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The NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia is supported by multiple lines of evidence. Notably,
administration of the NMDAR antagonist, ketamine, to healthy human subjects has psychotogenic action, producing both positive
and negative symptoms associated with schizophrenia. NMDARs have multiple subtypes, but the subtypes through which ket-
amine produces its psychotogenic effects are not known. Here we address this question using quantitative data that characterize
ketamine’s ability to block different NMDAR subtypes. Our calculations indicate that, at a concentration that has psychotogenic
action in humans, ketamine blocks a substantial fraction of GluN2C subunit-containing receptors but has less effect on GluN2A-,
GluN2B-, and GluN2D-containing receptors. Thus, GluN2C-containing receptors may have preferential involvement in psychotic
states produced by ketamine. A separate line of experiments also points to a special role for GluN2C. That work demonstrates the
ability of NMDAR antagonists to mimic the elevation in the awake-state � frequency EEG power that occurs in schizophrenia.
Physiological experiments in rodents show that NMDAR antagonists generate � oscillations by their action on the GluN2C-
containing NMDARs that are prevalent in the thalamus. Optogenetic experiments suggest that such oscillations could contribute
to symptoms of schizophrenia.
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Introduction
Schizophrenia symptoms can be categorized as positive symp-
toms (i.e., hallucination and delusions), negative symptoms
(i.e., avolition), and cognitive symptoms (i.e., working mem-
ory deficits). The NMDA glutamate receptor hypofunction
hypothesis of schizophrenia arose from the observation that
the administration of NMDA receptor (NMDAR) channel-
blocking antagonist (phencyclidine or ketamine) to healthy
subjects produces both positive and negative symptoms of
schizophrenia (Luby et al., 1959; Krystal et al., 1994). Indeed,
the symptoms associated with acute ketamine administration
or the persisting psychoses associated with ketamine abuse

have a very similar factor structure to schizophrenia (Xu et al.,
2015). NMDAR antagonists, like ketamine, impair aspects of
attention, working memory, declarative memory, and other
domains of cognition that are also impaired in schizophrenia
(Krystal et al., 1994, 1998, 1999). Furthermore, ketamine im-
pairs aspects of sensory-evoked potentials (Oranje et al., 2000;
Watson et al., 2009) and cognitive activations of the cortex
evaluated with fMRI (Honey et al., 2004, 2005; Driesen et al.,
2013) that also resemble deficits observed in schizophrenia.
Recent work has shown that psychosis can also be caused by
antibodies to NMDARs in autoimmune encephalitis (Wand-
inger et al., 2011). The NMDAR hypofunction hypothesis is
further supported by various other lines of evidence, including
the identification of risk genes directly tied to NMDAR func-
tion (Javitt et al., 2012; Timms et al., 2013; Balu and Coyle,
2015).

NMDARs are usually tetramers that are composed of four
subunits: two that bind glycine (GluN1 subunits) and two that
bind glutamate (GluN2 subunits) (Traynelis et al., 2010). In
some NMDARs, GluN3 subunits, which bind glycine, can sub-
stitute for one or more GluN2 subunits (Low and Wee, 2010).
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There are four types of GluN2 subunits
(GluN2A-GluN2D). These determine
many properties of the receptor, includ-
ing open probability, single-channel
conductance, and deactivation rate
(Gielen et al., 2009; Yuan et al., 2009;
Siegler Retchless et al., 2012; Glasgow et
al., 2015). Importantly (see below),
channel block by extracellular Mg 2� is
much weaker for receptors containing
GluN2C and GluN2D subunits (Kutsu-
wada et al., 1992; Monyer et al., 1994;
Kuner and Schoepfer, 1996). It is also
clear that different NMDAR subtypes
have different pharmacological sensitiv-
ities (Gielen et al., 2009; Yuan et al.,
2009). However, it is unclear whether
psychosis depends on particular sub-
types of NMDARs.

