required an isotropic
resolution, all images (all Db and T2) were resampled to an
isotropic resolution of 1 mm3, before any registration was
executed.

Registration step 1 was executed to correct for inner-DWI
motion (using areg). A Gauss–Newton optimizer and cross
correlation as similarity measure were employed.

Registration step 2 was executed to correct for motion oc-
curring between DWI and T2. In this step, the performance
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of the five different registration algorithms (Sec. 2.B) was
compared. For this local registration problem, none of the
common similarity measures such as sum of squared differ-
ences (SSD), normalized cross correlation (NCC), or normal-
ized mutual information (NMI) showed acceptable results
due to large differences between DWI and T2 with respect to
contrast and structural information. As can be seen in Fig. 2,
SSD is not applicable since there is no identity relationship
between DWI and T2; NCC is not applicable since there is no
linear relationship either; and even NMI did not provide good
results since the dark homogeneous background surround-
ing the prostate in DWI is mapped to multiple intensities in
T2 due to large structural differences in that region. How-
ever, our experiments showed that these measures were appli-
cable when registering the corresponding gradient images
(to align tissue boundaries with each other). feir already in-
cludes a gradient-based similarity measure. For the other four
nonrigid registration algorithms, the Sobel-based gradient im-
ages of D0 and T2, D′0 and T ′2, were used for registration,
and the resulting motion fields were applied to the original
images to align D0 with T2.

For speedup purposes, a multiresolution approach was
employed using three resolution stages, from 4×4×4 mm
(resolution level 2) over 2×2×2 mm (resolution level 1) to
1×1×1 mm (resolution level 0). In other words, all registra-
tion algorithms estimated the final deformation on the resam-
pled 1 mm image resolution of resolution level 0.

All algorithms were available as CPU-based implementa-
tions (i.e., no implementations on graphic cards), and all regis-
trations were run on a 12-core workstation, Intel(R) Xeon(R)
CPUs at 2.5 GHz, 97 GB RAM memory. Since some algo-
rithms supported multithreading executions while others did
not, the single-threaded execution time as the sum of all CPU
times was considered as overall execution time to allow a valid
comparison.

For most optimal parameter selection, image registration
experts were recruited to tune the parameters of all five algo-
rithms. In the following, algorithm-specific parameters are
given for all approaches.

3.B.1. B-spline registration with gradient descent
optimizer (bsp)

For bsp, NCC was used as similarity measure. Similar to
the multi-image resolution approach, a multi B-spline grid
approach with three grid levels was employed. Initial defor-
mation was estimated at grid level 2 with control point spac-
ings of 12 mm. The following grid levels 1 and 0 with 6 and
3 mm spacing, respectively, were used to refine the estimated
deformation.

3.B.2. B-spline registration with Levenberg–Marquardt
optimizer (breg)

For breg, NCC was used as similarity measure. Similar
to bsp, three grid levels with 12, 6, and 3 mm control point
spacing were employed.

3.B.3. Hierarchical local affine registration (lreg)

For lreg, NCC was used as similarity measure. Global
rigid block transformations (showing more robust results than
affine transformations) and regular block splittings were em-
ployed. A minimum block size was set to 5 mm.

3.B.4. Demons deformable registration
algorithm (demons)

For demons, mean squared error (MSE) was used as simi-
larity measure. The plastimatch implementation was used,
with 300 iterations for all resolution levels.

3.B.5. Fast elastic image registration (feir)

For feir, orientation-dependent normalized gradient was
used as similarity measure [see Eq. (7)]. The Lamé con-
stants λ = 0 and µ= 0.25 were empirically chosen to model
the elastic properties, and an abort criterion of 0.05 mm
maximum displacement update was used.

