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Evaluating community–environment relationships
along fine to broad taxonomic resolutions reveals
evolutionary forces underlying community assembly
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We propose a method for detecting evolutionary forces underlying community assembly by quantifying
the strength of community–environment relationships hierarchically along taxonomic ranks. This
approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein,
phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when
niches are conserved, broader taxonomic classification should not diminish the strength of
community–environment relationships and may even yield stronger associations by summarizing
occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader
taxonomic classification should weaken community–environment relationships when niches are under
great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we
quantified the strength of community–environment relationships using distance-based redundancy
analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies
(covering a variety of sampling scales and sequencing strategies) and found that the variation in
community composition explained by environmental factors either increased or remained constant with
broadening taxonomic resolution from species to order or even phylum level. These results support the
niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen
niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely
resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches.
The ISME Journal (2016) 10, 2867–2878; doi:10.1038/ismej.2016.78; published online 13 May 2016

Introduction

Clarifying the mechanisms by which community
composition changes in response to environmental
variability is important for understanding biodiver-
sity, productivity and ecosystem stability (Hector and
Bagchi, 2007; Ives and Carpenter, 2007). Traditional
measures of community composition typically focus
on species-level organization because species has long
been considered the fundamental unit of biological
classification (Magurran, 2004). For example, prepar-
ing a site-by-species matrix (observed species across
sampling sites) is usually a first step when examin-
ing the dynamics of community composition across

time and space (Magurran, 2004). Further, a common
monitoring and assessment practice attempts to
characterize community–environment relationships
by combining the variation of species composition
with environmental measurements (Margules and
Pressey, 2000; Hansen et al., 2001). Note, however,
that species-level community data are not always
available because of constraints on time and the
expertise required to properly identify all indivi-
duals to species level (Warwick, 1993; Bailey et al.,
2001; Terlizzi et al., 2003). Accordingly, the concept
of taxonomic surrogacy or sufficiency (that is, using
broadly resolved taxonomic data as a substitute for
species-level data) has been subjected to extensive
examination in bioassessment studies (Warwick,
1993; Bailey et al., 2001; Terlizzi et al., 2003).
Despite some controversial opinions about general
applications for particular organisms and ecosys-
tems, the use of broadly resolved data (that is, genus-,
family- or even phylum-level classification) has been
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demonstrated to portray similar community-scale
responses to environmental variability as species-
level data in many empirical studies (Olsgard et al.,
1998; Heino and Soininen, 2007; Heino, 2008;
Bhusal et al., 2014; Heino, 2014).

Broad-level taxonomic data have beenwidely applied
to various types of organisms in terrestrial, freshwater
and marine environments as a means of optimizing the
cost-effectiveness of detecting environmental impact on
community organization (Terlizzi et al., 2003; Bennett
et al., 2014). However, little attention has been devoted
toward a mechanistic understanding of why broadly
and finely resolved data can be similarly efficacious for
the assessment of community–environment relation-
ships (but see Bevilacqua et al., 2013). From the
evolutionary perspective, the high efficacy of broadly
resolved data may be explained by the conservation of
habitat preferences among phylogenetically related taxa
(Webb et al., 2002; Wiens and Graham, 2005; Wiens
et al., 2010). In contrast, habitat differentiation between
closely related taxa (Debussche and Thompson, 2003)
and/or convergent evolution between distinctly related
taxa (Cavender-Bares et al., 2004) is likely to be vital
in those cases, which fail to detect ecologically
meaningful patterns using broadly resolved data.
Review of some earlier studies (Olsgard et al., 1998;
Heino and Soininen, 2007; Heino, 2008; Bhusal
et al., 2014; Heino, 2014) suggests that varying the
taxonomic resolution of composition data exerts an
influence on the strength (usually quantified as
explained variance R2) of community–environment
relationships, with the best taxonomic resolution
differing for various targeted organisms and/or study
regions. Thus, there are a variety of potential mechan-
isms by which taxonomic resolution may influence the
strength of community–environment relationships.
Here we aim to bridge the concepts of taxonomic
surrogacy and phylogenetic conservatism with an
emphasis on the impact of niche conservatism or niche
divergence on observed macro-evolutionary patterns
(Figure 1; Supplementary Figure S1).

