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Purpose: Automatic brain image labeling is highly demanded in the field of medical image analysis.
Multiatlas-based approaches are widely used due to their simplicity and robustness in applications.
Also, random forest technique is recognized as an efficient method for labeling, although there are
several existing limitations. In this paper, the authors intend to address those limitations by proposing
a novel framework based on the hierarchical learning of atlas forests.
Methods: Their proposed framework aims to train a hierarchy of forests to better correlate voxels in
the MR images with their corresponding labels. There are two specific novel strategies for improving
brain image labeling. First, different from the conventional ways of using a single level of random
forests for brain labeling, the authors design a hierarchical structure to incorporate multiple levels
of forests. In particular, each atlas forest in the bottom level is trained in accordance with each
individual atlas, and then the bottom-level forests are clustered based on their capabilities in labeling.
For each clustered group, the authors retrain a new representative forest in the higher level by using
all atlases associated with the lower-level atlas forests in the current group, as well as the tentative
label maps yielded from the lower level. This clustering and retraining procedure is conducted
iteratively to yield a hierarchical structure of forests. Second, in the testing stage, the authors also
present a novel atlas forest selection method to determine an optimal set of atlas forests from the con-
structed hierarchical structure (by disabling those nonoptimal forests) for accurately labeling the test
image.
Results: For validating their proposed framework, the authors evaluate it on the public datasets,
including Alzheimer’s disease neuroimaging initiative, Internet brain segmentation repository, and
LONI LPBA40. The authors compare the results with the conventional approaches. The experiments
show that the use of the two novel strategies can significantly improve the labeling performance.
Note that when more levels are constructed in the hierarchy, the labeling performance can be further
improved, but more computational time will be also required.
Conclusions: The authors have proposed a novel multiatlas-based framework for automatic and accu-
rate labeling of brain anatomies, which can achieve accurate labeling results for MR brain images.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4941011]
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1. INTRODUCTION

Accurate brain anatomy labeling is a task of pivotal
importance to region-based analysis of MR brain images.
It can be further applied to the research and clinical studies,
such as for facilitating diagnosis, guiding treatment, and
monitoring disease progression.1 Since it is labor-intensive
and impractical to label a large set of 3D MR images

manually, a number of attempts have been devoted to auto-
matic labeling of neuroanatomical structures in the liter-
ature.2–5

The multiatlas-based approaches, which concentrate on
propagating the label information from the (training) atlas
images to the test image(s), have proven to be effective
for brain image labeling. Generally, there are two research
directions for the related methods: (1) improving the image
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registration for better spatial alignment of all atlases onto
the test image(s)6,7 and (2) improving the label fusion for
better integrating the labeling results from different training
atlases.8–11 Recently, Zikic et al.12 developed an alternative
multiatlas-based labeling approach based on the random forest
technique. Specially, by establishing the relationship between
the visual features of individual voxels and their labels, they
presented a simple but efficient single-atlas encoding scheme
for MR brain image labeling.

In this paper, by exploring the recent development of
image labeling approaches, we propose a novel hierarchical
learning framework for significantly improving the labeling
performance compared to the conventional forest-based
methods. The basic idea is to label the MR brain images
by a collection of random forests, which are hierarchically
trained from multiple atlases. Our framework is developed
based on the two novel strategies:

(1) In the training stage, a hierarchical learning procedure
is proposed to generate a hierarchy of forests in
which the higher-level forests are entitled with
better generalization capability for labeling MR brain
images.

(2) In the testing stage, a novel atlas forest selection
(AFS) strategy, which focuses on finding an optimal
set of atlas forests from the constructed hierarchical
structure, is introduced to improve the labeling
performance for the test image under study.

This paper is organized as follows. Section 2 summarizes
the related literature in the field of MR brain image labeling.
Section 3 presents the details of the proposed framework
including its two novel strategies. Section 4 shows the
experimental results, which demonstrate the capability of
the proposed framework in brain labeling and also compare
its performances with the alternative methods. Finally, Sec. 5
concludes our work with extended discussions.

2. RELATED WORKS
2.A. Multiatlas-based labeling

Multiatlas-based methods are regarded as a popular way
for MR brain image labeling, due to their robustness and
simplicity in incorporating the prior label information from
multiple atlases. First, let each atlas be the pairing of a
structural MR scan and its corresponding manually labeled
map. Then, the information extracted from each atlas can
be propagated to the new test image for labeling. There
are basically two steps in the multiatlas-based labeling
approaches: (1) produce label estimation from each atlas by
spatially aligning the atlas image with the test image through
a certain image registration and (2) combine label estimations
from all atlases by a certain label fusion strategy for final
labeling. These two steps allow multiatlas-based labeling
approaches to account for intersubject variability between
each atlas and the test image and also produce reliable label
estimation through label fusion.

There are some efforts in the literature to improve the first
step of the multiatlas-based labeling approaches, i.e., spatial
registration of all atlases to the test image(s). For example,
Jia et al.6 introduced an iterative multiatlas-based multi-
image segmentation (MABMIS) approach by first utilizing
a sophisticated registration scheme for spatial alignment and
then determining the labels of all test images simultaneously
for consistent labeling. On the other hand, Wolz et al.7

conducted label estimation by learning an image manifold,
so that the labels could be effectively propagated to the test
image by using only those nearby atlases that can provide
more reliable label information.