3.C. Validation

The performance analysis of our applied registrations was
analyzed according to our two registration steps (Sec. 2.A). To
allow accurate validation of the applied algorithms, two MR
experts were recruited. These experts manually defined a set
of L = 10 anatomically significant landmarks that were visible
in both the T2 image and in the reference DWI image, D0. First
the landmarks were identified in T2. Second, the corresponding
landmarks at the same anatomical position were selected in
D0. Note that landmark selection in higher b-valued image was
not possible due to poor image contrast. These landmarks were
located around anatomically significant points, such as

• entry point of the urethra into the prostate,
• entry point of the ejaculatory duct into the prostate,
• interface to the neurovascular bundle,
• boundary of prostate,
• basal and apical cysts,
• center point of small lesions,
• midgland peripheral zone.

The selected landmarks were used for the validation of Regis-
tration step 1 and Registration step 2, as described in Secs.
3.C.1 and 3.C.2.

3.C.1. Validation step 1 (inner-DWI registration)

In the first validation step, we analyzed the affine regis-
tration performance of Registration step 1, i.e., how well the
DWI images align with each other (Fig. 3). Note that this
validation is included to assess the performance of the over-
all procedure for ADC map generation but is independent
of our registration comparison. As a measure of registration
accuracy, we used the following two methods.

The first method [Fig. 3(a)] computes the intensity-based
alignment between the first D0 and the transformed image DT

750
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F. 3. Validation step 1 (inner-DWI registration). (a) As an intensity-based measure for image alignment, the normalized cross correlation NCC(D0, D
T
750)

between the reference D0 and the transformation of the image with the highest b-value DT
750 within a ROI was considered. (b) As a quality measure of the

exponential signal decay, the exponential fit error EFE(DWI) over all landmarks, i.e., the mean deviation of the image intensities of all Db(x⃗l) at x⃗l (indicated
as filled dots) to the exponential fit function E(x⃗l, b), was considered. Note that according to Sec. 1, the image D0 is excluded from the fitting process.

from the last image D750 where the largest distortion is ex-
pected. NCC within a manually defined region of interest
(ROI) as the bounding box around the prostate was computed,

NCC(D0, DT
750)=

1
N


x⃗∈ROI

(D0−mD0)(DT
750−mDT

750
)

σD0σDT
750

, (8)

where N is the number of voxels in ROI, mD0 and mDT
750

are
the mean values, and σD0 and σDT

750
are the standard devia-

tions of D0 and DT
750, respectively.

The second method [Fig. 3(b)] measures deviations of
the DWI image intensities at the selected landmark positions
from their exponential fit function [see Eq. (1)]. In other
words, we measured how well an exponential function can be
fitted to the acquired DWI images containing B images Db.
We computed the exponential fit error (EFE) as follows:

EFE(DWIT)= 1
(B−1)L

B
b=1

L
l=1

∥DT
b (x⃗l)−E(x⃗l,b)∥, (9)

where x⃗l is a landmark coordinate from the set of L = 10
selected landmarks and E(x⃗l,b)= S0(x⃗l)[1− f (x⃗l)]e−bD(x⃗l) is
the exponential function that was fitted to the images DT

b
(that

align with D0 after registration) at coordinate x⃗l. Note that
according to Eq. (1), the fitting process is only applied to
b-values greater than zero, hence the normalization to B−1.

3.C.2. Validation step 2 (DWI to T2 registration)

In this validation step, we analyzed the output of Registra-
tion step 2, i.e., how well the DWI series (after the previous
inner-DWI registration) aligns with the reference T2 image
(Fig. 4) and includes the performance comparison of the five
different nonrigid registration algorithms. As a measure of
registration accuracy, we used the following two methods.

