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Natural Firing Patterns Imply Low Sensitivity of Synaptic
Plasticity to Spike Timing Compared with Firing Rate

Michael Graupner,'? ©“Pascal Wallisch,' and ““Srdjan Ostojic’
ICenter for Neural Science, New York University, New York, New York 10003, 2Laboratoire de Physiologie Cérébrale-UMR 8118, CNRS, Université Paris
Descartes, 75270 Paris Cedex 06, France, and *Group for Neural Theory, Laboratoire de Neurosciences Cognitives, INSERM U960, Ecole Normale
Supérieure - PSL Research University, 75005 Paris, France

Synaptic plasticity is sensitive to the rate and the timing of presynaptic and postsynaptic action potentials. In experimental protocols
inducing plasticity, the imposed spike trains are typically regular and the relative timing between every presynaptic and postsynaptic
spike is fixed. This is at odds with firing patterns observed in the cortex of intact animals, where cells fire irregularly and the timing
between presynaptic and postsynaptic spikes varies. To investigate synaptic changes elicited by in vivo-like firing, we used numerical
simulations and mathematical analysis of synaptic plasticity models. We found that the influence of spike timing on plasticity is weaker
than expected from regular stimulation protocols. Moreover, when neurons fire irregularly, synaptic changes induced by precise spike
timing can be equivalently induced by a modest firing rate variation. Our findings bridge the gap between existing results on synaptic

plasticity and plasticity occurring in vivo, and challenge the dominant role of spike timing in plasticity.
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ignificance Statement

Synaptic plasticity, the change in efficacy of connections between neurons, is thought to underlie learning and memory. The dominant
paradigm posits that the precise timing of neural action potentials (APs) is central for plasticity induction. This concept is based on
experiments using highly regular and stereotyped patterns of APs, in stark contrast with natural neuronal activity. Using synaptic
plasticity models, we investigated how irregular, in vivo-like activity shapes synaptic plasticity. We found that synaptic changes induced
by precise timing of APs are much weaker than suggested by regular stimulation protocols, and can be equivalently induced by modest
variations of the AP rate alone. Our results call into question the dominant role of precise AP timing for plasticity in natural conditions.

~

Introduction
Action potentials (APs) transmit information; synaptic plasticity
underlies learning and memory. These two principles have
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guided neuroscience for over half a century. Yet linking the two
by measuring activity-elicited synaptic changes in intact animals
remains extremely challenging.

Experimental studies in in vitro preparations have shown that
the induction of synaptic long-term potentiation (LTP) and
long-term depression (LTD) depends on the following: (1) the
firing rates of presynaptic and postsynaptic neurons (Dudek and
Bear, 1992; Sjostrom et al., 2001); and (2) the precise timing of
presynaptic and postsynaptic APs (Magee and Johnston, 1997;
Markram et al., 1997; Bi and Poo, 1998; Campanac and Debanne,
2008). How do these two key findings translate to intact animals?
Does one of the effects dominate the other? These questions re-
main open as in vivo conditions differ in a number of ways from
in vitro conditions in which most synaptic changes were mea-
sured. One important difference lies in the firing statistics: in the
majority of experimental protocols used to induce plasticity in
vitro, the imposed spike trains are regular and the relative timing
between every presynaptic and postsynaptic spike is constant;
whereas in natural firing patterns observed in the cortex of intact
animals, cells fire irregularly (Softky and Koch, 1993) and the
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timing between presynaptic and postsynaptic spikes varies (Co-
hen and Maunsell, 2009). Aside from other potentially important
differences, here we ask how much the firing statistics impact the
relative influence of firing rate and spike timing on synaptic plas-
ticity. To address this question, we used numerical simulations
and mathematical analysis of models of synaptic plasticity. Our
approach allows us to dissect the effects of firing rate and spike
timing, and produce experimentally testable predictions.

Plasticity models of different complexities and degrees of bi-
ological realism have been developed to capture the link between
one or several stimulation protocols and induced plasticity. The
classical spike timing-based models capture pair-based spike-
time-dependent plasticity (STDP), referred to as the pair-based
model, but do not account for the firing rate dependence of plas-
ticity (Gerstner et al., 1996; Kempter et al., 1998; Song et al., 2000,
but see Izhikevich et al., 2003). To account for the firing rate
dependence and nonlinearities of plasticity induction, more
complex models have been proposed following two different di-
rections: (1) phenomenological spike timing-based models ex-
tend pair-based models by including effects of additional spikes
or the membrane potential to compute plasticity (for review, see
Morrison et al., 2008; Clopath et al., 2010); (2) biophysically
inspired models link the calcium dynamics evoked by presynaptic
and postsynaptic activity to observed plasticity outcomes (pio-
neered by Shouval et al., 2002; for review, see Graupner and
Brunel, 2010). Here we concentrate on one model from each of
these two classes: a spike timing model based on spike-triplets
(referred to as the triplet-based model) (Pfister and Gerstner,
2006), and a calcium-based model (referred to as the calcium-
based model) (Graupner and Brunel, 2012). We furthermore
contrast the results with the behavior of the widely used classical
spike-pair based model (Gerstner et al., 1996; Kempter et al.,
1998; Song et al., 2000).

In all three plasticity models, we examine the magnitude of syn-
aptic changes induced by imposing strong but realistic timing con-
straints between presynaptic and postsynaptic spikes, and we
compare it with changes induced by increasing solely the presynaptic
and postsynaptic firing rates without any timing constraint. We
quantify the relative influence of timing and firing rate on synaptic
plasticity in a variety of firing conditions, including activity patterns
recorded in vivo in awake, behaving macaque monkeys. Our overar-
ching conclusion is that, for natural firing patterns, synaptic changes
induced by spike timing can be reproduced by a modest variation of
the firing rate in absence of any timing constraints. This finding
challenges the dominant view that spike timing plays a central
role in long-term synaptic plasticity.

Materials and Methods

Two mutually coupled integrate-and-fire neurons. We consider two
integrate-and-fire neurons, which are connected by recurrent synapses.
The dynamics of the membrane potential, V(t) (withi = 1, 2), is given by
the following:

. Vit) = =Vi(t) + I; + I, (1)

where 7,, = 10 ms is the membrane time constant. An AP is emitted when
the membrane potential crosses a fixed threshold V, = 20 mV. The
membrane potential is subsequently reset to a value V;; = 10 mV. The
neurons receive external inputs I; and synaptic inputs I, corresponding
to the mutual synaptic connections (see below).

Synaptic inputs. The postsynaptic current elicited by APs in the pre-
synaptic neuron occurring at times ¢, is given by the following:

yn

Lyw(®) = st — t; — 8,), 2)
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where §; is the transmission latency with 6, = 1.5 ms (Markram et al.,
1997). J describes the plastic part of the synaptic weight given by J =
1.« W» where w implements the synaptic learning rule varying between 0
and 1 (see below). I, determines the maximally mediated current by
the synapse. The synaptic gating variable, s(¢), is characterized by an
instantaneous increase after a presynaptic spike and an exponential decay
as follows:

0 t<0
s() = { exp(—=t)/t, t=0" G)
7, = 3 ms is the synaptic decay time constant (Hestrin, 1993).

Models of synaptic plasticity. We investigate three different models de-
scribing the temporal evolution of the plastic synaptic weight variable, w,
as a function of presynaptic and postsynaptic activity.