We propose that evaluating the strength of commu-
nity–environment relationships hierarchically along
taxonomic ranks might serve as a means to infer the
importance of evolutionary forces underlying com-
munity assembly. It is theoretically possible that
broadening taxonomic resolution does not weaken
the strength of community–environment relationships
if broader taxonomic units carry niche-related signals
as strong as those associated with finer units
(Figure 1a; Supplementary Figure S1a). This scenario
might be expected when taxa belonging to the same
lineage tend to exhibit similar responses to environ-
mental factors (Warwick, 1993; Bailey et al., 2001).
Moreover, when finely resolved taxa are hypothesized
to be ecologically equivalent (that is, they have
equivalent fitness and potentially occupy the same
niche space) (Leibold and McPeek, 2006), broad-level
taxonomic classification might be expected to
enhance the strength of community–environment
relationships (Figure 1b; Supplementary Figure S1b),
as broader taxonomic grouping can balance the
randomness (caused by neutral-stochastic processes)
in spatiotemporal distributions associated with finer
taxa, by summarizing occurrences and abundances of
those ecologically equivalent units as a signal respon-
der (Warwick, 1993; Bailey et al., 2001). In contrast,
the strength of community–environment relationships
might be expected to decrease with the combination
of finer taxonomic groups that exhibit distinct
environmental responses (Figure 1c; Supplementary
Figure S1c). This scenario could happen if habitat
preferences diverge quickly over evolutionary time;
for instance, phylogenetically related species undergo
adaptive diversification in habitat-use (Schluter, 2000;
Gavrilets and Losos, 2009; Pfennig and Pfennig, 2009).

To test our approach, we used prokaryotic com-
munities to evaluate the niche-based community
assembly hypothesis (here the niche is characterized
by environmental conditions), as prokaryotes are
functionally diverse and believed to be sensitive to
the changes in environmental conditions, owing to
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Figure 1 A conceptual scheme for revealing the evolutionary effect regarding niche conservatism or niche divergence on community
assembly. The strength of the community–environment relationship can be quantified by explained variance (R2) in multiple linear
regression or redundancy analysis. (a) When niches are conserved over evolutionary time, the strength of community–environment
relationships would remain constant with broadening taxonomic resolution, as phylogenetically related taxa exhibit similar responses to
environmental filtering. (b) Moreover, under strong niche conservatism, the strength of community–environment relationships may
increase with broadening taxonomic resolution, especially if broader taxonomic units that combine occurrences and abundances of
ecologically equivalent taxa can balance the inherent spatiotemporal randomness of finer units. (c) In contrast, when niches experience
quick divergence over evolutionary time, the strength of community–environment relationships would decrease with broadening
taxonomic resolution, as each more finely resolved taxonomic unit carries unique responses to the environment. See Supplementary
Figure S1 for a conceptual example.
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large population sizes with short generation times
(Whitman et al., 1998; Torsvik et al., 2002). Here, we
used modern amplicon sequencing or shotgun
sequencing of metagenomes (Table 1) to determine
prokaryotic community compositions. For prokaryotic
identification, phylogenetic relatedness and taxo-
nomic classification can be uniformly determined by
a single genetic marker (that is, the 16S ribosomal
RNA (rRNA) gene) (Woese, 1987), which permits
a systematic comparison of prokaryotic compositions
across various environments. For hierarchical group-
ing of taxonomic units (Yarza et al., 2014), two
main types of hierarchical systems exist in parallel:
(1) based on molecular criteria, defining operational
taxonomic unit (OTU) ranks through sequence
similarity cutoffs (for example, 97%, 94%, 91%);
and (2) based on database annotation, following
traditional taxonomic classification (that is, species,
genus, etc). In this study, we used both types of
hierarchical systems to generate composition profiles
at fine to broad taxonomic resolutions and evaluated
how the strength of community–environment rela-
tionships changed along taxonomic ranks. In addition,
we calculated the phylogeny-based UniFrac metric
(Lozupone and Knight, 2005) as a standard to
contrast our multi-level taxonomy-based composition
analyses, as this metric has recently gained popularity
in microbial community analyses and believed to be
more informative than taxonomy-based estimates
(Lozupone and Knight, 2005; Swenson, 2014).

Moreover, given the potential scale dependency
(Levin, 1992; Cavender-Bares et al., 2006, 2009;
Swenson et al., 2006, 2007) in community–environ-
ment relationships, we considered case studies
covering sampling sites from either global or local
scales (Table 1) and which may provide insight into
the scale dependency of microbial community assem-
bly. Previous studies on plant communities (focused
on within-community phylogenetic structure) have
identified concerns about spatiotemporal and taxo-
nomic scales on the detected pattern. For example, the
signal of phylogenetic clustering (that is, taxa within
a given community contain lower mean phylogenetic
distances than expected from random; as evidence
for habitat filtering) has been found to be relatively
evident when considering samples from a larger
geographic region and/or a broader span of taxonomy
(Cavender-Bares et al., 2006, 2009; Swenson et al.,
2006, 2007). In this study, rather than detecting the
within-community structure, we concentrated our
analyses on the inter-community pattern (that is,
how taxonomic compositions differ across sites in
response to environmental factors) to assess whether
changing taxonomic resolution affects the explained
variance of community–environment relationships
(Figure 1). This analytical framework might be
directly relevant to the question of how functional
traits are conserved through macro-evolutionary time
(Lennon et al., 2012; Martiny et al., 2013; Tresedera
and Lennon, 2015). Moreover, plant ecologists have
suggested that traits related to large-scale distributionsT
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(that is, beta-niche; along temperature and precipita-
tion gradients) are generally conserved over time,
whereas traits linked to small-scale distributions (that
is, alpha-niche; local coexisting patterns) tend to be
evolutionarily labile (Cavender-Bares et al., 2004,
2009; Silvertown et al., 2006a, b). With this notion,
we expect that the evidence for niche conservatism
may be more easily detected by global data sets,
whereas the evidence for niche divergence may be
better revealed with local data sets.