The first method [Fig. 4(a)] computes the intensity-based
alignment between D0 and T2. Similar to the metric selection
in Sec. 3.C.1, we computed the normalized cross correlation
of the image gradients of DWI0 and T2 within the same ROI
as used in Validation step 1. We estimated how well the edges
of D0 align with the edges of T2,

NCC(T ′2,D′T0 )= 1
N


x⃗∈ROI

(T ′2−mT ′2
)(D′T0 −mD′T0

)
σT ′2

σD′T0

, (10)

where T ′2 is the absolute Sobel-based gradient image of T2,
D′T0 is the transformation (i.e., the result after registration) of
D′0, mT ′2

and mD′T0
are the mean values, and σT ′2

and σD′T0
are

the standard deviations of T ′2 and D′T0 , respectively.
While NCC has to be treated with care because its intensity-

based nature only gives an indication of registration accuracy,
the second method [Fig. 4(b)] measures the accuracy of real
anatomical motion. Based on the landmarks defined in T2
and those defined in D0, the target registration error (TRE)

F. 4. Validation step 2 (DWI to T2 registration). (a) As an intensity-based measure, the normalized cross correlation NCC(T ′2, D′T0 ) between the absolute
gradient images T ′2 and the transformation of D′0, D′T0 was computed to estimate how well the image edges of T2 align with those in DT

0 . (b) As a measure of
real anatomical motion, we computed the target registration error TRE(T2, D

T
0 ) over a set of landmarks that were manually selected in T2 and in D0 and located

in DT
0 based on the estimated motion fields.
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F. 5. Registration steps for inner-DWI and DWI to T2 registration from the same patient as in Fig. 2. (a) Registration step 1 (inner-DWI registration). (b)–(f)
Registration step 2 (DWI to T2 local nonrigid motion correction). White arrows in all D0 point to deformations with respect to the original diffusion image D0
in (a).

was computed describing the mean distance between those
points,18

TRE(T2, DT
0 )=

1
L

L
l=1

∥ x⃗l(T2)− x⃗l
T(D0)∥, (11)

where x⃗l(T2) is a selected landmark in T2 and x⃗l
T(D0) is the

corresponding one in D0 being transformed to the image space
of T2.

4. RESULTS

4.A. Image registrations

Figure 5 shows an example of image registrations applied
to the images from Pat1. The reference T2 image is shown
on the left again. In Fig. 5(a), the first Registration step 1
(inner-DWI registration) was applied. The DWI images Db

with b-values 0 (left), 188, 375, 563, and 750 s/m2 (right) are
shown after affine motion correction to the reference image
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D0 using areg. Figures 5(b)–5(f) show the results of Regis-
tration step 2 (nonrigid DWI to T2 registration) using the
five different registration algorithms (bsp, breg, lreg, demons,
feir). The resulting DWI images should now align with T2

as accurate as possible. From the motion corrected DWI se-
ries, ADC maps were computed using Eq. (1) and overlaid
onto the anatomical T2 reference image. Figure 6(a) shows
such ADC maps fused with T2 (before registration) from
another four patients (Pat2 to Pat5). As can be observed, the
generated and uncorrected ADC maps do not align with T2

accurately, e.g., for the bright cysts from Pat2 and Pat3, the
boundary between central and peripheral zone from Pat4, or
the urethra from Pat5 (all indicated as white arrows). For
comparison, Figs. 6(b)–6(e) show the motion compensated
ADC maps which were generated after applying areg and
the five different registration algorithms. As can be observed,
image alignment between the ADC maps and the reference T2

images is clearly improved for all registration algorithms.

4.B. Validation

4.B.1. Validation step 1 (inner-DWI registration)

Figure 7 shows the result of the inner-DWI registration
for Pat6. Figure 7(a) shows exemplary images being used for
our validation method before any registration was performed,
i.e., using the originally acquired image data. For this pa-
tient, a normalized cross correlation between the first and last
DWI image NCC(D0, D750)= 0.69 within a region of interest
around the prostate was computed [Fig. 7(a), left]. Figure
7(a), right shows the exponential fit functions that were fitted
to the signal decay over the DWI series (one for each land-
mark). As can be seen in the example of the bottom curve,
an exponential fit was not always optimal and physically not
plausible, leading to a large exponential fit error EFE(Db)
= 1.46 over the images Db of the DWI series. For compar-
ison, Fig. 7(b) shows the results after applying areg. The
correlation between the first image and the transformation of