Pair-based learning rule. For every pair of presynaptic and postsynaptic
spikes separated by a time lag A, the amount of synaptic change reads
(Song et al., 2000; van Rossum et al., 2000; Rubin et al., 2001) as follows:

Aw = —A wexp(A/T)
YT AL(1 — w) exp(—A/T,)

ifA=0
ifA>0" (4)

We used parameter values from Bi and Poo, (2001): A, = 0.0096,
t, = 16.8 ms, A_ = 0.0053, and 7_ = 33.7 ms.

Triplet-based learning rule. Changes in the synaptic efficacy are driven
by presynaptic and postsynaptic spikes, which trigger the following de-
tector variables (Pfister and Gerstner, 2006):

fo= =it + 28t — 1), (5)

0,= —o,/T_+ 26(1‘ - t}-), (6)
tj

0,= —o,T, + 28t — 1. (7)

Here r, is a detector of presynaptic spikes occurring at t;, whereas o, and
0, are two detectors of postsynaptic spikes occurring at ¢;.

After a presynaptic spike, the weight decreases by an amount that is
proportional to the value of the postsynaptic variable o,. Hence, a pre-
synaptic spike arrival at time ¢; triggers a change given by the following:

w(t) = w(t) — o, (t)wA;. (8)

A postsynaptic spike at time ¢ triggers a change that depends on the
presynaptic variable r; and the second postsynaptic variable o,, effec-
tively implementing the triplet rule, as follows:

w(t) = w(t) + ri()(1 — w)[AS + AT o,(t — €)]. 9)

A} and A denote the amplitude of the weight change whenever there is
a pre-post or a post-pre pair. Similarly, A7 denotes the amplitude of the
1-pre-2-post triplet term for potentiation, if the interval between the two
postsynaptic spikes is on the order of 7,. That is, spike triplets are detected
if a previous postsynaptic spike hasled to an increase of 0, and it contrib-
utes to the potentiation (Eq. 9). € is a small positive constant to ensure
that the weight is updated before the detectors o,. In other words, the
synaptic weight w is updated first according to Equation 9 and o, is
increased by 1 (Eq. 7) afterward (Pfister and Gerstner, 2006). Following
Pfister and Gerstner (2006), the 2-pre-1-post triplet contribution to de-
pression was set to zero, i.e., A; = 0.Including A; and its time constant
7, in the fitting routine did not considerably improve the match with the
data. The pair-based learning rule is recovered by setting A} = 0.

In contrast to the model proposed in Pfister and Gerstner (2006), we
include soft boundaries to restrict the synaptic weight tow € (0, 1) for
better comparison with the other models. This is implemented by mul-
tiplying the LTD and the LTP update terms with w and (1— w). Because
of this change and the inclusion of additional experimental data, the
parameters of the model were refitted to experimental data (Table 1). 7,
and 7_ are kept the same as in the pair-based model.

Calcium-based learning rule. Here, the postsynaptic calcium concen-
tration drives changes in w according to the following:
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Table 1. Parameters obtained by fitting the triplet-based model to visual cortex
plasticity data of regular and jittered spike-pairs (Sjostrom et al., 2001)*

Parameter Unit Value

A 0°

T, ms 16.8°

Ay 0.00826477
T_ ms 33.7°

A; 0.0165746
T, ms 56.38234

J

“OnlyA;, A; andT, have been refitted with respect to the minimal all-to-all model in Pfister and Gerstner (2006).
®Values were left unchanged.

oW = (1 — w)O[c(t) — 0,] — ya wO[c(t) — 0,] + Noise(r).
(10)

T, 1s the time constant of synaptic efficacy changes happening on the
order of seconds to minutes. The first two terms in Equation 10 describe
in a highly simplified fashion calcium-dependent signaling cascades
leading to synaptic potentiation and depression, respectively. The syn-
aptic efficacy variable tends to increase, or decrease, when the instanta-
neous calcium concentration, c(#), is above the potentiation (6,) or the
depression threshold (6,), respectively (® denotes the Heaviside
function, O[c — 6] = Oforc<and®[c — 0] = 1forc = 6). The
parameter 7, (respective ,) measures the rate of synaptic increase (re-
spective decrease) when the potentiation (respective depression) thresh-
old is exceeded.

The last term in Equation 10 is an activity-dependent noise term,
Noise(t) = U\/;VG)[C(t) = 041 + O[c(t) — 6,]m(t), where o mea-
sures the amplitude of the noise, 1(¢) is a Gaussian white-noise process
with unit variance, and the ® function gives an activity dependence to
noise (it is present whenever calcium is above the potentiation and/or
depression thresholds). This term accounts for activity-dependent fluc-
tuations (for more details, see Graupner and Brunel, 2012).

In contrast to the model proposed by Graupner and Brunel (2012),
in the absence of activity, the synapse has a continuum of stable
states in Equation 10. In other words, w is stable at every value (0, 1)
forc < 60, 6,. Because of this change and the inclusion of additional
experimental data, the parameters of the model were refitted to ex-
perimental data (see below).

We examined two variants of the postsynaptic calcium implementa-
tion: (1) the linear calcium dynamics (as in Graupner and Brunel, 2012)
where contributions from presynaptic and postsynaptic spikes add lin-
early (this variant is used throughout the manuscript and in the analytical
derivation); and (2) a nonlinear version of calcium dynamics that ac-
counts for the nonlinear summation of presynaptically and postsynapti-
cally evoked transients when the postspike occurs after the prespike. It
describes the nonlinear portion of the NMDAR-mediated calcium cur-
rent, which is triggered by the coincident occurrence of postsynaptic
depolarization from the postspike and presynaptic activation from the
prespike. This version was used in Figure 9 and the corresponding para-
graph. Below we describe the details of calcium dynamics in the two
variants of the implementation.

1. The linear calcium dynamics (see Figs. 1, 3, 5, 6, 7, 8) are described
by the following:

t—t,—D t—t
c(t) = ECpr,e exp(— 7) + ECPM exp(— . ]>,
i a Jj Ca

Tc

(11)

where c is the total calcium concentration, 7, the calcium decay time
constant, and C,,. and C,,, the presynaptically and postsynaptically
evoked calcium amplitudes. The sums run over all presynaptic and post-
synaptic spikes occurring at times ¢; and #;, respectively. The time delay,
D, between the presynaptic spike and the occurrence of the correspond-
ing postsynaptic calcium transient accounts for the slow rise time of the
NMDAR-mediated calcium influx. Because of §, < D, the postsynaptic
current occurs before the calcium transient. Without loss of generality,
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we set the resting calcium concentration to zero and use dimensionless
calcium concentrations.
2. In the nonlinear calcium dynamics (see Fig. 9), calcium transients

evoked by presynaptic spikes, ¢, are described as follows:

EprelD) = =l Teu + Cpre 0(t — 1, = D), (12)
where 7, is the calcium decay time constant and C,,,.. the presynaptically
evoked calcium amplitude. The sums run over all presynaptic spikes
occurring at times f;. D is the time delay between prespike and the cal-
cium transient (see above). Postsynaptically evoked transients, ¢, are
given by the following:

éposl(t) = _Cpnsl/TCa + Cpnstza(t - t]) + gza(t - tj)cprc)
J ]

(13)

where 7, is the calcium decay time constant and C,,, the postsynapti-
cally evoked calcium amplitude. The sums run over all postsynaptic
spikes occurring at times #,. § implements the increase of the NMDA-
mediated current in case of coincident presynaptic activation and
postsynaptic depolarization. £ determines by which amount the postsyn-
aptically evoked calcium transient is increased in case of preceding
presynaptic stimulation, in which case ¢, # 0. £ is related to the exper-
imentally measured nonlinearity factor, n (Nevian and Sakmann, 2006;
peak calcium amplitude normalized to the expected linear sum of
presynaptically and postsynaptically evoked calcium transients) by
the following:

_ n(cpust + Cpre) - Cpost
C

pre

— 1. (14)

We use for the maximal nonlinearity factor n = 2 consistent with data
from Nevian and Sakmann (2006).