Here, we used eight case studies (Table 1) to
demonstrate our approach and explore empirical
patterns of prokaryotic community responses to
environmental variables in soil and marine ecosys-
tems. We argue that an approach such as ours, which
assesses community–environment relationships
while taking into consideration hierarchical taxo-
nomic information, has the potential to advance our
understanding regarding the evolutionary effects
such as niche conservatism or niche divergence on
community assembly, improving our ability to
estimate community characteristics corresponding
to environmental conditions.

Materials and methods

Sequence-based prokaryotic community data sets
We used eight data sets: (1) Lauber ‘America-Soils’
study (Lauber et al., 2009) (referred to as case
#1 hereafter), (2) Chu ‘Arctic-Soils’ study (Chu et al.,
2010) (referred to as case #2 hereafter), (3) Ramirez
‘NYpark-Soils’ study (Ramirez et al., 2014) (referred
to as case #3 hereafter), (4) Zarraonaindia ‘NYfarm-
Soils’ study (Zarraonaindia et al., 2015) (referred to
as case #4 hereafter), (5) Sunagawa ‘TaraSur-Sea-
waters’ study (Sunagawa et al., 2015) (referred to as
case #5 hereafter), (6) Sunagawa ‘TaraChl-Seawaters’
study (Sunagawa et al., 2015) (referred to as case
#6 hereafter), (7) Gilbert ‘WEC-Seawaters’ study
(Gilbert et al., 2012) (referred to as case #7 hereafter)
and (8) Yeh ‘SECS-Seawaters’ study (Yeh et al., 2015)
(referred to as case #8 hereafter) to test our theoretical
framework regarding how the strength of community–
environment relationships varies with changes in
taxonomic resolution (Figure 1). We summarize the
characteristics of these sequence-based prokaryotic
community data sets in Table 1. Detailed information
regarding data sources and data properties can be found
in Supplementary Methods. The lists of community
samples and environmental factors used in the present
study are provided in Supplementary Tables S1–S8.

Processing of sequence data sets to community data sets
Sequence data sets were processed using QIIME
version 1.9.0 (Caporaso et al., 2010), following the
settings of Qiita (http://qiita.microbio.me). To satisfy
our requirement for accurate taxonomic assignments
along fine to broad taxonomic resolutions, we
adopted the classification system of the GreenGenes

database (providing a set of 16S rRNA gene references
and linkage maps of reference sequences) (DeSantis
et al., 2006a) for hierarchical grouping of sequence
reads. A closed-reference OTU picking protocol
against the GreenGenes otu97 core set (version 13_8)
was carried out using SortMeRNA (Kopylova et al.,
2012). To avoid inaccurate taxonomic assignments
because of short reads, we only used OTUs with
significant hits (similarity40.97 and coverage40.97)
to the GreenGenes otu97 core set for community
profiles. Then, we used CopyRighter (Angly et al.,
2014) to adjust relative abundance profiles, which
correct the bias of the 16S rRNA gene copies among
different prokaryotic genomes (Acinas et al., 2004;
Vetrovsky and Baldrian, 2013). This initial site-by-
otu97 matrix was then aggregated into a series of
community matrices with fine to broad taxonomic
resolutions, according to GreenGenes OTU linkage
maps (DeSantis et al., 2006b) and GreenGenes explicit
taxonomic ranks (McDonald et al., 2012).