Many attempts have also been taken on improving the
second step of the multiatlas-based labeling approaches, i.e.,
label fusion for integrating contributions from the selected
set of atlases. Specially, the weighted voting strategy, which
uses the similarity between each atlas image and the test
image as weight, is popularly used for label fusion. Here,
the atlases with higher weights have more contributions in
determining the labeling results, since they are more similar to
the test image and thus may contain more relevant information
for better label estimation.13–17 Note that the weight can be
estimated globally,13 locally,15 or semilocally,17 depending on
the applications.

Another attempt in label fusion was conducted by Warfield
et al.8 based on the expectation–maximization technique in the
field of image segmentation, which is called as simultaneous
truth and performance level estimation (STAPLE). In addition,
it was demonstrated that STAPLE could incorporate the image
intensity information to the process of label estimation in a
seamless way as well.18,19

The patch-based strategy also plays an important role in
the multiatlas-based labeling.11,20–23 The basic assumption
in the patch-based methods is that, if two image patches
are similar, they should belong to the same anatomical area
and thus should have the same anatomical label.20 Various
patch-based methods have been developed, including the
use of sparsity24 and label-specific k-NN search structure.22

Recently, Wu et al.9 proposed a generative probability model
for labeling the test image by selecting the best representative
atlas patches and further determining their respective weights
according to the training atlases.

Most patch-based labeling (PBL) methods perform label
fusion in a nonlocal manner. Specifically, the idea of
the nonlocal approach that is widely applied for texture
synthesis,25 inpainting,26 restoration,10 and denoising10 was
borrowed in the work of Coupé et al.,11 for integrating the
labels from different aligned atlases. This method relaxed
the demanding requirement of accurate image registration in
multiatlas-based labeling approaches. Instead, after aligning
all atlases with the test image just via affine registration, each
voxel in the test image is then labeled by integrating the
labels of the nonlocal voxels in all linearly aligned atlases
by following their respective patch-based similarities to the
voxel under labeling. In addition, Asman and Landman27

resolved the problems in the STAPLE method by formulating
this statistical fusion method within a nonlocal mean pers-
pective.
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2.B. Atlas selection

Although the nonlocal label fusion methods have high
accuracy in labeling, there are two main drawbacks that limit
their applications. First, the methods are computationally
demanding in the labeling procedure. For example, the current
typical nonlocal label fusion methods require 3–5 h per single
labeling process on a dataset containing 15 subjects.27,28 The
situation could further deteriorate when the dataset becomes
larger, such as the ADNI dataset with hundreds of MR
images. Second, when all the training atlases are considered
in label fusion, certain atlases might contribute misleading
information to label the specific test image and thus undermine
the labeling performance.

In order to solve the aforementioned issues, it is important
to implement atlas selection during the labeling procedure.
Therefore, the computational cost can be greatly reduced, by
eliminating atlases that are unsuitable for labeling the test
image. For example, Aljabar et al.29 demonstrated that the
use of atlas selection can significantly improve labeling than
the case without atlas selection. Generally, the intensity-based
similarity (i.e., the sum of squared differences of intensities)
or normalized mutual information is used for atlas selection.
More references on atlas selection can be found in the work
of Rohlfing et al.16 and Wu et al.30

2.C. Random forest

Random forest31–34 has been proven as a robust and
fast multiclass classifier, which has been widely applied
in many applications, such as image segmentation and pose
recognition.35 In the medical image analysis field, random
forest is also recognized as an effective technique, i.e., for
MR image labeling.36

The main advantage of using random forest is that it can
efficiently handle the large number of images and labels,
which is important for multiatlas-based image labeling.
For example, Zikic et al.37 intended to implement random
forest for automatic labeling of high-grade gliomas using
multichannel MR images. Later they proposed the atlas forest
strategy,12 where the main idea is to encode each individual
atlas and its corresponding label map via random forest. Their
purpose is to reduce the computational cost and improve
the efficiency for experiments especially when following
the leave-one-out settings. In the testing, each atlas forest
produces a probabilistic labeling map for the test image, and
the final labeling result can be obtained by label fusion such
as simple averaging of all the probabilistic labeling maps
from all atlas forests. Experimental results indicated that the
performance was favorable compared to the alternatives, e.g.,
nonlocal method.10,20

However, there are several drawbacks in the work of
Zikic et al.12 First, each atlas forest is trained using only
a single atlas. Although such strategy has the advantage
of training efficiency, it also negatively influences the
labeling performance since it could lead to overfitting.
Second, after obtaining the labeling result from each trained
atlas forest, the tentative result is not fully utilized (e.g.,

by other atlas forests) for further improving the labeling
performance. Third, simple averaging of labeling results
from all atlas forests might not optimal for the input test
image, since no atlas selection strategy was proposed and
applied.

It is noted that in this paper, we introduce a novel selection
strategy for resolving this issue, by optimal selection of
the atlas forests. Also, this atlas forest selection strategy
is significantly different from most existing atlas selection
approaches, which generally focus on finding atlas images
instead. Details of the atlas forest selection strategy are
presented in Sec. 3.E.

3. METHODS

In this section, we present a detailed description of the
novel hierarchical learning framework. Our goal in this paper
is to improve the labeling performance over the current
random forest approaches. Accordingly, we present two novel
strategies: (1) construction of the hierarchy of the atlas forests
and (2) optimal selection of the atlas forests for each test
image. The two strategies are implemented in both training
and testing stages, respectively.