The total calcium concentration is the sum of the presynaptic and the
postsynaptic contributions, c(f) = cye(t) + cpoul(t).

Fitting the plasticity models to experimental data. To compare the
triplet- and the calcium-based models, we fitted both to experimental
plasticity data obtained from synapses between layer V neurons in the rat
visual cortex (Figure 1; Sjostrom et al., 2001). Parameter sets reproducing
the cortical data were provided in the original publications of those mod-
els (Pfister and Gerstner, 2006; Graupner and Brunel, 2012). However,
the changes here, which consisted of including soft boundaries in the
triplet-model and removing the bistable term in the calcium-based
model, made refitting necessary. Our fits furthermore included the plas-
ticity dataset obtained through jittered spike-pairs (Sjostrom et al., 2001,
their Fig. 8).

The stimulation protocols used by Sjostrom et al. (2001) combine
spike timing and firing rate components by varying the presentation
frequency of regular and jittered spike-pairs. When spike-pairs are pre-
sented regularly (with fixed interpair intervals) with fixed A, they find
that pre-post pairs (A = 10 ms) induce no change at low presentations
frequencies, whereas post-pre pairs (A = —10 ms) evoke LTD. Both
pairings evoked LTP at high rates due to the interaction between subse-
quent spike-pairs (Figure 1; Sjostrom et al., 2001). In the jittered variant
of that protocol, the time of the presynaptic spike is drawn from a flat
distribution (—15, 15) ms, and A is drawn from the same distribution
(Sjostrom et al., 2001). The jittering of spike-pairs and time differences
leads to LTD at low rates (<35 spk/s) and LTP at high firing rates (>35
spk/s) (Figure 1; Sjostrom et al., 2001).

We defined the goodness of fit to the experimental data by a cost
function, which is the sum of all squared distances between data points
and the values obtained from the triplet- or the calcium-based model
normalized by the squared SEM of each data point. We drew initial
parameter values from a uniform distribution and use the downbhill sim-
plex algorithm to search for the minimum of the cost function. The fit is
repeated >10° times, and the parameter set with the lowest cost function
is used (Table 1, triplet-based; Table 2, calcium-based model).

The pair-based model exhibits very weak firing rate dependence; we
therefore choose not to fit the model to the data (Fig. 1A) and use the
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Table 2. Parameters obtained by fitting the calcium-based model to visual cortex
plasticity data of regular and jittered spike-pairs (Sjostrom et al., 2001)?

Parameter Unit Linear calcium dynamics Nonlinear calcium dynamics
Tea ms 22.27212 18.93044
Core 0.84410 0.86467
Coost 1.62138 2.30815
0, 1 1

0, 2.009289 4.99780
Y4 137.7586 111.82515
Yy 597.08922 894.23695
T s 520.76129 707.02258
D ms 9.53709 10

n 1 2

“Calcium amplitudes and thresholds are scaled by 6, without loss of generality. The nonlinearity factors are 1 for the
linear implementation (i.e., linear summation of presynaptically and postsynaptically evoked calcium transients)
and 2 for the nonlinear implementation (Nevian and Sakmann, 2006).

parameters obtained when fitting the pair-based model to spike-pair data
from hippocampal cultures: A, = 0.0096, 7, =16.8 ms, A_ = 0.0053,
T_ = 33.7 ms (60 regularly spaced spike-pairs at 1 Hz for various time
lags A) (Bi and Poo, 2001).

We consider the change in synaptic strength as the ratio between the
synaptic strength after and before the stimulation protocol w/w,. w, =
0.5 in all simulations and calculations such that the maximally evoked
change remains in the interval (0, 2).

Spike trains and measures of correlations. Here we specify the notations
used for spike trains and measures of correlation between simulated
spike trains. Correlation measures for neural activity recorded in awake
monkeys are described separately below.

A spike train is represented as the time series as follows:

s(t) = ia(r —t), (15)

where t]-forj =1,..
interval (0, T').
The instantaneous firing rate v(t) is defined as follows:

., p is the series of spike times ordered in time on the

v(t) = (s(1)), (16)
where the brackets denote averaging over trials. Because the firing is
stationary in the simulated spike trains, v(f) = v, for all &.

The cross-correlation function between the spike trains sP() and
s (1) of two neurons is as follows:

1 T
- O(5) — s (sO(7 + 1) —
Cp(1) o0 f(l dr((sV(7) — ") (sD(7 + 1) — v?)).

(17)

To quantify the strength of correlations in the stationary cases (see Reg-
ular and irregular spike-pair correlations, Correlations from common
inputs), we use the spike-count correlation coefficient in the limit of long
time-bins (de la Rocha et al., 2007). This correlation coefficient, which
we call p, is related to auto- and cross-correlation functions via the

following:
J' C,(t)dt

p= x (18)

fx C“(t)altjsc Cy(t)dt

Firing patterns of mutually coupled neurons. To study changes in synaptic
efficacy induced by firing rate and correlations under different condi-
tions, we generated presynaptic and postsynaptic spikes by (1) imposing
spike-pair correlations, (2) simulating correlations emerging from com-
mon inputs and (3) making neurons fire as recorded in awake macaque
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monkeys. The stimulation is imposed for a duration T = 10 s, indepen-
dently of the firing rate (so that the total number of emitted spikes varies
with the firing rate).

1. Regular- and irregular spike-pair correlations (see Figs. 3-5). As in
experiments, regularly spaced spike-pairs were imposed with time differ-
ence A between presynaptic and postsynaptic spikes, at varying frequen-
cies v (Sjostrom et al., 2001).

Irregular spike-pairs were generated using discretely correlated Pois-
son processes. The presynaptic neuron emitted spikes with Poisson
statistics at rate v, Each of these presynaptic spikes induced with prob-
ability p a postsynaptic spike with a fixed time lag A. The postsynaptic
neuron in addition emits independent spikes with Poisson statistics at a
rate v,y — PVpre 50 that the total postsynaptic firing rate is v,,,, In this
case, the cross-correlation function between presynaptic and postsynap-
tic spike trains is C(f) = p&(t — A)/Vos and the correlation coefficient
ISP = P\ Vprel Vpost- If Vpot < Vprer the probability p is constrained to be
smaller or equal to Vg Vpre-

Similarly to whole-cell plasticity experiments, this type of spike-pair
patterns can be induced by injecting strong currents in the integrate-and-
fire model. For simplicity, we directly simulated the spike patterns. Input
integration and synaptic inputs play no role in this stimulation protocol.

2. Correlations from common inputs (see Figs. 6,7, 9). The two neurons
received Gaussian white-noise mimicking the barrage of synaptic inputs
received in vivo. A fraction c of these inputs was shared between the two
neurons, the remaining part being independent (de la Rocha etal., 2007),
so that the total input to neuron i reads as follows:

() = + \/”Tm 1 —comln) + \/?mvgainc(t) i=1,2.