Two types of hierarchical community matrices were
generated: (1) site-by-OTU matrices relying on
sequence similarity; and (2) site-by-taxon matrices
relying on database annotation. For site-by-OTU
matrices: the initial site-by-otu97 matrix was trans-
formed into the site-by-otu94 matrix according to the
GreenGenes otu97-otu94 linkage map (DeSantis et al.,
2006b), and a series of site-by-OTU matrices were
analogously generated in line with the corresponding
OTU linkage maps (a total of 10 ranks, from otu97 to
otu70 with an interval of 3% sequence similarity). For
site-by-taxon matrices: hierarchical taxonomic annota-
tion of the initial site-by-otu97 matrix was retrieved
according to the GreenGenes explicit taxonomic ranks
(McDonald et al., 2012), and a series of site-by-taxon
matrices were consequently generated (a total of six
ranks, from species to phylum). Example files of site-
by-OTUmatrices, site-by-taxon matrices, and related R
codes for community analyses along taxonomic ranks
(see below) can be found in Supplementary Data.

To provide a reliable comparison in community
structure across sampling sites, all the following
community analyses were based on 100 subsampled
data sets with an equal number of sequence reads per
community (based on the minimum read number;
Table 1).

Compositional variation measured at distinct taxonomic
resolutions
Compositional variation across sampling sites was
assessed with the Bray–Curtis dissimilarity index
(Bray and Curtis, 1957), which was calculated for
each of 10 site-by-OTU matrices and 6 site-by-taxon
matrices, using the ‘vegdist’ function of the ‘vegan’
package (version 2.2-1) (Oksanen et al., 2015) in R
(version 3.1.3) (R Development Core Team, 2015).
In addition, we applied abundance-weighted UniFrac
(unique fraction metric) (Lozupone and Knight,
2005) to quantify the phylogeny-based compositional
variation, based on the site-by-otu97 matrix with the
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pruned GreenGenes phylogenetic tree (containing
only taxa found in each data set), using the QIIME
platform (Caporaso et al., 2010).

Evaluating the similarity of inter-community
relationships
Before incorporating environmental measurements
into community analyses, the similarity of the inter-
community relationships (that is, the Bray–Curtis
results) measured at different taxonomic resolutions
was evaluated in order to estimate: (1) whether broad-
level classification data can reveal inter-community
relationships as fine-level classification data; and
(2) whether two types of hierarchical systems (site-
by-OTU and site-by-taxon) can generate comparable
composition profiles from fine to broad levels. To
evaluate the similarity of inter-community relation-
ships at different taxonomic resolutions, the composi-
tional variation quantified at each taxonomic
resolution was displayed in an ordination diagram
using multi-dimensional scaling (Legendre and
Legendre, 2012); similarly, the phylogeny-based com-
positional variation (that is, the UniFrac distance
matrix) was also displayed using multi-dimensional
scaling ordination. Then, Procrustes analysis (Peres-
Neto and Jackson, 2001) was conducted to detect the
correlation of each pair of multi-dimensional scaling
ordination plots, using the ‘protest’ function of the
‘vegan’ package (version 2.2-1) (Oksanen et al., 2015)
in R (version 3.1.3) (R Development Core Team, 2015).

Evaluating the strength of community–environment
relationships
To quantify the strength of community–environment
relationships along taxonomic ranks, the explained
variance (adjusted R2) (Peres-Neto et al., 2006) of
distance-based redundancy analysis (Legendre and
Anderson, 1999) was used to estimate the influence of
environmental factors on community compositional
variation (that is, the Bray–Curtis dissimilarity or
UniFrac distance matrix), using the ‘capscale’ function
of the ‘vegan’ package (version 2.2-1) (Oksanen et al.,
2015) in R (version 3.1.3) (R Development Core Team,
2015). In order to equitably compare environmental
influence on community structure at different taxo-
nomic resolutions, we performed distance-based
redundancy analysis with the whole set of environ-
mental variables (that is, the whole set of soil or
water factors; standardized to zero mean and unit
variance) for each case. Moreover, the analyses based
on each environmental variable were also applied to
assess the importance of each factor on community
compositional variation.

Randomization tests
To further provide statistical assurance concerning
application of our method, we conducted randomi-
zation tests to evaluate whether the detected trends

of community–environment relationships along
taxonomic ranks derived from the real data sets
significantly differ from the predictions based on
randomized data sets. For multi-level taxonomy-based
Bray–Curtis, we shuffled linkages between fine-taxa
and broad-taxa level by level (remaining topology), and
generated randomized data sets based on 100 random
linkage maps. In addition, for phylogeny-based Uni-
Frac, we shuffled tip labels of the phylogenetic tree
and re-calculated UniFrac based on 100 random
phylogenetic trees, using the ‘phyloshuffle’ function
of the ‘phylotools’ package (version 0.1.2) (Zhang et al.,
2012) in R (version 3.1.3) (R Development Core Team,
2015). The explained variance of community–environ-
ment relationships for Bray–Curtis at each taxonomic
level and phylogeny-based UniFrac generated from the
randomized data were re-examined as described above
as the null expectation.