The flowchart for our proposed framework is summarized
in Fig. 1. First, the main idea of the hierarchy construction
and its steps is introduced in Sec. 3.A, such as atlas forest
training, atlas forest clustering, and representative learning.
Then, more detailed descriptions on the processes of forest
training and label fusion are given in Sec. 3.B. In Sec. 3.C, we
present atlas forest clustering that intends to group the trained
classifiers based on their similar labeling capabilities. We
also incorporate autocontext model to improve the labeling
performance in the representative learning step, which is
introduced in Sec. 3.D. Section 3.E describes atlas forest
selection, as well as other implementation details, for labeling
the testing images. Finally, we summarize our method in
Sec. 3.F.

F. 1. The flowchart of the proposed framework. The training and the testing
steps are shown within the red and blue boxes, respectively.
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F. 2. An example of a two-level hierarchy of forests, built during the
training process.

3.A. Hierarchical structure of forests

In this paper, we construct a hierarchy of forests such
that each level contains a set of atlas forests in the training
stage, while an optimal subset of the forests can be adaptively
selected and hierarchically fused for labeling the test images.
In particular, the representative forest in the higher level is
not selected from the lower level; instead, it is retrained
using all atlas information that contributes to the clustered
forests in the lower level. The lower-level forests are clustered
together according to their similar labeling capabilities.
Therefore, the representative forest, which incorporates all
clustered atlas information from the lower level, should have
better generalization capability than the individual lower-level
forest.

Figure 2 shows an example of a two-level hierarchical
structure of the forests developed in the training stage. Note
that, the block of F i

j represents the jth forest learned in the ith
level in the figure. Aj =

�
I j,L j

	
denotes the jth atlas, with I j

and L j as the intensity image and the label map, respectively.
We also have two notations M i

j and Ci
j, where M i

j is the set
of forests that are the child nodes of F i

j in the hierarchical
structure and Ci

j denotes the set of atlas images utilized by the
sub-hierarchy rooted at F i

j . For example, for Fig. 2, we can
write as C1

0 = {A0}, M1
0 =∅, C2

1 = {A4,A5}, and M2
1 =

�
F1

4 ,F
1
5

	
.

3.B. Random forest and atlas forest

The atlas forests, as introduced in Sec. 2, is the extension
of conventional random forest techniques for effective image
labeling. The forest technique utilizes the uniform bagging
strategy,31 i.e., each tree is trained on a subset of training
samples with only a subset of features that are randomly
selected. Thus, the bagging strategy can inject randomness
during the training process, which helps in avoiding the
overfitting issue and improves the robustness of label
prediction.

There are two types of nodes in the decision trees, i.e.,
the internal node and the leaf node.34 In the training stage,
the decision tree is first constructed from the root (internal)
node, which has a split function to divide the training sets
into its left or right child node based on one feature and one
threshold. The split function is optimized to maximize the
information gain of splitting training data.31 The tree grows
by recursively optimizing the split function in each child
internal node and splitting the training data into subsets with
more consistent label distributions, until either the tree reaches
the maximum tree depth or the number of training samples is
too small to split. Then, the leaf nodes are appended to store

the class label distribution of training samples falling into
each leaf. In the testing stage, we calculate features of each
to-be-labeled voxel. The features are pushed to each trained
tree starting from the root (internal) node. Guided by the
learned splitting functions, the voxel will finally reach a leaf
node, where the stored label distribution can be considered
as the posterior label distribution of this voxel. The final
posterior label distribution is obtained by averaging results
from different trees.

3.C. Clustering of atlas forests

Since it is difficult to directly compare and cluster the atlas
forests, we here use their labeling capabilities to guide their
clustering. Denote S

�
F i
m,F

i
n

�
as the similarity between two

atlas forests F i
m and F i

n in the ith level, defined as follws:

S
�
F i
m,F

i
n

�
=

1
2
�
Ci
m

�


A j ∈C i
m

DSC
�
Aj |F i

n

�

+
1

2
�
Ci
n

�


Al ∈C i
n

DSC
�
Al |F i

m

�
, (1)

where Ci
m and Ci

n are the sets of the atlas images utilized by
F i
m and F i

n, respectively, and DSC
�
Aj |F i

n

�
denotes the labeling

accuracy on the atlas Aj by using F i
n, measured by the Dice

similarity ratio (DSC) with respect to the ground-truth. Given
the similarity measure between any pair of atlas forests, we
can construct an affinity/similarity matrix for clustering atlas
forests.

There exist many clustering algorithms in the literature
(e.g., nearest neighbor, K-means, and EM). In this paper, we
choose the affinity propagation method38 for clustering atlas
forests as it can automatically find the number of clusters for
the input affinity matrix. The affinity propagation algorithm
can be briefed as follows. For each node in the affinity
matrix, we commence by initializing its preference value
representing its likelihood of being chosen as exemplar. Also,
there are two kinds of messages that are passing between
the nodes and the exemplar candidates: the “responsibility”
and the “availability.” In each iteration, the two messages
are updated by exchanging their values between the nodes,
and the preference values are then computed from the two
messages. The iteration continues until the updates in the two
messages are converged. Details of the affinity propagation
method can be found in the paper of Frey and Dueck.38

3.D. Learning refinement by context features

As mentioned in Sec. 3.B, the higher-level forests can
encode more comprehensive information than those lower-
level forests. To further improve the generalization capability
of the higher-level forests, we develop a novel hierarchical
learning framework by incorporating the autocontext model
in the work of Tu and Bai,39 as it is simple and efficient to
implement.

The autocontext model intends to train several levels of
classifiers during the computation, which uses not only the
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visual features from the intensity images for training the
lower-level forests but also the context features extracted
from the outputs of the lower-level forests for training the
higher-level forests. Therefore, the tentative labeling results
are automatically updated through the increased levels of the
hierarchy. The outputs from the lower-level forests can thus be
refined by the higher-level forests, thus eventually generating
more robust and accurate labeling results.