(19)

Here m,, m,, and m_ are three uncorrelated Gaussian white-noise pro-
cesses of zero mean and unit variance. The total input current to each
neuron is a Gaussian white-noise process with mean u; and variance
7,,07, and c represents the fraction of the input that is shared between the
neurons. As ¢ is varied, the total input and hence the firing rate of the
neuron remains constant, whereas the correlation between the output
spike trains of the neurons changes. This allowed us to precisely distin-
guish between effects of correlations and firing rate on synaptic plasticity.
The values of u; and o, were set so that the neurons fire at desired firing
rates and with coefficients of variation close to 1. The cross-correlation
function for this case can be determined analytically (Ostojic et al., 2009),
which we used to calculate synaptic changes (see below).

For small fractions c¢ of shared inputs, the correlation coefficient de-
fined in Equation 18 is well approximated (de la Rocha et al., 2007) by the
following:

dv, dv,
0,0, — ——
dp, du,

~—— 20
CVICV2VV1VZC (20)

p
where v, is the output firing rate of the neuron i and CV; s the coefficient
of variation of its interspike intervals. We use this formula to represent
our results as functions of correlation coefficient p when varying c. Ex-
plicit expressions for vand CV as functions of the input parameters pand
o are given for example in Brunel (2000).

3. Firing patterns as recorded in area MT of awake macaque monkeys
(see Fig. 8) We impose natural firing patterns from simultaneously
recorded single units on both model neurons and study the weight
dynamics of the recurrent connections. From each recording during
which macaque monkeys watch moving dot stimuli, 2, 3, or 4 single
units were identified through spike sorting, yielding 2, 6, or 12 syn-
aptic dynamics (from the permutations of the 2, 3, or 4 neurons),
respectively (see below). As for Case 1, input integration and synaptic
inputs play no role here.

Single-unit activity recorded in awake macaque monkeys. Data were col-
lected from area MT of awake, actively fixating macaque monkeys that were
seated 57 cm from the screen using single tungsten microelectrodes with an
impedance of 0.5-2 M(). Signals were sampled at 40 kHz, amplified, and
processed using a Plexon MAP box. Visual stimulation during data collec-
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A Calcium-based model B Triplet-based model C Pair-based model
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Figure 1.

firing rate (spk/s)

firing rate (spk/s)

Pair-, triplet-, and calcium-based models and visual cortex plasticity data from reqular and jittered spike-pairs. A-C, The change of the synaptic strength is shown as a function of the

spike-pair presentation frequency for regular pre-post pairs (top row; A = 10 ms, red squares and lines), regular post-pre pairs (top row; A = —10 ms, blue circles and lines), and jittered
spike-pairs (bottom row; green squares and lines) as occurring in the calcium-based (with linear calcium dynamics, A), the triplet-based (B), and the pair-based (C) models. Only the calcium- and
the triplet-based models are fitted to the experimental data. The data-points are taken from plasticity experiments in cortical slices (mean == SEM) (Sjostrom et al., 2001).

tion consisted of random dot kinematograms (RDKs) presented at full Mi-
chelson contrast (dot luminance was 42 cd/m?) against a dark background
(0.1 cd/m?). Dot density of the RDKs was 3 dots/degree >. RDKs were pre-
sented at a size of 10 degrees to fill the parafoveal receptive fields of the MT
neurons with a dot lifetime of 200 ms and a diameter of 0.1° for individual
dots. RDKs moving in different directions around the circle were presented
continuously, for 500 ms each, to determine the direction-tuning of the
recorded neurons (for more details on animal training and physiological
recording, see Jazayeri et al., 2012).

Spikes were sorted into distinct clusters based on the information
contained in their waveform shape and spike timing, along the principles
outlined by Lewicki (1998) using the Plexon Offline Sorter 2.8.0 software.
Doing so, we managed to distinguish signals from individual neurons from
each other and from multiunit activity. Although it is widely recognized that
there can be considerable drift in waveform shape, presumably because of
physical movement between the electrode tip and the neurons, this drift
usually occurs on long timescales. Signals were stable on the timescale of the
individual recordings, typically <3 min, reported here.

The sorted spike trains from an entire session (average length 129.9 =
39.1 s) were divided into epochs of 10 s and treated as independent
chunks of data for all analysis and simulations (only the cross-
correlograms and correlations coefficients in Fig. 2G—J are calculated
based on an entire recording to reduce fluctuations). In turn, all plasticity
data presented emerge from 10 s stimulation with generated and natural
spike trains. The properties of the recorded spiking activities are dis-
played in Figure 2.

The spiking activity of the recorded units is nonstationary and varies
over a wide range of time-scales. Common activity changes induced by
the stimulus presentations follow the experimental protocol (500 ms
stimulus duration) and vary on the order of hundreds of milliseconds in
response to stimulus onset and offset. Adaptation through varying amounts
of attention and/or changes in the excitability of the local circuit results in a
decrease in firing rate during the recording session and leads to activity
changes on the order of tens of seconds. Coordinated changes in recorded
spiking activity could in principle also occur from slow electrode drift.

We quantify firing covariations at short and long time-scales using
spike-count correlations with different window lengths (Cohen and
Kohn, 2011). To isolate activity covariations at a given time-scale, we
used the jitter method (Fujisawa et al., 2008; Harrison and Geman 2009;
Renart et al., 2010). The idea is to subtract from the spike count 7,(¢) the
instantaneous mean firing rate v(¢,J ) at time , where the time-scale of the

instantaneous mean firing rate is determined by J. The covariance be-
tween the spike counts of the two cells is as follows:

Cov' (mym) = (1) = vt (n(6) = v(£)),  (21)
1 &
=1 2 (n(0) = vt (D) = wi(e)),  (22)

t=0

where n;(f) = K(t) * s,(¢) is the spike-count obtained by convolving the
spike train s,(¢) with a normalized Gaussian kernel K;. of width T = 20
ms. The instantaneous firing rate v,(t,]) is obtained through jittering the
spike train by adding to each spike an independent Gaussian random
variable of zero mean and SD J, which only eliminates correlations on
time-scales << J. As we are interested in correlations on the time-scale of
T = 20 ms, we used ] = 4T = 80 ms. Because we use both a Gaussian
kernel K;(t) to convolve the spike train (n;(T) = K(t) * s,(t)) and a
Gaussian distribution of jitter times, we calculated v(t, J) by convolving
the measured spike train s;(f) with a normalized Gaussian kernel of
SD /T? + J? (for more details, see Renart et al., 2010).
The normalized correlation coefficient is given by the following:

B Cov'(n;,n)) (23)
Pij Cov'(n;,n;)Cov' (n;,n;)’

The calculated correlation coefficients from Equation 23 are called short-
time correlations (see Figs. 2C, 8B), and they are a measure of correla-
tions at time-scales relevant for spike timing-dependent learning (e.g.,
see Figs. 3B, D, 4, STDP kernels).

We furthermore quantified covariations of the instantaneous firing
rates by calculating the correlation coefficient as in Equation 23, but with
the covariance between the instantaneous mean firing rate as given by the
following:

COV”(Vij) = ((vi(t,]) — 171)(";‘(@]) - ]_}j)>’

which we call firing rate correlations (see Figs. 2D, 8B). Here, 7;and ¥, are
the mean activities. The distribution of the short-time and the firing rate
correlations in the original data are shown in Figure 8B, and the cross-
correlation functions of four simultaneously recorded units are shown in
Figure 2G.