The GluN2C subunit and psychosis
Here we make the case that two lines of pub-
lished experiments, when considered to-
gether, are relevant to the question of which
of the NMDAR subunits produce the psy-
chotogenic action of NMDAR antagonists.
These experiments addressed the effect of
ketamine, the NMDAR antagonist used
most extensively to investigate psychosis in
the laboratory setting (Moghaddam and
Krystal, 2012). Both ketamine and Mg2�

exert their blocking action by binding
within the NMDAR ion channel to overlapping sites (Yamakura et
al., 1993), and they compete in their blocking action (MacDonald et
al., 1991). In experiments critical for our argument (Kotermanski
and Johnson, 2009), the effect of NMDAR subunit composition on
ketamine’s blocking action was investigated. The response to agonist
application was measured in a heterologous expression system at a
typical neuronal resting potential (�66 mV) and at physiological
Mg2� concentration (1 mM). Various ketamine concentrations were
used, and the data were fit with a binding curve to measure the IC50,

the concentration that gives half-maximal inhibition. As shown in
Fig. 1, NMDARs containing GluN2C subunits have a significantly
lower IC50 (1.18 � 0.04 �M) than GluN2A-containing (5.35 � 0.34
�M) or GluN2B-containing (5.08 � 0.02 �M) receptors. GluN2D-
containing receptors were intermediate (2.95 � 0.02 �M). These
differences are considerably smaller when measured in zero Mg2�

and thus are mostly attributable to the weaker Mg2� binding to
GluN2C/GluN2D than to GluN2A/GluN2B-containing receptors.
However, even in zero Mg2�, small differences in IC50 remain, indi-
cating that other receptor properties also contribute to selectivity.

The preferential effect of ketamine on GluN2C-containing re-
ceptors raises the possibility that these receptors may contribute
preferentially to psychotogenic effects. To evaluate this possibility, it
would be important to know whether the concentration at which
ketamine produces psychosis in humans is close to the concentra-
tions at which ketamine preferentially inhibits GluN2C-containing
receptors. Achieving a defined brain concentration in human exper-
iments is not straightforward given the dynamics of ketamine spread
and removal. Nearly steady-state plasma levels can be produced by
an initial bolus injection followed by a slow infusion of a lower ket-
amine concentration. Analysis of plasma ketamine levels was used to
constrain a pharmacodynamic model (Clements, 250) that accounts

for the measured steady-state ketamine concentration (Absalom et
al., 2007). In subsequent experiments, this model was used to estab-
lish dosing designed to produce a blood plasma concentration of
�150 ng/ml for up to 1.5 h, during which the psychotogenic symp-
toms could be observed (Pollak et al., 2015). The blood–brain bar-
rier is highly permeable to ketamine; it was shown that, in rabbit, the
average CSF concentration was on average 74% of the plasma con-
centration in samples taken between 30 and 120 min following in-
travenous administration (Adachi et al., 2005). Therefore, the
concentration of ketamine in the brain extracellular space is likely to
be nearly equal to that in plasma. Considering the molar mass of
ketamine (237.7 g/mol) and assuming CSF concentration to be
�74% of the plasma concentration, it can be concluded that psy-
chotogenic action occurs at a ketamine concentration of �0.5 �M.
According to the curve of Fig. 1, GluN2C-containing NMDARs will
be �30% inhibited at this concentration. In contrast, NMDARs
containing GluN2A, GluN2B, and GluN2D subunits will be only
�10% inhibited. These results suggest that the ketamine dose that
produces psychotogenic effects substantially blocks GluN2C-
containing receptors and that the effects on GluN2A- or GluN2B-
containing receptors are considerably smaller.