Additional analyses regarding data quality
The eight case studies used here cover distinct
sampling scales and sequencing strategies (Table 1),
allowing us to explore empirical patterns of commu-
nity–environment relationships. In addition to the
analyses mentioned above, as a variety of sequencing
techniques with different sequencing efforts exist for
modern sequence-based community data sets, we
further conducted sensitivity tests to evaluate the
effects of varying read length and read depth on our
detected patterns along taxonomic ranks. Basically,
we found that the detected trends and strengths of
the community–environment relationships along
taxonomic ranks were robust, regardless of the
sequencing length or depth. The detailed methods
and results of these analyses are provided in
Supplementary Methods and Supplementary Results.

Moreover, although describing taxonomic composi-
tion with relative abundance information should be
more precise when assessing community dynamics
(Jost, 2007), however, for some early ecological surveys,
only incidence data (detection or non-detection of each
species) are available. Thus, in addition to analyses
based on abundance-weighted data, we also evaluated
community–environment relationships based on
transformed presence–absence matrices for the sake of
comparison. Compared with abundance-weighted
results, the compositional variation explained by envir-
onmental factors was reduced markedly when using
presence–absence data, although the detected trends
along taxonomic ranks generally remained and showed
a distinction from the randomization patterns. The
detailed results can be found in Supplementary Results.

Results
Inter-community relationships measured at distinct
taxonomic resolutions
In all eight cases, community dissimilarities in
abundance-weighted compositions measured at
distinct taxonomic resolutions are significantly
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correlated to each other (Procrustes correlations ranging
from 0.41 to 0.99; Figure 2). These strong Procrustes
correlations indicate that the inter-community relation-
ships revealed by broadly resolved taxonomic data
are largely consistent with the patterns revealed by
finely resolved taxonomic data (Supplementary Figures

S2–S9). Specifically, measures at two adjacent taxo-
nomic levels conveyed a higher similarity in their
ordination diagrams than those at more separated levels
(Figure 2; Supplementary Figures S2–S9). In addition,
fine to broad levels of composition profiles extracted
from two types of hierarchical matrices (site-by-OTU
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Figure 2 Pairwise correlations of abundance-weighted compositions measured at different taxonomic resolutions based on Procrustes
analyses. The community analyses are conducted on eight distinct data sets: (a) case #1 America-Soils, (b) case #2 Arctic-Soils, (c) case #3
NYpark-Soils, (d) case #4 NYfarm-Soils, (e) case #5 TaraSur-Seawaters, (f) case #6 TaraChl-Seawaters, (g) case #7 WEC-Seawaters and
(h) case #8 SECS-Seawaters. Measures of taxonomy-based compositions are calculated following two types of hierarchical classification
(sequence similarity: otu97 to otu70 and database annotation: species to phylum), and compared with the phylogeny-based composition
using UniFrac metric.
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and site-by-taxon) were found to generally match
(Figure 2). For example, otu97-otu94 levels corre-
sponded to species-genus levels, with strong correla-
tions among those pairs of measures (Procrustes
correlations 40.9 in most cases; Figure 2); similarly,
otu79-otu70 levels were comparable with the phylum
level. Moreover, we found that the phylogeny-based
composition profiles (UniFrac) were significantly
correlated with composition profiles at all taxonomic
resolutions, showing the greatest similarity with
family- or order-level (otu88-otu79) profiles in most
cases (Procrustes correlations 40.8; Figure 2).

Composition–environment relationships measured at
distinct taxonomic resolutions
Compositional variation at all taxonomic resolutions
can be significantly explained by environmental factors
for all of the eight case studies (Figure 3), suggesting
that habitat filtering is a strong force determining
prokaryotic community structure. More importantly,
the explained variation tends to increase or remain
constant with broadening taxonomic resolution (the
red boxplots connected by the black line; Figure 3),
suggesting that taxa within the same lineages gener-
ally show similar responses to variability of environ-
mental conditions. For cases #1 to #4, which targeted
surface soil prokaryotes, the explained variation
gradually increased up to the class level (otu82-
otu76), and then decreased at the phylum level
(Figures 3a–d). For cases #5 and #6, which repre-
sented seawater prokaryotic communities from two
distinct epipelagic layers of the global oceans, the
trends of explained variation achieved the maximum
values at middle taxonomic levels, although the
patterns differed in detail (Figures 3e and f). For case
#7 of a seasonally sampled, temperate coastal, prokar-
yotic community dynamics, the explained variation
remained constant from species to order levels, and
then dropped at class and phylum levels (Figure 3g).
Whereas the explained variation for the prokaryotic
community in subtropical shelf waters (case #8)
continually increased from species to the phylum level
(Figure 3h). Considering the effect of scale dependency,
the habitat filtering (implied by explained variation)
seems to be more evident in the two global soil cases
than the two local soil cases, whereas this effect is
unclear for the seawater cases.