To assess the impact of short-time and firing rate correlations on synaptic
changes, we selectively eliminate short-time and firing rate correlations

(24)
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Figure 2.  Properties of the spiking activity recorded in macaque monkeys. 4, Distribution of single-unit firing rates (mean =+
SD, 23.2 == 22.0; 255 single units divided into 10-s-long epochs yielding N = 3360 entries). B, Distribution of the firing rate CV,
thatis, the SD of the firing rate variations (u(t, /)) divided by the mean firing rate (mean = SD, 0.92 == 0.40). (, Mean firing rate
of both units versus short-time correlations for all simultaneously recorded spike-pair (N = 3908 epochs with a duration of 10s).
The Pearson correlation coefficient R and the corresponding p value are shown. D, Mean firing rate of both units versus firing rate
correlations for all simultaneously recorded spike-pairs (V = 3908 epochs with a duration of 10 s). The Pearson correlation
coefficients R and the corresponding p value are shown. E, Average firing rate fluctuations above the mean for all epochs as a
function of the mean firing rate, i.e., 1{ ¥ > ¥]. Gray line indicates the mean fluctuation. Turquoise dashed and dashed-dotted
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through jittering. Applying an independent
Gaussian jitter of zero mean and SD of 80 ms
eliminates short-time correlations but largely
preserves firing rate correlations (see Figs. 2 H, ],
8B). A Gaussian jitter with a SD of 1 s abolishes
short-time and greatly reduces firing rate correla-
tions, in particular stimulus-induced firing rate
variations (see Figs. 21,], 8B). We generated 100
surrogate datasets per jitter and imposed them on
the two neurons. The synaptic changes after jit-
tering shown in Figure 8C-E are the averaged
across 100 final synaptic weights using the jittered
spike data. Also, the short-time- and firing rate
correlation coefficients after jittering are the aver-
age coefficients from the 100 surrogate spike
trains (Fig. 8B).

Synaptic plasticity dynamics for correlated
neurons. The main aim of our study is to quan-
titatively compare the influence of firing rates
and spike correlations on synaptic changes in
irregularly firing neurons. Here we describe the
mathematical framework that allows us to dis-
entangle and compare the effects of firing rate
and correlations. The general framework is in-
dependent of the considered plasticity model.
Results for specific plasticity models are given
in Analytical solutions of synaptic plasticity
dynamics.

The synaptic efficacy w(T) at the end of a
stimulation protocol of duration T'is a random
variable, the value of which depends on the
learning rule, the precise realization of the pre-
synaptic and postsynaptic spike trains, their
firing rates, and their correlation. The average
synaptic efficacy w(T) can be written as follows:

ﬁ}( T) = 1Z}no corr(ypre) post> T)
+ 1’_Vcon'(ypre)Vposvc(t))T) (25)

where Wy, o is the average synaptic efficacy
attained for uncorrelated presynaptic and
postsynaptic spike trains of rates v, and v,
The quantity w,,, represents the additional

change in synaptic efficacy induced by correla-

<«

lines indicate average fluctuations of 6 and 12 spk/s, respec-
tively. F, Average firing rate fluctuations below the mean firing
rate, i.e., v v << v]. Same depiction as in E for firing rate
excursions below the mean. G, Spike train cross-correlation
functions of four simultaneously recorded example units. Four
units yield six neuron pairs (neuron numbers per pair in panel).
H, Average spike train cross-correlation functions of four si-
multaneously recorded example units after a short jitter of 80
ms. Applying a Gaussian jitter with zero mean and a SD of 80
ms eliminates short-time correlations on time-scales <<80 ms.
1, Average spike train cross-correlation functions of four simul-
taneously recorded example units after a long jitter of 1s. Ap-
plying a Gaussian jitter with zero mean and a SD of 15
eliminates short-time and firing rate correlations on time-
scales <<1's. The average cross-correlograms after 100 jitters
are shown for each neuron pairin H, 1. J, Short-time (left) and
firing rate (right) correlations for the four example units of
G-I. Correlation coefficient of original recordings shown in
green, after short jitter (SD, 80 ms) in magenta and after long
jitter (SD, 1) in black. Magenta and the black points are aver-
ages of correlation coefficients calculated after applying the
respective jitter 100 times.
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tions between the presynaptic and postsynaptic spike trains. We call w,,
the sensitivity of synaptic strength to correlations. This sensitivity to corre-
lations depends both on the correlation function C(f) between the pre-
synaptic and postsynaptic spike trains and individual firing rates of the
neurons.

To quantify the influence of firing rates and spike correlations, we
compare the sensitivity of synaptic strength with correlations to the sen-
sitivity to firing rates 6wy, cor» defined as the change between the synaptic
strength attained at a given, baseline presynaptic and postsynaptic firing
rate, and the synaptic strength attained by increasing the firing rates by a
given amount v as follows:

8ﬁ’no corr(Vpre)Vpost)SV) = IZ/no corr(vpre + 8V)Vpost + SV)T)
- ﬁ/no cnrr(Vpre) Vposl)n- (26)

This sensitivity depends both on the baseline firing rates e, o5 and the
amount of increase in the firing rates dv.

The expression given in Equation 25 allows us to quantify the relative
effect of firing rate and correlations by comparing the two functions
Who corr(Ppres Vpost T) A1 Weor(Vpres Vposto€(£), T). It is fully general (in partic-
ular valid for any correlation function C() between the presynaptic and
postsynaptic spike trains), but cumbersome to analyze. We therefore
study Equation 25 in specific firing regimes (induced by different
stimulation protocols), in which it simplifies and becomes easier to
manipulate.

Irregular spike-pair correlations. Irregular spike-pairs are generated us-
ing discretely correlated Poisson processes (see Case 1 in Firing patterns
of mutually coupled neurons). In this case, the correlation function
C(t) between the presynaptic and postsynaptic spike trains is given by the
following:

P

post

C(t) =

5(t — A) (27)

where p is the probability that a presynaptic spike induces a postsynaptic
spike with delay A, and 8(¢) is the Dirac & function. The contribution of
correlations to synaptic plasticity w,,,, is therefore a function of the time
lag A and probability p, as well as of firing rates v,,, and v,,,,. In that case,
mathematical expressions for w,,,, can be derived for all plasticity models
considered in this study (see Analytical solutions of synaptic plasticity
dynamics).

If the probability p of adding a postsynaptic spike is small, w_,. is
linear in p, so that Equation 25 can be rewritten as follows:

ﬁ)(T) = 17Vno corr(vprwyposnT) + pKT(A)> (28)
where

WCOI’]’( Vpl'e’ vaSI)p)A) ﬂ
dp p=0-

d
kr(A) = (29)

We refer to the function k(A) as the synaptic plasticity kernel. k(A)
depends on the firing rates v, and v, and the protocol duration T In
the following, we do not indicate these dependencies explicitly.