Several caveats should, however, be noted. First, it is possible that
there are inaccuracies in the estimate of the ketamine concentration
in the extracellular space of the brain. Some measurements in ro-
dents (Cohen et al., 1973; Cohen and Trevor, 1974) indicate that the
total concentration of ketamine in the brain may be up to fourfold
higher than that in plasma (measured 10 min after administration).
This is confirmed in a recent paper (Zanos et al., 2016) (total brain
ketamine concentration was found to be approximately twofold
higher than plasma concentration 10 min following intraperitoneal
injection). However, the total brain concentration may not be the

Figure 1. The effect of subunit composition of NMDARs on the ketamine concentration inhibition curve in 1 mM Mg 2� (data
from Kotermanski and Johnson, 2009). HEK293T cells were transfected with Rattus norvegicus cDNA for the GluN1 (NR1) subunit
and one of the GluN2 (NR2) subunits (GluN2A-GluN2D). The receptors were activated by 1 mM glutamate and 100 �M glycine at a
holding voltage (�66 mV) that is similar to resting potential in neurons. The fractional current, the current in the presence of
ketamine normalized to current in zero ketamine, is plotted as a function of ketamine concentration. The heavy vertical purple line
at 0.5 �M marks the estimated extracellular ketamine concentration that induces psychotogenic symptoms in normal human
subjects, with dashed vertical lines at 0.4 – 0.6 �M indicating the median absolute percent error, as calculated for the Clements 250
model for ketamine administration (Absalom et al., 2007); this error is shown because it can be estimated, but other sources of error
cannot be excluded. If the extracellular ketamine concentration in brain were equal to some estimates of total brain concentration
(fourfold higher than plasma levels), a possibility we think unlikely, the extracellular concentration would be as marked by the
green line. Selectivity for GluN2C-containing receptors remains substantial even under these assumptions.

11152 • J. Neurosci., November 2, 2016 • 36(44):11151–11157 Khlestova et al. • Ketamine Action on NMDA Receptor Subtypes



best estimate of the ketamine available to block NMDARs for several
reasons. The lipophilic properties of ketamine allow it to partition
into membranes and thus contribute to the total brain concentra-
tion. However, because the principal route of ketamine access to its
blocking site is through open NMDAR channels (MacDonald et al.,
1991), it is important to consider only the free extracellular ketamine
concentration. It has also been suggested that ketamine may un-
dergo acid trapping (Lester et al., 2015), a process in which ketamine
becomes protonated and thus membrane impermeant. It may there-
fore accumulate in acidic intracellular compartments, such as lyso-
somes and thus not be free to bind NMDARs. Although both of these
pools could contribute to total brain ketamine concentration, they
would not contribute to the pool of ketamine available to act as an
open-channel blocker of NMDARs. Thus, CSF ketamine concentra-
tion may provide a better estimate of the extracellular brain concen-
tration than total brain concentration. However, this argument
notwithstanding, it is of interest to analyze what would happen if the
effective concentration is indeed fourfold higher than in CSF. As
shown in Figure 1 (green vertical line), this would produce an �30%
block of GluN2A/GluN2B-containing receptors but a much larger
block (�60%) of GluN2C-containing receptors (the block of
GluN2D is probably intermediate).

A second caveat is that the effect of Mg 2� on the IC50 values of
ketamine was measured using recombinant rat receptors, the
properties of which might differ from those of human receptors.
However, ketamine IC50 values are similar for human and rat
NMDARs (Hedegaard et al., 2012), and the NMDAR subtype
dependence of inhibition by Mg 2� is similar for human and rat
NMDARs (Daggett et al., 1998); furthermore, Mg 2� reduces the
potency of the channel blocker memantine both for human (Ot-
ton et al., 2011) and rodent (Kotermanski and Johnson, 2009)
GluN1/2A receptors. Thus, the NMDAR subtype dependence of
the ketamine IC50 is unlikely to be species-specific.

Third, preferential inhibition by ketamine of GluN2C-
containing NMDARs has thus far been observed only using re-
combinant diheteromeric receptors (Fig. 1). Many brain regions
express triheteromeric NMDARs (Luo et al., 1997; Huang and
Gibb, 2014). It is thus possible that many GluN2C-containing
NMDARs also contain a GluN2A or GluN2B subunit. The IC50 of
ketamine for such triheteromeric receptors is not known. How-
ever, Mg 2� inhibition of putative GluN1/2B/2D triheteromeric
receptors is relatively weak (Huang and Gibb, 2014), suggesting
that ketamine may inhibit GluN2C- or GluN2D-containing tri-
heteromeric NMDARs more effectively than receptors that con-
tain only GluN1, GluN2A, and GluN2B subunits.