The detected patterns derived from original data
sets are significantly different from the expectation
based on randomized data sets (Figure 3). In the
randomization null results (the gray boxplots;
Figure 3), the explained variance remained constant
or slightly decreased for community compositions at
fine to broad taxonomic levels, with increasing
uncertainty at broader levels (that is, higher variability
as indicated by the boxplots). For soil cases, the
amount of variation explained at the middle level
(genus to class) was significantly higher in real data
sets than what was expected from random. For
seawater cases, the trends in explained variation along

taxonomic ranks for real data sets were also signifi-
cantly different from those predicted by randomiza-
tion. Furthermore, considering the explained variation
for the phylogeny-based composition (UniFrac), it
showed roughly the same degree as the family- or
order-level estimates in original data sets, whereas it
became similar to the species-level estimates in the
randomization results (Figure 3). These findings
indicate the importance of considering evolutionary
history among species when surveying and evaluating
the deterministic ecological processes acting on
community composition. Nevertheless, UniFrac,
which weighs the phylogenetic information of the
whole tree, may not necessarily be the optimal index
to investigate environmental effects; that is, when to
use UniFrac should depend on research purposes. For
example, in the cases #5 and #7 (Figures 3e and g), the
explained variation for real UniFrac results was lower
than expected by chance, as a phylogeny-based metric
might function as a summary indicator, providing an
average estimate for composition measures across all
taxonomic levels (Figures 2 and 3). Overall, these results
show that analyzing multi-level taxonomic data instead
of focusing on a single taxonomic level can provide
additional information regarding the impact of niche
conservatism or niche divergence on observed macro-
evolutionary patterns.

Moreover, with respect to the results based on a
single environmental variable (Supplementary
Figures S10–S17), the strengthened or constant trends
in explained variation of composition–environment
relationships along taxonomic ranks are also evident
in those cases, with pH accounting for the most
compositional variation for soil samples (cases #1 to
#4; Supplementary Figures S10–S13) and temperature
or nitrogen source accounting for the most composi-
tional variation for seawater samples (cases #5 to #8;
Supplementary Figures S14–S17). Interestingly, for
case #7, similar trends and strengths of composition–
environment relationships can be detected when
using day-length or artificial temporal indices as
environmental variables (Supplementary Figure S16).

Discussion

Niche-related signals strengthen or remain along
taxonomic ranks
We examined prokaryotic communities in soil and
seawater samples to evaluate whether niche-related
signals remain, strengthen or vanish with changes
in taxonomic resolution (Figure 1). We detected
strong correlations among compositions at fine and
broad taxonomic resolutions for all eight case
studies (Figure 2) and found an increasing or constant
strength of the composition–environment relation-
ships with broadening taxonomic resolution from
species to order or even phylum level (Figure 3).
These findings support the hypothesis of phylogenetic
niche conservatism and further suggest that broader
taxonomic classification may balance the distribution
uncertainty associated with finer taxonomic units and
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strengthen niche-related signals. Overall, these results
are consistent with the current notion of ecological
coherence in deep prokaryotic branches (Philippot
et al., 2009, 2010), which suggests that members of the
same prokaryotic clades generally maintain similar
ecological characteristics over evolutionary time
(Martiny et al., 2015).

Typically, community data sets at the finest
taxonomic resolution are preferred over more broadly
resolved classifications in environmental assessment
studies (Terlizzi et al., 2003; Bevilacqua et al., 2013;
Bennett et al., 2014), because data sets with detailed
taxonomy are expected to provide more accurate
information regarding community structure and niche
partitioning patterns. However, our results indicate
that sometimes the use of broadly resolved data might
be sufficient, or even superior to fine-level data if the

goal is to identify community responses to environ-
mental variables. Our assessment of environmental
effects on the variation of prokaryotic communities
detected a strengthened or constant niche-related
signal with broadening taxonomic resolution
(Figure 3), suggesting that phylogenetically related
taxa might have constrained ecological properties
and do not distribute randomly across habitats
(Andersson et al., 2010; Philippot et al., 2010;
Martiny et al., 2015). These results are consistent
with some general notions about the phylogenetic
conservatism of functional traits in microorganisms
(Martiny et al., 2013). For example, studies on soil
bacteria and fungi have indicated that traits asso-
ciated with moisture preferences are highly con-
served, with a broad taxonomic level usually
accounting for the greatest variation in a given trait