Weak correlations of arbitrary shape. We next turn to the case of a
correlation function C(f) of arbitrary shape, but weak amplit-
ude (C(r)<<1 for all t). To determine the effect of correlations on synap-
tic changes analytically, we approximate two integrate-and-fire neurons
with a continuous correlation function C(t) by a linear superposition of
discretely correlated Poisson processes with time lags A (Kempter et al.,
1998; Giitig et al., 2003). In this approximation, the presynaptic spike
train is assumed to be Poisson with rate v,,.. Each presynaptic spike
generates a postsynaptic spike at time lag A with probability p(A)

= C(A)Vpoy. Additional uncorrelated postsynaptic spikes occur at a rate
1 - [dt C(1)) Vpos- If the correlations are weak, i.e., jdtC(t) <1, the total
synaptic change can be approximated by a sum of synaptic changes in-
duced by discrete Poisson processes at a given time lag (Eq. 28) as follows:
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+oo
ﬁ,( T) = ﬁ/no corr(Vpre) Vposl)n + f dtKT(t) C(t) Vpost' (30)

where k(1) is the synaptic plasticity kernel introduced in Equation 29 for
discretely correlated Poisson processes. Equation 30 shows that the in-
fluence of correlations on synaptic changes is fully specified by the
knowledge of the correlation function and the plasticity kernel, as long as
correlations are weak. Studying the effect of correlations on synaptic
changes in discretely correlated Poisson processes is therefore highly
informative on the effect of correlations on synaptic changes in general.
Correlations from common inputs. As a specific example of weak corre-
lations, we consider the case of integrate-and-fire neurons receiving a
small fraction of common inputs. In that situation, the correlation func-
tion between the spike trains can be computed using the linear approxi-

mation (Ostojic et al., 2009) and reads as follows:
C1~>2(t) = Cci(t) + Imaxwlﬂlcli)z(t) + Inlaxﬁ/ZHICz;rll(t)y (31)

conn

where the first term on the right-hand side is the correlation due to
common inputs, and the two last terms are correlations due to direct
connections from neuron 1 to neuron 2 and in the opposite direction.
Analytic expressions for C4(f) and C.,n,(?) are given in Ostojic et al.
(2009). In the above equation, the amplitudes of correlations due to the
synaptic connections depend on the synaptic efficacies w,_,, and w,_,, so
that w,_, appears in both the left and right hand sides of Equation 30.

Assuming for simplicity that the inputs to the two neurons are identi-
cal, we have w,,, = w,_, = wand v, = v, = v.Inserting Equation
31 into Equation 30, we get the following:

W(T) = WHO COrr(v)V)T) + wﬂ(’z—) + W(T)Tconﬂ’ (32)
where
+oo
wei(T) ZJ dtir(t) Cy(Dv, (33)
Teonn = Tnax f dtkr(D)(Ciona(t) + Cooma(£))v. (34)

Finally, Equation 32 can be used to determine self-consistently the syn-
aptic efficacy at the end of the stimulation protocol as follows:

1
w(T) = P

T (Wno corr(yx v, T) + 1Z/ci(Ti))' (35)

In Equation 35, common inputs influence only w,;. As the correlation
function C is proportional to the fraction of common inputs c, so is w,;.
Using Equation 20, we then obtain a linear relation between w,; and the
correlation coefficient p that determines the slope in Figure 6B.

Analytical solutions of synaptic plasticity dynamics. In the previous sec-
tion, we presented the mathematical framework used to quantify the
relative effect of firing rates and correlations on synaptic changes, inde-
pendently of the learning rule. Here we give analytical expressions for
specific learning rules. For the pair- and triplet-based learning rules, the
average synaptic weight at the end of the stimulation protocol (see Eq.
25) can be computed explicitly as function of the firing rates and the
correlation function between the presynaptic and postsynaptic neurons.
For the calcium-based learning rule, analytic expressions can be derived
in the case of uncorrelated and discretely correlated Poisson processes.
Those expression can be exploited to determine the plasticity kernel,
which in turn allows us to use Equation 30 to determine the outcome of
synaptic dynamics for arbitrary correlation functions.

Pair- and triplet-based learning rules. Here we provide an analytical
solution for the dynamics of w in the case of the triplet-based learning
rule. The solution of the dynamics for the pair-based learning rule can be
deduced as a special case by setting A] = 0. In that case, the asymptotic
synaptic efficacy lim..__w(T) is independent of mean firing rates (see Eq.

T—®

47), so that for the standard pair-based learning rule, mean firing rates
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affect only the transient dynamics of synaptic efficacy, and not its steady-
state value.

For the plasticity rule defined in Equations 8 and 9, the dynamics of the
average synaptic weight (Gjorgjieva et al., 2011) can be written as follows:

% w=(1-— w)fxdsWZ(s)(npm(t)np,e(t — )+ wfmdswz(—s)

X (sl — 9) + (1 — wlim f s, f s, W15 (1)

€0
€

X npre(t - Sl)npus((t - 52)) (36)

where 11,,(f) and 1,,,(t) are the presynaptic and postsynaptic spike
trains, brackets denote averaging over realizations, and the plasticity ker-
nels are given by the following:

_ Aje ™™ ifs>0
WZ(S) - A;edf lfS <0 (37)
and
W;(s1,5,) = ATe ™ e '™ fors, =0,s,=0. (38)

The second- and third-order correlations between presynaptic and post-
synaptic spike trains entering in Equation 36 can be expressed as follows:

<npost(t)npre(t - S)) = VpreVposr(l + C(S)) (39)

<npus((t)npre(t - Sl)npost(t - 52)> = VpreV;ug(l + C(Sl) + Apos((SZ)

+ Cls; — s,) + VL 8(s,)C(sy) + C(S)(51)52)> (40)

post

where C(t) is the cross-correlation function defined in Equation 17,
A,os(t) denotes the auto-correlation of the postsynaptic spike train and
C®)(sy,s,) is the normalized third-order covariance, which will be ne-
glected in the following.

Introducing
C, = f dsC(s)e '™, (41)
0
Cc_= f dsC(—s)e '™, (42)
0
C3 — j dle' dszefsllnefsz/ryc(sz — 51)) (43)
0 0

Equation 36 reduces to the following:

%w(t) = VpreVpost (L = W) A (11 + C,) — wA, (- + C_)
(44)
(1 = W) vy A5 (147, + 7,C1 + Cy)] (45)
The solution of Equation 45 reads as follows:
w(T) = w.. + (wy — w.,)e T (46)

where w, is the value of the mean synaptic efficacy at the start of the
stimulation protocol and
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_ 1
e ) A (- +C) ’
+
ATy + Co) + Vg Ay (141, + 1,C + Cy)
1
Teff = (47)
Vpreypost<A27(T* + C—) + A;(T+ + CJr)
+ Voo A (1.7, + 7,C4 + C3))
For the pair-based model (A} = 0), .. is independent of Vpre AN V0

as pointed out earlier.

For discretely correlated Poisson processes with time lag A and inten-
sity p (see Case 1 in Firing patterns of mutually coupled neurons), the
correlation function is given by the following:

C(t) = pd(t = A)/vyoq

hence

TLT,

C, = P e Co=0, C, = P AT A >0

Vpost Vpus( T4+ + Ty
(48)
Ty,
C,=0, C_= b AT Gy = P — A A=,

1’post Vposl T+ + Ty

(49)

While Equations 46 and 47 give the outcome of synaptic dynamics for
arbitrary correlation functions, in practice analytical expressions for cor-
relation functions are available only for weak correlations. In that limit,
the synaptic efficacy at the end of the stimulation protocol is given by
Equation 30 where Wy, corr(T) is the synaptic weight reached in absence of
correlation as follows:

_ _ _ _ oy eff
Wll() CO]T(T) = W:&) corr + (WO - W:O COlT)e I/Tnu(urr (50)

with w?, ., and 7 obtained by setting C, = 0, C_ = 0 and
C; = 0 in Equation 47.