A related caveat stems from the possibility that NMDARs in
vivo might differ in their properties from those measured in the in
vitro study of Figure 1. Notably post-translational changes, such
as phosphorylation by tyrosine or PKA, might alter the properties
of NMDARs (Wang et al., 1996; Murphy et al., 2014).

A final caveat is that some of the behavioral effects of ketamine
might not be due to ketamine itself, but due to a metabolite.
Ketamine has strong antidepressant effects (Berman et al., 2000;
Krystal et al., 2013), and these can result from the same infusion
paradigm as used to study the cognitive and psychotogenic effects
of ketamine (Krystal et al., 1994). The psychotogenic effects are
rapid, whereas the antidepressant effects are substantially delayed
(Berman et al., 2000; Krystal et al., 2013). Some antidepressant
effects have been produced by relatively selective antagonists of
GluN2B-containing NMDARs in animals (Li et al., 2010) and
humans (Preskorn et al., 2008), suggesting that such NMDARs
can affect depression. However, a recent paper suggests that some
antidepressant effects of ketamine are not due to effects on

NMDARs and are indeed not due to ketamine itself, but rather to
a metabolite (HNK) of ketamine (Zanos et al., 2016). HNK does
not block NMDARs and does not produce psychotogenic-like
effects (Zanos et al., 2016). HNK is thus not relevant to the psy-
chotogenic effects that we seek to account for. There are other
metabolites of ketamine, such as R/S-norketamine (Ebert et al.,
1997; Dravid et al., 2007; Moaddel et al., 2013). However, if such
metabolites inhibit NMDARs by acting as channel blockers, as
appears likely (Ebert et al., 1997; Dravid et al., 2007), then com-
petition with Mg 2� should still result in preferential inhibition
of GluN2C-containing (and GluN2D-containing; see below)
receptors.

The question arises whether antagonists selective for
GluN2B-containing receptors can produce psychotogenic ef-
fects. The GluN2B-selective antagonist CP-101,606 (Mott et
al., 1998), in contrast to ketamine, was observed at low doses
to have robust antidepressant activity without inducing psy-
chotogenic effects (Preskorn et al., 2008). Although higher
doses of CP-101,606 produced psychotogenic effects in some
subjects, administration of placebo also produced psychoto-
genic effects in some subjects, and adverse events did not differ
significantly between the CP-101,606 and placebo groups
(Preskorn et al., 2008). Thus, whether antagonism of GluN2B-
containing NMDARs alone is able to produce psychotogenic
effects remains unclear.

In summary, available quantitative data on NMDAR subtype
dependence of ketamine inhibition and on approximate CSF
ketamine concentrations that result from a psychotogenic dose
suggest two conclusions: (1) that this dose inhibits GluN2C-
containing receptors more effectively that GluN2A/GluN2B (and
probably GluN2D)-containing receptors; and (2) that the inhibi-
tion of GluN2C-containing receptors is substantial, whereas the
inhibition of GluN2A/GluN2B-containing receptors is relatively
minor.

Other reported effects of interfering with NMDAR subtypes
If GluN2C subunits have a special role in producing the effects of
ketamine, then knock-out of these NMDAR subunits should
mimic NMDAR hypofunction and produce schizophrenia-
related symptoms in animal models. Consistent with this predic-
tion, hypofunction of GluN2C (by GluN2C subunit knock-out)
is sufficient to produce deficits in working memory (as occurs in
schizophrenia) and to produce other schizophrenia-related be-
haviors (Hillman et al., 2011; Hillman, 2012).