F. 6. ADC maps from another four patients, Pat2 to Pat5. (a) Zoom onto the prostate in the T2 reference image overlaid by the ADC maps before any image
registration. Image alignment between ADC and T2 is not optimal, as can be observed at the bright cysts from Pat2 and Pat3, the boundary between central and
peripheral zones from Pat4, or the urethra from Pat5 (all indicated as white arrows). (b)–(f) Zoom onto the T2 prostate now overlaid by the motion-compensated
ADC maps using bsp, breg, lreg, demons, and feir. Visual inspection shows that feir successfully aligned all ADC maps with T2.
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F. 7. Validation step 1 (inner-DWI registration), images from Pat6 showing representative results with respect to all patients. (a) Before inner-DWI registration,
the normalized cross correlation NCC(D0, D750) = 0.69 between D0 and the last image with the highest b-value, D750, within a ROI around the prostate was
computed. As second measure, the exponential fit error EFE(Db) = 1.46 at the landmark locations (projected onto the axial view and indicated as crosses) and
over the complete series were computed. As can be seen on the right, an exponential fit over all Db from this patient (one curve for each landmark) was not
always optimal due to motion in between the DWI images (e.g., the bottom curve). (b) After registration using areg, a NCC between D0 and the transformation
of D750, DT

750 was improved to NCC(D0, D
T
750) = 0.75. Similarly, the motion-compensated DWI images were more suitable for an exponential fit (e.g., the

bottom curve again), and a reduced error of EFE(DT
b
) = 1.01 was achieved.

the last image was improved to NCC(D0, DT
750)= 0.75. Simi-

larly, the motion compensated images DT
b

were more suitable
to model the exponential signal decay over the DWI series
[as can be observed in the bottom curve in Fig. 7(b), right],
and the exponential fit error was reduced to EFE(Db)= 1.01.
Considering all 20 patients, areg achieved similar improve-
ments, from NCC(D0, D750)= 0.68 to NCC(D0, DT

750)= 0.73
and a reduction in the exponential fit error from EFE(D0, D750)
= 1.46 to EFE(D0, DT

750)= 1.27, which is an improvement of
7% and 15%, respectively.

4.B.2. Validation step 2 (DWI to T2 registration)

Figure 8 shows the images from another patient, Pat7, to
validate our DWI to T2 registration algorithms. Figure 8(a),
left shows the original gradient images D′0 and T ′2 from the
same patient, i.e., before applying any registration. These im-
ages were used to compute a normalized cross correlation
of NCC(T ′2, D′0)= 0.47. Figure 8(a), right shows the selected
landmarks in T2 and D0. Note that the selected landmarks are
projected onto the axial view. Based on these landmarks, a
registration error as the misalignment between the landmarks
in T2 and those in D0 was computed: TRE(T2, D0)= 2.25 mm.
For comparison, Fig. 8(b) shows the reference T2 and the
transformation of D0, DT

0 , using feir as registration example.
The correlation after registration, i.e., between T2 and D′T0 was

improved to NCC(T ′2, D′T0 )= 0.58. Similarly, the target regis-
tration error between the landmarks in T2 and those in the trans-
formed image DT

0 was reduced to TRE(T2, DT
0 )= 0.54 mm.

The results for all patients are given in Table I (mean± stan-
dard deviation as well as the minimum/maximum range). As
can be observed, the B-spline approaches show highest regis-
tration errors with NCC(T ′2, D′T0 )= 0.12/NCC(T ′2, D′T0 )= 0.39
and TRE(T2, DT

0 )= 1.88 mm/TRE(T2, DT
0 )= 2.05 mm, respec-

tively. Registration accuracy was improved by the local affine
approach [NCC(T ′2, D′T0 )= 0.52 and TRE(T2, DT

0 )= 1.47 mm]
and by the Demons approach [NCC(T ′2, D′T0 )= 0.64 and TRE
(T2, DT

0 )= 1.53 mm]. While the fast elastic registration
approach feir showed a smaller intensity-based NCC(T ′2, D′T0 )
= 0.52 than demons (note that NCC has to be treated with care
because of its pure intensity-based nature), feir provided the
most accurate results with respect to real anatomical motion,
with TRE(T2, DT

0 )= 1.07 mm. Considering the computation
times, feir was clearly the fastest algorithm as well with 11 s
mean execution time, while bsp was the slowest one with 216 s
mean execution time.