To determine the plasticity kernel k(f), we compute the functional
derivative of Equation 46 with respect to C(#), i.e., we linearize around
Wao core( T) while taking C(r) = €8(t — A). The expressions for C,, C_
are then given by replacing p/ v, with € in Equations 48 and 49. Expand-
ing Equation 47 to first order in € yields the following:

T#D(1) :
oy (0) eff oy (0) o
KT(t) = (1 - e T”m‘)wgcl)(t) * ( 0n2 € T/Tm‘(w() - Wnocorr)
Teff ) post
(51)
with
1
(0) —
Teff = = (52)
¢ Vprevpost(AZ Tt A; Ty t+ VpostA;r (T+ Ty + Ty)))
( T+ T,
+ T
ASe™ "™+ Tpp00AT (e"’/” o +y e””*)
L+ .
_ - — ift>0
Vprcvposl(AZ T- + AZ T+ + VposIA3 T+ Ty)
Tl (1) = o
Ay e+ vy — e
- ¥ - : + 2 ift =<0,
Vpreypost(AZ T+ AZ Tt + VpostAS T+ Ty)
\
(53)
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1
w = — S 54
no corr Az T7 ( )
e e
AyTi F Vpoy Ay T4 T,

) Ay T
w'(t) = 55—
2Tt Vpostz T4 Ty

’

" N T,
A, + VPWA3 Ty + P 7,

—tiT+

= e .
" wrnf AT B ift>0
T+ Ty, e
T e e AT,
X 55
Ay (55)
-t "
T (A A+ A )T+ 1)
ifr<0

AT B
I+
ApTo Tt VpouAs T4 T,

Calcium-based learning rule. The dynamics of the synaptic efficacy win
the calcium-based learning rule can be calculated analytically if single
calcium transients induce small changes in the synaptic efficacy
(Graupner and Brunel, 2012). In that case, Equation 10 can be approxi-
mated by an Ornstein-Uhlenbeck process, which is governed by the frac-
tion of time the calcium transient spends above the potentiation and
depression thresholds, a, and «,, respectively. The probability density

P
function (pdf) of w is a time-dependent Gaussian as follows:

\

1
P(w,tlwy) = —F7——————
o) =~

A}
(w—w+ (w— wy)e ™)
eXP( - 0,2(1 _ e*Zt/mf) > (56)

where w is the initial value of w at t = 0. w is the average value of w in the
limit of a very long protocol equivalent to the minimum of the quadratic
potential during the protocol, o, is the SD of w in the same limit, and 74
is the characteristic time-scale of the temporal evolution of the pdf of was
follows:

_ r,
VI, T 57
(o, + ay)
2 _ P d
T, AT, (58)
T
Teff — Fp + Fd. (59)

I, (I'y) is the potentiation (depression) rate multiplied by the ave-
rage time spent above the potentiation (depression) threshold, i.e.,
I, =y, Ty = vaoy).

The fractions of time «, and «; the calcium transient spends above the
potentiation and depression thresholds depend on the details of the stim-
ulation protocol. In the case where the spike trains of presynaptic and
postsynaptic neurons are uncorrelated Poisson processes, the amplitude
distribution of the compound calcium trace has been calculated analyt-
ically for the linear calcium dynamics (Gilbert and Pollak, 1960). We
extend this calculation to the case of discretely correlated Poisson pro-
cesses. Details of the calculation are provided below.

One way of directly comparing the calcium- and the triplet-based
models is to perform a Taylor expansion of Equations 57-59 in terms of
presynaptic and postsynaptic firing rates (Kempter et al., 1998). The
equation obtained for e, and e, in the calcium model (Eq. 66), however,
appears not to be analytical around v, = Vpo = 0, and this precludes
a direct analytical comparison between the two models.

Calcium amplitude distribution for spike-pair correlated neurons. The cal-
cium concentration of the linear calcium dynamics ¢(¢) is a shot-noise pro-
cess given by Equation 11. We compute the probability density P(c) of the
postsynaptic calcium amplitude. To this end, we consider a surrogate point
process that leads to a statistically equivalent shot-noise process. This surro-
gate point process is a Poisson process of rate Ve + Vyow — PVpre Each
event generated by this Poisson process is randomly assigned to one of three
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classes: (1) presynaptic spike, (2) presynaptic with an associated postsynaptic
spike at a time lag A, and (3) postsynaptic spike. Each event is independently
assigned to one of these three classes with probabilities { p,p,,ps}, where

p _ (l_p)yprc (60)
! Vpre + Vpos! - pvpre
prre

=——— P 61

pz Vpre + Vposl - PVprc ( )
1jpost - prre

=Y . 62

p3 Vpre + Vpost - pypre ( )

An event belonging to the class a, with a € 1,2,3 generates a calcium
transient F(a, t) where

t_t,‘ .
ifa=1

Cpre exp<f >®(t)

A t—t .
Fa,t) =\ (CuO() + Cooue7®(t — A))exp(— T) ifa=2

T

t— 1

Cpos!exp(_ )@(t) ifa=3

The calcium concentration ¢(#) can then be represented by a shot-noise
process

c(t) = D Flayt — 1,) (63)

where {t;} is a Poisson process with rate n = Vore T Vpost — PVpreand a;
are random variables that take on one of three values {1, 2, 3}, chosen
independently for each ¢; with probabilities { p;, p,, ps}-

Following Gilbert and Pollak (1960), the calcium distribution P(c)
satisfies the following equation:

¢ aG
cP(c) = nf P(c — u)u %du, (64)
0

where G(u) is the mean time F(a, t) spends above the level u (averaging
over the random variable a). More precisely, if we introduce for each
value of a the measure dg,(u) defined such that the measure of the inter-
valu;, < u = u,isequal to the Lebesgue measure of the set of times for
which u; < F(a,t) = u,, then

am—2@f@mm (65)

u

The explicit expression for G(u) depends on the precise value of the
parameters C,,,., C, and A. From the obtained expression for G(u)
(given below), the solution P(c) of Equation 64 can be shown to satisfy

the following:

P(o) = 7k + Clj P(x — B))x "dx + sz P(x — By)x "dx

B B

+ QJ P(x — B;)x "dx + Qf P(x — B)x"dx|, (66)

Bs B,

where B;and C;fori = 1...4 are constants (expressions given below).
The calcium distribution is obtained from Equation 66 by numerical
integration.