It is also worth noting that there is an exception for the
very bottom level of the hierarchy, where no tentative labeling
results exist for computing the context features. To this end,
we first estimate the spatial prior of each label by averaging
the initially aligned label maps of all training atlases, and then
use this spatial prior to obtain the context features for encoding
each atlas in the very bottom level. Note that all atlas images
and the test images are affine aligned to the common space
after our preprocessing, with the reference image randomly
selected from the training atlases in the dataset. The spatial
priors can thus largely reflect the locations of each label under
consideration.

For computational efficiency and simplicity, we choose to
use 3D Haarlike operators for calculating both visual features
and context features.40 Mathematically, by letting R denote a
patch region centered at voxel x in the atlas image, we can first
randomly sample two cubic regions (i.e., R1 and R2) within
R. Then, the respective Haarlike features can be computed
by two ways: (1) the local mean intensity of a cubic region
[Fig. 3(a)] or (2) the difference of local mean intensities of
two cubic regions41 [Fig. 3(b)]. The equation for computing
Haarlike feature can be written as follows:

fHarr(x,Ai)= 1
|R1|

u∈R1

Ai (u)−b
1
|R2|

v∈R2

Ai (v),

R1 ∈ R,R2 ∈ R,b ∈ {0,1} , (2)

where fHarr(x,Ai) is a Haarlike feature for voxel x in the
atlas image Ai, and the parameter b is 0 or 1, determining
the selection of one or two cubic regions. It should be also
noted that the sizes of the cubic regions are randomly chosen
from an arbitrary range, which is {1,3,5} in this paper. The
locations of the two cubic regions are also randomly decided,
only if it can fit the constraints described above. In general, we
randomly sample the parameters for computing the Haarlike
features. In this way, we can avoid the costly computation
of the entire feature pool and then sample features from the
pool.

In general, we have the estimated 3D Haarlike features
computed from two sources: (1) the training atlas images
and (2) the context information obtained from the outputs

F. 3. The Haarlike features in 2D illustration.

of the lower-level forests. Note that the outputs mentioned
above are the set of estimated probability maps, with one
probability map corresponding to one to-be-segmented label.
In the training stage, for each to-be-trained voxel, we extract
its patches from all the probability maps, along with the
input intensity images. From each source, we compute its
corresponding Haarlike features using Eq. (2), and then
use them as the visual features and the context features,
respectively. Following the strategy of the autocontext model,
these two types of features are further integrated together
to train the next-level classifiers. It is worth noting that
the numbers of features extracted from the two sources are
generally the same, indicating that these two types of features
are treated equally when training the forests.

3.E. Atlas forest selection

In contrast to the conventional atlas selection approaches
as mentioned in Sec. 2, we here select atlas forests in the
hierarchy by actively predicting their capabilities in labeling
the test image. With “atlas forest selection,” the novel strategy
can better suit our needs, by selecting only the potentially
suitable atlas forests, instead of using all learned atlas forests
as described in the work of Zikic et al.12 This will lead
to the improvements of the labeling performance, since the
negative influences from the certain “bad” atlas forests can be
eliminated.

Besides, different from the traditional atlas selection
approaches such as the work in Aljabar et al.,29 our novel atlas
forest selection method is developed based on the clustering
information obtained in the training stage. Generally speaking,
if a cluster of atlas forests can well handle the test image,
their outputs should be also similar to the actual labeling of
the test image, and thus they should be highly consistent.
On the contrary, if the atlas forests in the cluster are more
likely to generate incorrect labeling results with respect to the
unknown actual labeling of the test image, their outputs are
more inconsistent due to the unpredictable and uncontrollable
error patterns in the labeling process. Therefore, when the
consistency across the labeling outputs from different atlas
forests in each cluster is computed, it can be used to gauge
the cluster as well as its member atlas forests, which can
be further utilized when selecting the set of atlas forests for
labeling the current test image.

By denoting Ĩ as a test image, we commence by applying
all forests F i−1

k
in the cluster M i

j to Ĩ and then compare their
labeling outputs with each other by using the DSC measures.
The mean value of the pairwise DSC measures on all training
atlas images is regarded as the absolute labeling consistency
coefficient for the cluster M i

j denoted as D
(
Ĩ,M i

j

)
.

It is worth noting that the measure D
(
Ĩ,M i

j

)
is computed

only in accordance to the specific cluster M i
j . Thus, the

measurements from different clusters cannot be directly
compared. To this end, we further divide the absolute
consistency coefficient by a population-level consistency
indicator of each cluster to convert it into a relative measure.
The population-level consistency indicator is computed over
all training atlas images. Particularly, the consistency between
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F. 4. Examples of MR images in the ADNI (left), IBSR (middle), and
LONI LPBA40 (right) datasets. The first row shows the intensity images,
and the second row shows the manually segmented labels.

any pair of atlas forests in the same cluster is first calculated
and averaged upon all training atlas images. Then, the
population-level consistency indicator of the cluster D̄(M i

j )
is defined as the mean of all pairwise consistency measures
within the cluster. Finally, the relative labeling consistency
coefficient W

(
Ĩ,M i

j

)
is obtained as follows:

W
(
Ĩ,M i

j

)
=

D
(
Ĩ,M i

j

)
D̄(M i

j )
. (3)

Therefore, the relative consistency measures can now be
utilized for the selection of the optimal atlas forests. Clusters
with the top W scores can be selected, and their corresponding
atlas forests can be used for labeling the test image. The
overall labeling map in the current level is produced from
those labeling estimates using the majority voting approach.14

This obtained label map is then used to compute the context
features and fed into the next higher level.