5. DISCUSSION

This paper compared the performance of five state-of-the-
art nonrigid registration algorithms for the registration of diffu-
sion images onto a T2 anatomical reference image from 20
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F. 8. Validation step 2 (DWI to T2 registration), images from Pat7 showing representative results with respect to all patients. (a) Before DWI to T2 registration,
we measured how well the image edges aligned with each other and computed a normalized cross correlation NCC(T ′2, D′0) = 0.45 between the absolute
gradient images D′0 and T ′2 of D0 and T2 within a rectangular ROI around the prostate. Our second measure was based on the landmarks that were selected
in T2 and D0 (overlaid as projections onto the axial plane), and we computed a target registration error of TRE(T2, D0) = 2.25 mm. (b) After registration
(here using feir as example algorithm), image alignment between T2 and the transformation of D0, DT

0 , was achieved, with a NCC(T ′2, D′T0 ) = 0.58 and a
TRE(T2, D

T
0 ) = 0.54 mm.

patients showing cysts or cancerous prostate lesions. Before
the comparison, affine motion correction was applied to the
acquired DWI series to compensate for inner-series image
distortions. We observed that the correlation between the first
D0 and the last image D750 from the series (between which
the largest deformation was expected) could be reduced by 7%
(before vs after registration using areg). Similarly, the affine
correction reduced deviations from the voxel-wise exponential
fit over the series by 15%.

In the performance comparison of DWI to T2 registration,
the applied B-spline algorithms showed the largest registration
errors with a TRE of 1.88 and 2.05 mm and long execution
times of 216 and 105 s, respectively. For comparison, the local
affine algorithm lreg and the demons algorithm performed bet-
ter in terms of registration accuracy and achieved a TRE of
1.47 and 1.53 mm, respectively. The fast elastic registration
algorithm, feir, showed both the smallest execution times with
11 s, as well as the highest registration accuracy with a reduced
TRE of 1.07 mm.

We observed several weaknesses for some of the algo-
rithms. breg and bsp seem not to be applicable since B-
splines might not be capable of modeling very small and
localized prostate deformations in between control points and
hence require very small control point spacings. However,
a small control point spacing leads to large execution times
due to a high number of optimization parameters. lreg was
originally designed for respiratory motion correction, and
its hierarchical structure allows the estimation from large to

small deformations without the need of initialization. How-
ever, in our current application, only very local deformations
were expected, and the motion estimation of nonpresent large
deformations led to increased execution times. While lreg
showed reasonable results in terms of registration accuracy,
a starting affine block size could be implemented (similar
to a starting control point spacing in B-spline-based algo-
rithms) to focus on small deformations only and hence to
minimize execution times. demons performed well in terms
of registration accuracy as well as execution times. The avail-
able implementation did not include a stopping condition
though, i.e., the number of iterations was always fixed ac-
cording to the parameter selection. In very few cases, this
led to large unrealistic deformations of the image and conse-
quently to larger registration errors. An implementation of a
reasonable stopping condition would be required to ensure
accurate registration results in all cases. Finally, feir pro-
vides both most accurate and fastest results and was the algo-
rithm that showed the smallest error variations and smallest
maximum TRE over all patients. In another experiment, we
used the modality-independent standard parameter setting of
feir (same λ, µ, and maximum iteration number as before,
but registration stopped at image resolution 2×2×2 mm). In
other words, these parameters were not tuned to the specific
application of registering MR prostate images. With these
settings, the execution time was further decreased to 4 s re-
sulting in a TRE of 1.28 ± 0.45 mm, which is still the best
TRE with respect to the other four registration algorithms.
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T I. Comparing registration algorithms in Validation step 2 (DWI to T2 registration) from the results of all 20 patients. Values for mean and standard
deviation are given, as well as the minimum and maximum values.