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

Uni

0.1

0.2

0.3

0.4

0.5

Uni

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

ecnairav
de nia lp x

E E
xp

la
in

ed
 v

ar
ia

nc
e

E
xp

la
in

ed
 v

ar
ia

nc
e

E
xp

la
in

ed
 v

ar
ia

nc
e e cnair av

den ia lpx
E E

xp
la

in
ed

 v
ar

ia
nc

e

E
xp

la
in

ed
 v

ar
ia

nc
e

E
xp

la
in

ed
 v

ar
ia

nc
e

Phylo Seq-similarity DB-annotation

Phylo Seq-similarity DB-annotation

Phylo Seq-similarity DB-annotation

Phylo Seq-similarity DB-annotation

Phylo Seq-similarity DB-annotation Phylo Seq-similarity DB-annotation

Phylo Seq-similarity DB-annotation

Phylo Seq-similarity DB-annotation

97 91 85 79 73
94 88 82 76 70

97 91 85 79 73
94 88 82 76 70Uni S G F97 91 85 79 73

94 88 82 76 70 PCO

Uni S G F97 91 85 79 73
94 88 82 76 70 PCO Uni S G F97 91 85 79 73

94 88 82 76 70 PCO

Uni S G F97 91 85 79 73
94 88 82 76 70 PCO Uni S G F97 91 85 79 73

94 88 82 76 70 PCO

Uni S G F97 91 85 79 73
94 88 82 76 70 PCO

S G F PCO S G F PCO

Figure 3 The influence of environmental factors on variation of abundance-weighted compositions evaluated at fine to broad taxonomic
resolutions. The community analyses are conducted on eight distinct data sets: (a) case #1 America-Soils, (b) case #2 Arctic-Soils, (c) case
#3 NYpark-Soils, (d) case #4 NYfarm-Soils, (e) case #5 TaraSur-Seawaters, (f) case #6 TaraChl-Seawaters, (g) case #7 WEC-Seawaters and
(h) case #8 SECS-Seawaters. Taxonomy-based compositional variation is calculated following two types of hierarchical classification
(sequence similarity: otu97 to otu70 and database annotation: species to phylum), whereas phylogeny-based compositional variation is
calculated using UniFrac metric for comparison. The influence of environmental factors on composition (adjusted R2, the explained
variance) is quantified by distance-based redundancy analysis (db-RDA). The red boxplots (connected by the black line along taxonomic
ranks) represent the explained variance of the db-RDA results based on 100 subsamples derived from the original data sets, whereas the
gray boxplots represent the results based on the randomized data sets.
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(Lennon et al., 2012; Tresedera and Lennon, 2015).
Given strong phylogenetic conservatism, broadly
resolved data may be well-suited for the detection and
interpretation of prokaryotic community dynamics,
especially in studies covering broad sampling scales
with clear environmental variability. In fact, the original
studies of cases #1 and #2 have reported strong
correlations between relative abundances of dominant
phyla/classes and soil pH (Lauber et al., 2009; Chu
et al., 2010). In addition to the spatial variation, the
prokaryotic communities might be also sensitive to the
seasonal variation, and this temporal dynamics might
be also well represented by broadly resolved data. In
fact, the original studies of cases #7 and #8 have
reported clear seasonal community dynamics using
order-level or class-level compositions (Gilbert et al.,
2009; Yeh et al., 2015).

Prokaryotic communities in natural environ-
ments usually contain extremely high species-level
diversity; however, the mechanisms maintaining
such high diversity are still unclear (Torsvik
et al., 2002; Lynch and Neufeld, 2015). We
observed a sharp increase of explained variation
when grouping otu97 into otu94 and broader
taxa (for example, at least 50% increase in R2

from otu97 to otu94 for soil cases; Figure 3),
suggesting that under conditions of strong habitat
filtering, some sequence-derived finely resolved
taxa might exhibit similar responses to environ-
mental conditions and behave as the same ecologi-
cally cohesive units (Philippot et al., 2009, 2010).
Previous studies have hypothesized ecological
equivalence for finely resolved taxa such that a
particular niche may be occupied by any of the
suitable taxa drawn from a large pool of candidates
(Lozupone et al., 2012; Prosser, 2012; DeLong,
2014). Our results follow this line of thinking,
and show that broader taxonomic units, which
group closely related taxa as responding unions
may enhance our ability to identify environment-
driven community dynamics. Conversely, breaking
down broader taxa into finer units may result in
more noise than information, as the distributions
and abundances of those ecologically equivalent
units exhibit a high degree of randomness caused
by neutral-stochastic processes instead of niche-
deterministic processes (Lozupone et al., 2012;
Prosser, 2012; DeLong, 2014). Actually, previous
studies have indicated that despite the considerable
variability in species-level composition, prokaryo-
tic communities in a given habitat usually have
stable phylum-level composition as well as similar
functional attributes (Fierer et al., 2007; Lauber
et al., 2009; Burke et al., 2011; Fan et al., 2012;
Lozupone et al., 2012); these findings further
support the view that there is ecological coherence
in deep prokaryotic branches (Philippot et al., 2009,
2010) and potentially many fine-level taxa are
functionally redundant and fulfill the same ecolo-
gical role (Lozupone et al., 2012; Prosser, 2012;
DeLong, 2014).