3.F. Summary of the hierarchical learning framework

In this section, the algorithms for both training and testing
stages are summarized as follows.

3.F.1. Training stage

After initializing the context information by following the
strategy described in Sec. 3.D, the atlas forests in the bottom
level are trained by following the single-atlas encoding method

as introduced in the work of Zikic et al.12 In the ith iteration,
the process of training atlas forests is described below:

(1) After obtaining the lower-level label map, the context
features are extracted, in addition to the original visual
features extracted from the atlas Al. For each voxel,
the abundant Haarlike operators are used for efficient
feature extraction.40

(2) With both the new context features and the original
visual features, the higher-level forest F i

j is learned to
classify the labels of individual voxels.

(3) After a new set of forests is retrained in the higher
level, these forests are clustered again by following the
similarity defined in Eq. (1). Afterward, the clustered
forests are also used to help learn the new forests in
the next higher level.

(4) This iterative clustering and retraining procedure
continues until convergence. Note that there should
be at least two forests available in each level;
otherwise, the atlas forest selection strategy cannot be
applied.

3.F.2. Testing stage

Given a new test image Ĩ, we commence by initializing
the context features, which are identical to those in the
bottom level of the hierarchical structure. The population-
level consistency indicator D̄

(
M i

j

)
in the bottom level is also

computed by following the strategy in Sec. 3.E. Afterward,
the iterative process in the testing stage is performed as
follows:

(1) After computing the labeling output using all the
forest in the (i−1)-th level, all the absolute labeling
consistency coefficients D

(
Ĩ,M i

j

)
are obtained for the

forests clustered in M i
j .

(2) Using Eq. (2), the coefficient W
(
Ĩ,M i

j

)
(which

is regarded as the relative labeling consistency
coefficient) is obtained. Then, the clusters with the
top W scores are selected, and their corresponding
forests are used for labeling.

(3) In the higher level, the labeling result in the lower
level is used as the source for computing the context
features, and then the higher-level forests are identified
by including the selected forests in the lower level.

(4) By iteratively performing this atlas forest selection
and brain labeling in the next higher level, the labeling

T I. Quantitative comparison of performances in different configurations when labeling the left and the right
hippocampi.

Bottom level Second level Top level

DSC
Without AFS

(baseline) With AFS
Without

AFS With AFS
Without

AFS With AFS

Left hippocampi (%) 63.55 ± 9.38 65.57 ± 8.10 73.79 ± 7.16 75.54 ± 5.27 74.75 ± 7.23 76.38 ± 5.56
Right hippocampi (%) 61.37 ± 10.49 64.25 ± 9.00 73.10 ± 8.62 75.24 ± 6.82 75.01 ± 7.39 76.68 ± 5.74
Overall (%) 62.46 ± 9.94 64.91 ± 8.55 73.45 ± 7.89 75.39 ± 6.05 74.88 ± 7.31 76.53 ± 5.65
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F. 5. The box plot for the labeling accuracies of different configurations on the left (left panel) and the right (right panel) hippocampi.

result of the test image can be gradually refined. This
iterative process ends when reaching the top-most level
of the hierarchy.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed framework for
anatomical labeling of MR brain images. Here, we have
employed three public datasets that have been widely used
for brain labeling: the Alzheimer’s disease neuroimaging
initiative (ADNI) dataset (http://adni.loni.ucla.edu),42 the
Internet brain segmentation repository (IBSR) dataset
(https://www.nitrc.org/projects/ibsr), and the LONI LPBA40
dataset (http://www.loni.usc.edu).43 We select them for
covering different cases in brain image labeling, i.e., the
ADNI dataset provides rich brain MR images for labeling
hippocampal regions, the IBSR dataset has only a limited
number of atlases, and the regions of interest (ROIs) for
LONI LPBA40 dataset are mostly within the cortex of the

brain. Our goal in this section is to demonstrate that the
proposed framework is suitable for various challenges in
brain image labeling. Examples of the atlases in each of three
datasets are provided in Fig. 4.

In each dataset, we perform cross-validation experiments
to demonstrate the performance of the proposed framework.
Note that the same settings and parameters were used in all
the experiments. Specifically, there are 8 trees in each trained
forest, and the maximum depth of trees is 30. Each leaf
node has a minimum of eight samples. The maximal patch
size is 10×10×10 mm, in which 1000 Haarlike features are
calculated for training the classifier. Also, for the atlas forest
selection process, we set W = 2 so that only two clusters
of forests with the highest scores are selected in the fusion
process.

Before the computation, we apply the same preprocessing
procedures as introduced in the work of Coupé et al.11 to all
the datasets under study, to ensure the fairness of evaluation
and comparison. For example, we applied the ITK-based

T II. Quantitative comparison of DSC values obtained by the baseline method and the proposed method for
the selected ROIs in the IBSR dataset.