NCC TRE (mm) Duration (s)

Description Algorithm Mean ± std Min Max Mean ± std Min Max Mean ± std Min Max

none 0.36 ± 0.07 0.22 0.47 2.21 ± 1.00 1.12 4.77 — — —
Nonrigid registrations

bsp 0.12 ± 0.10 0.01 0.41 1.88 ± 0.73 0.97 3.97 216 ± 5.4 208 225
breg 0.39 ± 0.09 0.22 0.53 2.05 ± 1.05 0.83 4.77 105 ± 13.8 70 130
lreg 0.52 ± 0.07 0.41 0.67 1.47 ± 0.53 0.70 2.87 125 ± 17 92 165
demons 0.64 ± 0.09 0.41 0.76 1.53 ± 0.97 0.65 3.86 36 ± 1 35 37
feir 0.52 ± 0.08 0.36 0.67 1.07 ± 0.41 0.40 2.03 11 ± 1 9 13

While researchers applied B0-inhomogeneity correction
to compensate for EPI-specific distortions,9 such correction
requires (1) additional acquisition of a B0 map (which is
associated with a significant increase in scan time) and (2)
zero-motion between the B0 scan and the DWI scan (other-
wise B0-inhomogeneity correction would not be accurate).
In our prostate application, we assumed that EPI-specific
distortions can well be modeled by the selected nonrigid
registration algorithms, and we chose to correct the total
deformation comprising EPI-specific distortions as well as
physiological motion at once. However, for the sake of com-
pleteness, we analyzed the motion fields from feir as the most
accurate algorithm to estimate which motion component is
dominant. We observed largest motion variations (over the
complete image) between T2 and DWI along the through-
plane craniocaudal direction with the lowest image resolu-
tion of 3 mm in T2 and 2.73 mm in DWI. This motion
component showed a mean value of −0.32 ± 1.13 mm over
all patients. The in-plane left–right/anterior–posterior motion
components showed mean values of −0.14 ± 0.23 mm and
−0.19 ± 0.22 mm, respectively. We would expect the largest
EPI-specific distortions along the phase-encoding direction,
which was left–right here. However, because the in-plane
motion values were similar in each direction, the proportion
of EPI-specific distortions seemed to be minor compared to
patient-induced motion.

While the focus of this paper was the comparison of
nonrigid registration techniques for the registration of DWI to
T2, we could improve the accuracy of our inner-DWI motion
correction, because we expect an improvement in diagnostic
value of the resulting ADC maps. However, this assumption
has to be proven, e.g., using biopsies. First, we could investi-
gate if the affine transformation during inner-DWI registration
is sufficient to correct for EPI-specific image distortions. feir
as the best registration algorithm could be applied alterna-
tively before proceeding to the registration of DWI to T2.
Second, we could investigate the impact of volume-preserving
registrations19,20 during inner-DWI and DWI to T2 registra-
tion. To the knowledge of the authors, none of the applied
registration algorithms allow volume preservation. This might
lead to inaccurate image intensities during image deforma-
tions making quantitative ADC mapping and hence image
diffusion measurements unreliable. Algorithmic extensions to
allow volume preservation could be investigated to increase

ADC map quantification accuracy. Finally we could include
dynamic contrast enhanced (DCE) image series into the regis-
tration pipeline to include DCE as additional modality lead-
ing to an increase in diagnostic value in multimodal prostate
oncology.

6. CONCLUSION

In thispaper,wecomparedfivestate-of-the-artnonrigid regis-
tration algorithms to compensate for EPI-specific and patient-
induced deformations between a DWI series and a T2 refer-
ence scan. For the presented application of prostate imaging,
we observed that the fast elastic image registration algorithm
feir canreduce theDWItoT2 misalignment from2.21 to1.07mm
within 11 s, which is an improvement by 52%. Our evaluation
showed feir appears to be the most suitable registration algo-
rithm in prostate imaging, with most accurate results and fastest
performance in terms of execution times.
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