There are, however, also reasons to suspect a role for the
GluN2D subunit in some schizophrenia-related behaviors. Re-
cent work has provided evidence for an important physiological
role of GluN2D-containing receptors in cortical interneuron
function and in the basal ganglia (Swanger et al., 2015; von En-
gelhardt et al., 2015). Some of these targets may affect behavioral
and neuronal processes. Indeed, work on a GluN2D knock-out
shows attenuation of several of ketamine’s effects, particularly on
locomotion and � frequency oscillations, changes that are
sometimes considered as schizophrenia-related behavior (H.
Yamamoto et al., 2015; Sapkota et al., 2016; T. Yamamoto et al.,
2016).

Our conclusion that the psychotogenic dose of ketamine has a
relatively weak effect on GluN2A/GluN2B-containing receptors
is consistent with other observations. These receptors mediate
LTP in the hippocampus and procedures that preferentially in-
hibit these receptors profoundly interfere with LTP (Berberich et
al., 2007) and memory (Tsien et al., 1996). In contrast, psychoto-
genic doses of ketamine have only moderate effects on memory
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(Anand et al., 2000; Krystal et al., 2005; Murray et al., 2014). The
fact that learning and memory are only partially inhibited by
psychotogenic doses of ketamine suggests that the block of
GluN2A/B-containing receptors is weak, as our calculations
suggest.

The � frequency EEG abnormality in schizophrenia: role
of GluN2C
The possibility that the psychotogenic action of ketamine de-
pends strongly on GluN2C-containing NMDARs is of particular
interest because of another line of research pointing to a special
role of the GluN2C subunit in schizophrenia. That research has
sought to understand an EEG abnormality seen in schizophrenia,
specifically an elevation of power in the � frequency (1– 4 Hz)
band in the awake state (Lehmann et al., 2014). Meta-analyses of
EEG and MEG studies show this to be a highly reproducible
finding (Boutros et al., 2008; Seikmeier and Stufflebeam, 2013).
Moreover, � power is elevated in anti-NMDAR autoimmune en-
cephalitis, a disease that produces psychosis (Dalmau et al.,
2008).

An important discovery in rodent models is that elevation
of � power in cortex and hippocampus can be produced by
injection of NMDAR antagonist into the thalamus (Buzsáki,
1991; Zhang et al., 2012b). Furthermore, the � elevation pro-
duced by systemic ketamine administration can be reduced by
injection of the inhibitory agent, muscimol, into the thalamus
(Zhang et al., 2012b), which strongly suggests that the site of
ketamine action is localized to the thalamus. In adult rat brain,
the strongest expression of GluN2C-containing NMDARs is
found in the thalamus and cerebellum (Monyer et al., 1994;
Karavanova et al., 2007). Slice experiments on the nucleus
reticularis of the thalamus (Zhang et al., 2009), a region where
GluN2C-containing NMDARs contribute strongly to synaptic
responses (Zhang et al., 2012a), provided insight into the
mechanism by which NMDAR antagonists produce � oscilla-
tions. Because GluN2C-containing receptors exhibit weak
Mg 2� block (Monyer et al., 1992, 1994), these channels gen-
erate a tonic inward current at resting potential (Zhang et al.,
2009) in response to ambient glutamate (Sah et al., 1989).
Block of GluN2C-containing receptors therefore produces hy-
perpolarization. This hyperpolarization deinactivates T-type
calcium channels (Steriade and Llinás, 1988; McCormick
and Bal, 1997), which then generate bursting at � frequency
(Zhang et al., 2009). Given the strong voltage dependence of
T-type calcium channel inactivation, even the modest hyper-
polarization produced by blocking a fraction of GluN2C-
containing receptors (Fig. 1) might be sufficient to produce
bursting.

Do such abnormal � oscillations interfere with brain function?
To address this question, optogenetic methods were used to im-
pose � oscillations on a thalamic nucleus important for working
memory, the nucleus reuniens. Such optogenetically induced
oscillations produced a robust and reversible deficit in working
memory (Duan et al., 2015). Thus, abnormal � oscillations in
schizophrenia could cause the deficits in working memory seen in
this disease (Silver et al., 2003).