Label No. Brain regions Baseline method (%) Proposed method (%)

1a,b L. lateral ventricle 81.12 ± 7.39 85.27 ± 5.33
2a,b L. thelamus 87.47 ± 2.76 88.57 ± 2.57
3a,b L. caudate 78.85 ± 6.64 83.57 ± 4.98
4a,b L. putamen 82.16 ± 6.95 84.01 ± 6.40
5 L. pallidum 74.47 ± 6.08 74.29 ± 7.69
6 3rd ventricle 74.86 ± 7.45 74.83 ± 10.03
7a,b 4th ventricle 70.65 ± 12.97 76.46 ± 8.63
8a,b L. hippocampus 67.40 ± 8.79 74.15 ± 6.14
9a L. amygdala 64.74 ± 16.08 68.51 ± 11.65

10a,b L. ventral DC 80.86 ± 4.79 81.67 ± 4.39
11a,b R. lateral ventricle 79.97 ± 7.80 85.16 ± 6.49
12b R. thalamus 86.38 ± 2.92 87.72 ± 4.07
13a,b R. caudate 77.70 ± 8.28 81.86 ± 7.85
14a,b R. putamen 82.74 ± 4.68 84.97 ± 5.43
15 R. pallidum 75.56 ± 4.78 75.75 ± 6.34
16a,b R. hippocampus 71.05 ± 7.67 76.08 ± 5.62
17 R. amygdala 65.18 ± 14.26 66.55 ± 11.44
18a,b R. ventral DC 80.14 ± 4.31 81.83 ± 3.95

Overall 76.74 ± 7.48 79.51 ± 6.61

aThe label index indicate the statistically significant difference between the baseline method.
bThe label index indicate the statistically significant difference between the proposed method.
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F. 6. Comparison of the DSC measures obtained by the baseline method
and the proposed method in the IBSR dataset. The ROI indices can be found
in Table II.

histogram-matching program to the atlas images for overall
intensity normalization, and then the intensities were rescaled
to the interval [0 255]. Also, the  program in the FSL
library44 was used for affine registration, in order to bring all
images into the same space.

It is also noted that, while three levels can be constructed
for the ADNI dataset, only two levels can be constructed
for both IBSR and LONI LPBA40. This is mainly because,
when constructing the third level for IBSR or LONI dataset,

there is only one forest remained, which does not satisfy
the requirement listed in Sec. 3.F. For all the hierarchical
structure trained in the experiments, we consider each atlas
forest as an individual cluster in the bottom level. Using
the proposed method, we can group the atlas forests into
several larger clusters in the second and higher levels.
We apply the affinity propagation method by following its
recommended settings38 to cluster the atlas forests according
to their similarity measures defined in Sec. 3.C.

4.A. ADNI dataset

The first experiment is to apply the proposed framework
to the ADNI dataset, which provides a large set of adult brain
MR images acquired from 1.5 T MR scanners, along with
their annotated left and right hippocampi.42

We randomly selected 100 ADNI images, with 34 from
Normal Control (NC) subjects, 33 from Mild Cognitive
Impairment (MCI) subjects, and 33 from Alzheimer’s disease
(AD) subjects. To demonstrate the validity of the proposed
framework, we have performed 10-fold cross-validations.
Briefly, the selected images are equally divided into 10-folds.
In each fold, we select onefold (containing ten images) for
testing, and the rest for training. It is worth noting that, in each

T III. Quantitative comparison of the DSC measures obtained by the baseline method and the proposed
method for the left-hemisphere ROIs in the LONI LPBA40 dataset.

Label No. Left brain regions Baseline method (%) Proposed method (%)

1 Superior frontal gyrus 85.75 ± 2.35 85.93 ± 2.48
2a Middle frontal gyrus 84.41 ± 2.93 84.70 ± 2.99
3 Inferior frontal gyrus 78.79 ± 4.60 79.16 ± 4.59
4a,b Precentral gyrus 78.88 ± 4.25 80.77 ± 4.20
5 Middle orbitofrontal gyrus 74.91 ± 6.32 75.48 ± 6.95
6a,b Lateral orbitofrontal gyrus 66.38 ± 9.57 68.55 ± 9.57
7a,b Gyrus rectus 74.37 ± 5.81 76.07 ± 5.05
8a,b Postcentral gyrus 75.12 ± 5.59 77.21 ± 5.21
9 Superior parietal gyrus 79.96 ± 4.26 80.41 ± 4.03

10b Supramarginal gyrus 73.51 ± 6.14 74.13 ± 6.57
11 Angular gyrus 74.80 ± 4.16 75.00 ± 4.14
12a,b Precuneus 75.35 ± 4.72 77.07 ± 4.30
13a,b Superior occipital gyrus 67.38 ± 7.18 69.00 ± 7.49
14 Middle occipital gyrus 76.92 ± 4.93 76.88 ± 4.77
15 Inferior occipital gyrus 74.90 ± 6.25 75.04 ± 5.57
16a,b Cuneus 70.72 ± 7.87 74.20 ± 7.21
17a,b Superior temporal gyrus 81.89 ± 3.15 83.77 ± 2.71
18a,b Middle temporal gyrus 77.20 ± 3.96 78.35 ± 3.96
19a,b Inferior temporal gyrus 77.77 ± 4.80 78.23 ± 5.14
20a,b Parahippocampal gyrus 76.42 ± 4.01 78.61 ± 3.91
21a,b Lingual gyrus 77.80 ± 5.53 79.58 ± 5.39
22a,b Fusiform gyrus 79.07 ± 4.86 79.72 ± 5.06
23a,b Insular cortex 82.15 ± 3.36 84.02 ± 2.65
24a,b Cingulate gyrus 75.93 ± 5.44 77.39 ± 6.53
25a,b Caudate 76.39 ± 5.55 80.70 ± 4.56
26a,b Putamen 78.81 ± 3.97 81.83 ± 2.77
27a,b Hippocampus 79.45 ± 3.14 81.15 ± 2.64

Overall 76.85 ± 4.99 78.26 ± 4.83

aThe label index indicate the statistically significant difference between the baseline method.
bThe label index indicate the statistically significant difference between the proposed method.
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T IV. Quantitative comparison of the DSC measures obtained by the baseline method and the proposed
method for the right-hemisphere ROIs in the LONI LPBA40 dataset.