Implications for further studies regarding taxonomic
resolution
It should be recognized that no particular taxonomic
level is well suited for all cases. Our findings
for these prokaryotic case studies emphasize the
profound value of broad-level taxonomic data when
evaluating community–environment relationships,
but do not imply that fine-level taxonomic data only
capture or represent additional minor details. Rather,
we highlight two considerations regarding commu-
nity analyses at distinct taxonomic resolutions. First,
as discussed by other researchers (Warwick, 1993;
Bailey et al., 2001), the choice of taxonomic resolu-
tion for understanding variation in ecological sys-
tems should depend on the questions being asked.
For example, in studies of benthic invertebrates,
broad-level taxonomic data have been demonstrated
to be reliable when the objective is to evaluate the
impact of pollution events on biological assemblages
(Warwick, 1993; Bailey et al., 2001). In contrast,
fine-level taxonomic data are needed if we want
to detect specific toxicological responses. Second,
and perhaps more importantly, as certain processes
are only apparent and drive ecosystem variation at
a particular spatiotemporal scale (Levin, 1992),
their effects may only be evident by examining
communities at a particular taxonomic resolution.
Following previous notions of scale dependency in
plant communities (Levin, 1992; Cavender-Bares
et al., 2006, 2009; Swenson et al., 2006, 2007) and
the idea of beta- versus alpha-niche (Silvertown et al.,
2006a, b), we might postulate that large-scale pro-
cesses such as climatic tolerances (beta-niche) may be
better evidenced by broadly resolved community
profiles (Figures 1a and b); whereas, small-scale
processes such as biotic interactions and microhabitat
differentiation (alpha-niche) may only be evident with
fine-level classification data (Figure 1c). With respect
to prokaryotes with small cell size and short genera-
tion time (as considered in this study), a typical
sampling setup probably emphasizes the effect of
β-niche (evidenced by broadly resolved taxonomic
data), whereas the effect of α-niche may be under-
estimated because of measurement limitations for
biotic properties and microhabitat conditions
(Ranjard and Richaume, 2001; Armitage et al., 2012).

With respect to the scale-dependency issue
(Levin, 1992; Cavender-Bares et al., 2006, 2009;
Swenson et al., 2006, 2007), we acknowledge that
the detected patterns can vary according to phylo-
genetic combinations or target groups of commu-
nities. For example, the best taxonomic resolution
and key environmental factor might differ when
considering whole prokaryotic communities versus
focusing on a particular taxonomic group (Johnson
et al., 2006; Martiny et al., 2009). The main
objective of this study is to demonstrate the
potential of our approach, which assesses commu-
nity–environment relationships while taking into
consideration hierarchical taxonomic information
and the concept of phylogenetic niche

Community analyses along taxonomic ranks
H-P Lu et al

2875

The ISME Journal



conservatism; rather than stressing specific conclu-
sions associated with any particular data set. Future
studies incorporating both multi-level taxonomic data
and multi-scale sampling setups with suitable envir-
onmental measurements should allow for: (1) a better
resolution of the potential mechanisms involved in
prokaryotic community assembly; and (2) an under-
standing of how these mechanisms shift with spatio-
temporal scale and variable target clades.

Conclusion

A comprehensive understanding of biodiversity
requires investigation at multiple scales, including
scales of space, time and organization (Levin, 1992;
Swenson et al., 2006; Cavender-Bares et al., 2009).
Community studies have devoted considerable
attention to issues of spatial and temporal scales,
whereas similar examination and discussion of the
organizational scale is limited. Here we used eight
prokaryotic data sets to show that systematically
investigating community structure at fine to broad
taxonomic resolutions is practical and meaningful.
Specifically, our detected patterns (Figure 3) rein-
force the current notion of ecological coherence in
deep prokaryotic branches (Philippot et al., 2009,
2010), which suggest that broad-level taxonomic
classification might be useful for making general-
izations about the biogeographic distribution of
prokaryotic taxa, at least in the context of some
environmental drivers. Through these cases, we
demonstrate that tracking the strength of commu-
nity–environment relationships along taxonomic
ranks might serve as a means to uncover macro-
evolutionary patterns, adding a new and important
perspective to the evidence regarding niche con-
servatism or niche divergence in community
assembly (Figure 1). We believe this approach
could be applied to any community–environment
data, including micro- and macro-organisms, to
provide evolutionary insights into observed com-
munity structure.
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