Genome-wide association studies have provided support for a
key role of T-type calcium channels in schizophrenia, consistent
with the above model. Two recent genome-wide association
studies identified a relatively small number of ion channels as
risk genes for schizophrenia. However, both studies identified the
same T-type calcium channel isoform (Cav3.3/CACNA1I)
(Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014; Narayanan et al., 2015). This is one of three
isoforms present in the brain and is the specific isoform found in
the nucleus reticularis of the thalamus.

In conclusion, here we have reviewed the evidence that GluN2C-
containing NMDARs are more sensitive than other NMDAR sub-
types to ketamine. Our analysis suggests that, at concentrations
sufficient to produce psychosis in normal human subjects, ketamine
substantially inhibits GluN2C-containing NMDARs but has a
smaller effect on other NMDAR subtypes. This complements other
evidence suggesting the importance of GluN2C in schizophrenia,
specifically the evidence that GluN2C-containing NMDARs in the
thalamus may underlie the abnormality of the low-frequency EEG
oscillation in schizophrenia. Further testing of the key role of
GluN2C-containing receptors in producing psychotogenic action
will become possible with the development of improved NMDAR
subtype-specific antagonists (Acker et al., 2013).

Response provided by Dual Perspectives Companion
Authors–Charles F. Zorumski, Yukitoshi Izumi,
and Steven Mennerick

Khlestova and colleagues present a compelling and provoc-
ative case for a strong role of GluN2C inhibition in psy-
chotogenic effects of ketamine and related drugs. The
NMDAR hypofunction hypothesis of psychosis now has a
strong history of support from the human studies cited, as
well as from animal work with ketamine and related drugs
(Olney and Farber, 1995). However, as highlighted in both
dual perspective articles, ketamine has multifaceted behav-
ioral effects, including anesthetic, analgesic, psychotomi-
metic, and antidepressant actions. In humans and animals,
different behavioral effects are triggered by different doses
of ketamine and with different time courses. It seems likely
that, depending on dose, time, and depolarization state of
neurons (Emnett et al., 2015), different targets will partici-
pate in different behavioral effects. This is true even among
different NMDAR subunit targets. GluN2C may play a priv-
ileged role under some conditions, but contributions of
other subunits are difficult to exclude. The authors ac-
knowledge the considerable uncertainty in brain measure-
ments of ketamine and the relevance of these levels for
subunit selective actions. Membrane partitioning and in-
tracellular accumulation of ketamine may be important in
dictating access to NMDARs (Orser et al., 1997), further
complicating estimates of effective brain levels. An addi-
tional caution is that the behavioral effects of partial
GluN2A/GluN2B inhibition are unknown. There is a general
tendency to believe that more inhibition equates with stron-
ger behavioral effect, but even fractional inhibition of the
very prominent population of GluN2A/GluN2B-containing
receptors is likely to alter synaptic communication, net-
works, and thus behavior. It is interesting that psychoto-
genic effects are those for which evidence suggests a
privileged role for GluN2C, as these effects (e.g., compared
with antidepressant effects) can occur at high ketamine
doses, at which ketamine selectivity would be expected to be
weakest. Another puzzling set of findings concerns the psy-
chotogenic effects of human anti-NMDAR antibodies that
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are primarily directed against GluN1 subunits (Gleichman
et al., 2012); here, it is not clear that specific NMDAR sub-
types play a preferential role in psychiatric symptoms, al-
though this psychosis is only one manifestation of a more
complex encephalopathy.

Khlestova and colleagues lay out a strong, testable hypoth-
esis, along with the already existing support for this hypoth-
esis. Their article serves as a call for further tests, including
work from conditional genetic deletions of the relevant sub-
units, which will complement cited work from constitutive
knock-outs. We may also look forward to continued devel-
opment of subunit-selective pharmacological antagonists
and modulators.
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