Label No. Right brain regions Baseline method (%) Proposed method (%)

1a,b Superior frontal gyrus 86.03 ± 2.26 86.49 ± 2.08
2a,b Middle frontal gyrus 84.64 ± 2.83 85.20 ± 3.07
3a,b Inferior frontal gyrus 78.99 ± 3.43 79.97 ± 3.42
4a,b Precentral gyrus 79.41 ± 4.82 81.65 ± 3.92
5 Middle orbitofrontal gyrus 75.01 ± 6.52 75.48 ± 6.80
6a,b Lateral orbitofrontal gyrus 67.92 ± 7.41 70.27 ± 7.27
7a,b Gyrus rectus 72.74 ± 5.20 75.02 ± 5.08
8a,b Postcentral gyrus 74.47 ± 8.05 77.64 ± 7.07
9a,b Superior parietal gyrus 80.41 ± 3.11 81.48 ± 2.88

10a,b Supramarginal gyrus 74.18 ± 7.25 74.94 ± 7.28
11 Angular gyrus 73.85 ± 6.91 73.74 ± 7.03
12a,b Precuneus 74.58 ± 4.52 76.66 ± 3.90
13a,b Superior occipital gyrus 69.10 ± 7.99 70.86 ± 7.32
14 Middle occipital gyrus 77.57 ± 5.31 77.71 ± 5.00
15 Inferior occipital gyrus 76.04 ± 6.33 76.34 ± 5.72
16a,b Cuneus 71.42 ± 8.70 74.79 ± 6.65
17a,b Superior temporal gyrus 81.52 ± 3.75 83.50 ± 3.75
18a,b Middle temporal gyrus 74.71 ± 4.56 76.00 ± 4.59
19a,b Inferior temporal gyrus 75.39 ± 4.79 76.15 ± 4.82
20a,b Parahippocampal gyrus 77.17 ± 3.85 79.00 ± 3.58
21a,b Lingual gyrus 77.16 ± 6.12 79.32 ± 5.70
22a,b Fusiform gyrus 78.57 ± 4.60 80.73 ± 4.44
23a,b Insular cortex 83.82 ± 2.13 85.59 ± 1.95
24a,b Cingulate gyrus 77.05 ± 3.56 78.80 ± 4.38
25a,b Caudate 77.17 ± 6.86 80.50 ± 6.39
26a,b Putamen 78.07 ± 5.19 81.49 ± 2.87
27a,b Hippocampus 78.98 ± 3.96 80.90 ± 3.38

Overall 76.89 ± 5.19 78.53 ± 4.83

aThe label index indicate the statistically significant difference between the baseline method.
bThe label index indicate the statistically significant difference between the proposed method.

fold, the numbers of the selected test images from the three
subject groups (NC, MCI, and AD) are basically identical, in
order to ensure the validity of the proposed framework on all
three subjects groups.

Note that the baseline method under comparison, which
is implemented without hierarchical learning and AFS,
generally follows the same strategy with the single-atlas
encoding method in the work of Zikic et al.12 Our goal
is to compare the performance between Zikic et al.12 and
our proposed framework, and then show the improvement of
the performance when the two novel strategies of hierarchical
learning and atlas forest selection are adopted in the proposed
framework. Table I compares the labeling performance with
respect to different configurations. It can be observed that
the proposed framework leads to higher DSCs than the
baseline method in both left and right hippocampi. The overall
improvement of the DSC measure is more than 10%. When
we increase the level, the performance gradually converges.
As shown in Table I, the labeling performances of the third
level are similar to that of the second level. This convergence
property is also observed in the original autocontext model
described in the work of Tu and Bai.39

It is also noted that the average computation time of
labeling by the atlas forest method is around 10 min using

a standard PC (CPU i7-3610, memory 8 GB), while it takes
27 min by the proposed method, since the test image needs
to go through three levels of classifiers to obtain the result.
Similarly, for both LONI and IBSR datasets, the proposed
method takes about two times more than the atlas forest
method, as only two levels are constructed for them.

Next, we break down two proposed novel strategies for
evaluation. Figure 5 shows the box plots for comparing results
between the ground-truth and the estimates using the DSCs
in four different configurations. The left panel in the figure
presents the performance of labeling the left hippocampus,
while the right panel is for the right hippocampus. From
Table I and each panel of Fig. 5, we observe the following:

(1) All results in the top level are better than the bottom
level, indicating the effectiveness of the clustering and
hierarchical retraining of the forests.

(2) The labeling accuracies of the proposed framework
with (optimal) AFS (2nd and 4th columns in the
figures) are always better than those without AFS (1st
and 3rd columns), demonstrating the effectiveness of
the AFS module in the proposed framework.

More importantly, it is also worth noting that the p-value
in the two-tailed paired t-test between any two different
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configurations for both the left and the right hippocampi
is below 0.05, which is same for the Wilcoxon rank based
t-test. All these indicate the statistical significance of the two
proposed strategies in improving labeling accuracy for MR
brain images. We also compare the labeling performance with
alternative multiatlas-based method, i.e., PBL method.11,20

The overall performance when using these tools for labeling
ADNI dataset is 66.38%. It can be thus concluded that the
proposed framework outperforms the alternative methods.

4.B. IBSR dataset

In the next experiment, we applied the proposed framework
to the IBSR dataset. The MR brain images in the dataset
were acquired by the Center for Morphometric Analysis at
Massachusetts General Hospital (MGH). There are totally
18 images, each with 32 manual labels. For this dataset, we
performed sixfold cross-validations, where in each fold 15
images were selected for training and the rest 3 images were
used for testing.

Table II presents the results of the DSC measures for the
selected ROIs in the IBSR dataset, indicating around 3% of
overall improvement when using our proposed strategies of
hierarchical learning and atlas forest selection. Note that
there are some extremely large labeled regions in the IBSR
dataset. We discarded these large regions since all methods
can produce reasonable results. Also, we discarded several
other ROIs (e.g., the left and right accumbens) in that (1)
the manual labeling is inconsistent across all images in the
IBSR dataset or (2) their sizes are too small to provide enough
sample voxels for training. It is noted that we compare the
labeling performance on the IBSR dataset with PBL method,
which can achieve the average DSC measure of 72.85%. This
demonstrates that the proposed framework can be compared
favorably with the alternative methods.

We also show the box plots to compare the detailed
performances of the baseline method with the proposed
method in Fig. 6. Note that the label index indicted by
the symbols in the figures and tables indicates the statistically
significant difference between the baseline method and the
proposed method (asterisk symbol for p < 0.05 with the
two-tailed paired t-test, and round symbol for p < 0.05 with
the Wilcoxon rank based t-test). The results demonstrate the
validity of the proposed framework when applied to the IBSR
dataset.

4.C. LONI LPBA40 dataset

In the third experiment, we applied the proposed
framework to the LONI LPBA40 dataset.43 There are 40
brain images in the dataset, each containing 54 manually
labeled ROIs. Similar to the previous experiments, we perform
fourfold cross-validations by dividing 40 images into 4 groups.
In each fold, 30 subjects are used for training, and the rest 10
subjects as the testing images. The DSC evaluations for the
baseline method and the proposed framework are shown in
Tables III and IV, respectively, for ROIs in the left and the
right hemispheres. We observe from these two tables that, for

42 out of 54 ROIs in the LONI LPBA40 dataset, the proposed
method has much higher DSC measures than the baseline
method.

Here, we also compare the DSC results with other
alternative approaches. In the work of Zikic et al.,12 the
labeling results on the LONI LPBA40 dataset reached
the average DSC of 77.46% by using a leave-one-
out cross-validation, while our baseline method obtains
76.87%, indicating the close performance of these two
implementations of the same method although we used
very restrict 4-fold cross-validation compared to the leave-
one-out cross-validation used in the work of Zikic et al.12

Referred from the tables, it can be observed that the proposed
framework also achieves a more accurate estimation in terms
of the average DSC, which is 78.40%. We also compare this
with PBL method which has the average DSC measure of
73.01%. It can be concluded that the proposed framework can
produce more accurate labeling results and can be compared
favorably with the alternative methods.

Furthermore, we compare the performances between the
baseline method and the proposed method by using box
plots, as shown in Figs. 7 and 8. Figure 7 presents the DSC
measures for ROIs in the left hemisphere of the brain, while
Fig. 8 is for the right hemisphere. These two figures indicate
better labeling accuracy by the proposed method, compared
to the baseline method. Besides, each ROI marked with the
symbols means the statistically significant difference between
the proposed method and the baseline method (asterisk for
p < 0.05 with the two-tailed paired t-test, and round for
p < 0.05 with the paired Wilcoxon rank based t-test). These
results again demonstrate the advantages of using our two
proposed novel strategies of hierarchical learning and AFS.

F. 7. Comparison of the DSC measures obtained by the baseline method
and the proposed method in labeling the left hemisphere of the brain using
LONI dataset.
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F. 8. Comparison of DSC values obtained by the baseline method and the
proposed method in labeling the right hemisphere of the brain using LONI
dataset.

5. CONCLUSION

In this paper, we have presented a novel hierarchical
learning framework for brain labeling by using the state-of-
the-art random forest technique. Our framework is designed
to iteratively cluster atlas forests and learn next higher-level
forests for constructing a hierarchical structure of forests, with
the forests in the higher levels having higher capacities for
labeling the MR brain images. Besides, a novel atlas forest
selection strategy is also proposed to exclude the potentially
negative influences from the unsuitable atlas forests, thus
further improving the labeling performance. By integrating
these two novel strategies of hierarchical learning and atlas
forest selection, our proposed method is entitled with greater
capabilities in labeling MR brain images.

In the experiments, we demonstrate the performance of
our proposed framework on three public datasets, i.e., ADNI,
IBSR, and LONI LPBA40. In particular, we generate an
exemplar two-level hierarchical structure of the forests for
brain labeling of images in IBSR and LONI LPBA40, and then
compare the labeling results with the conventional methods.
Experimental results on all three datasets show that, when the
two novel strategies of hierarchical learning and atlas forest
selection are adopted, significant improvements in terms of
labeling accuracy can be achieved.

We also constructed the third level for the ADNI dataset and
investigated its computational cost and labeling performance.
It is found that more computational time is required when
adding more levels, but the labeling performance can be
improved progressively. It is also noted in Sec. 3 that, when
using more training atlases available, the maximum number
of levels for constructing the hierarchy can be potentially
increased.

In future work, more comprehensive evaluations will
be conducted by employing more datasets and also other
anatomical labels. We will further explore the possibility of
extending our method to labeling other nonbrain structures
such as prostate and knee cartilage.
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