Below we give the full expressions of G(u), {B;} and {C} in the relevant
regions of the parameter space (we assume C,,,. < C,,)- The full derivation
of Equation 66 is given only for the first case (the derivation in the other cases
is equivalent). To save space, we use the following abbreviations:

Vpre ="



Graupner et al. o Natural Firing Patterns and Synaptic Plasticity J. Neurosci., November 2, 2016 - 36(44):11238 —11258 = 11247

Vposl =0 ¢
+ C,| P(x—B,)x "dx|. (68)
Core = C By
Cpost = Co. ®case A < 0:
. —subcase C;, + C,¢é" = C
Computation of G(u), {B;} and {C;} as follows: su ! 2 2
P (), {B} G xsub-subcase C,e®'” < C,
®case A = 0:
, A
A _ -t
G Cy + Coer C, A B, = C,er
T log7+p2'r logT-Fp}T logj 0<u=Cer
C C, C + Cze% B, =C,
nT log7+pz T 10g7+ T logT—A
G, A BS - CZ
G(u) =\ +ps7 10g7 Ce7<u=cC
A A
p2<7 10g¥—A>+p3r log% CG<u=G B4= Cze T+ Cl
C+ G A ( c G+ Cea c
1 2€T 2 + T
\ pz<7 logiu 7A> C,<u=Cer+GC pr logﬁerzT 10g%+p37 logf 0<u=B,
In the following, we will denote the boundaries of the four different ¢ c P
regions of G by the following: nt 10%;‘ + P2<“' log—-+7 10%% - A>
A 1 G
B, =Ce - Gluy=\ TpTloe s B <u=B%,
o) G+ s C,
B, = C, P> TlUgj‘f’TlOg#‘Fﬂ + psT log; B, <u=Bs
A
B, =G p2<7 logw-#A) By <u=B,
A \
B,=Cie 7+ C
4 1€ 7 2 C,=pn7
1 1 < < <
the convegtlop being t_hatO < B, =B, = B; = B,. C,= —(1—p)wr
The derivative of G is then
C= —(v, + py)7
—7lu 0<u=B,
G(u) —7/u— p,7lu B,<u=B, C,= —pyr.
u) =4\ _ - -
parl/u = pstlu By <u=B; xsub-subcase C,e*’™ = C,
— pa7lu B;<u=B,
B, =C
so that Eq. (64) becomes ! !
A
c c=B; Bz = C2€7
cP(c) = nt P(x)dx + (1 + p,) P(x)dx
B; = C,
c— By c—B;
A
c—By c—Bs B4 = C2€_7 + Cl
+ (P2t p3) P(x)dx + p, P(x)dx |. p
) C C+Ce C
b o pirlog 4 prlog gy goy=p,
Differentiating with respect to ¢ yields the following: s
C, + Cle’?> G,
log——— | + log — B, <u=B,
cP'(c) + P(c) = (v, + v,) P(c) + C,P(c — B;) + C,P(c — B,) o p2<7 8T b loeTy, '
u)= A
G, C + Cer C
+ C3P(C - B3) + C4P(C - B4) (67) p2<7 longr T log%Jr A) +ps7 log72 B, <u=B5;
where < Gt et >
P2 TlogT+A By <u=B,
C,=pvT \
C,= —(1—-pvr7
C,= vt 1 ( pv
C,=pnrT
Cs;= —wT
Cy= —(v, + pvy7
Cy= —pvT.

Cy= —pvT.

The solution of Equation 67 is then given by the following: subcase C. + C.ed™ < C
- 1 2 2

) xsub-subcase C,e*'™ < C,
P(c) = =l e 4 le P(x — B,)x "dx =
B B, = Cyer

¢ ¢ B, = C,
+ CZJ P(x — B,)x ""dx + QJ P(x — B3)x "dx N
B Bs By = Ce 7+ C
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o C + Ger c,
P Tlog7+flng7+A +p3710g7 B,<u=B;
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C,= —(v, + pv)T1.

Results

To investigate synaptic changes elicited by in vivo-like irregu-
lar firing at different rates and realistic correlations between
presynaptic and postsynaptic spikes, we used numerical sim-
ulations and mathematical analysis of a calcium-based model
(Graupner and Brunel, 2010) and a triplet-based plasticity
model (Pfister and Gerstner, 2006). To allow for comparison,
the parameters of both models were fitted to plasticity results
obtained in the visual cortex in vitro (Fig. 1; see Materials and
Methods) (Sjostrom et al., 2001). We considered three incre-
mentally more realistic firing patterns: (1) irregular spike-
pairs, (2) correlated spike trains generated by common inputs
to the presynaptic and postsynaptic neurons, and (3) physio-
logical firing patterns recorded in area MT of awake behaving
macaque monkeys. For each case, we quantitatively compared
synaptic modifications induced by changes in firing rate and
by spike timing correlations for a stimulation with a fixed
duration of 10 s, so that the total number of spikes varies with
the firing rate.

Graupner et al. o Natural Firing Patterns and Synaptic Plasticity

Sensitivity to spike timing is reduced when spike-pairs

occur irregularly

As a first step toward natural firing patterns, we studied plasticity
induced by spike-pairs with fixed time lag between presynaptic
and postsynaptic spikes but irregular occurrence (Fig. 3A). In
that case, the presynaptic neuron is driven to fire a spike train
with Poisson statistics, and the postsynaptic neuron fires a spike
with time lag A before or after each presynaptic spike (Fig. 3A).
Both the time lag and the firing rate were systematically varied,
and the resulting synaptic changes were computed mathemati-
cally (see Materials and Methods).

We compared synaptic changes induced by irregular spike-
pairs to those induced by regular spike-pairs used in classical
STDP protocols. Two important distinctions clearly emerged: (1)
the dependence on firing rate is different in the two protocols,
with the irregular spike-pairs inducing less depression and more
potentiation than regular pairs at intermediate firing rates (Fig.
3B,D;e.g., 5, 10, 20, 30 spk/s); and (2) the dependence on spike
timing is different in the two protocols, the dependence of syn-
aptic changes on the time lag being markedly reduced in the
irregular protocol (Fig. 3 B, D). These two effects are found both
in the calcium- and triplet-based models, and to a much weaker
extent in the classical spike-pair based model (Fig. 4). The ana-
Iytical calculations of the change in synaptic strength (Figs. 3 B, D,
4, lines) provides an excellent match to the simulations of the full
models (Figs. 3 B, D, 4, open circles), which greatly facilitates pa-
rameter exploration.

We characterized the dependence on firing rates using the
baseline or average change in synaptic strength (Figs. 3B, C, 4,
horizontal black line in the range bar on the right of each
panel). The baseline is the change in synaptic strength at large
time lags for irregular spike-pairs and the average change in
synaptic strength for regular spike-pairs. For irregular spike-
pairs, the baseline was elevated compared with regular spike-
pairs (Fig. 3B,C). This elevation is explained by the
occurrence of short interpair intervals in spike trains gener-
ated by a Poisson process even at low firing rates. Short inter-
spike intervals, regardless of the time lag, induce potentiation
in the calcium- and triplet-based models (Fig. 1A, B, stimula-
tion with regularly spaced spike-pairs at 50 Hz). The differ-
ence in baseline/average strength vanishes at low firing rates,
where the chance to observe short intervals is small, and at
high firing rates, where both stimulation protocols contain
short intervals (Fig. 3B, C).

To quantify the influence of the time lag on synaptic changes,
we examined the variation around the baseline/average synaptic
change (illustrated as vertical range bar on the right of each panel
in Fig. 3 B, C). In the irregular spike-pair protocol, this variation is
reduced compared with the regular spike-pair protocol. The
maximal and minimal synaptic changes with respect to the base-
line/average are smaller for irregular spike-pairs in all models
(Figs. 3B,C, 4). In all models, the reduction in plasticity ampli-
tude is particularly strong for decreases with respect to baseline/
average synaptic strength occurring at negative time lags (Figs.
3B,C, 4). This suggests that synaptic depression in particular
requires the repeated, regular presentation of spike-pairs with
fixed time lag. Interactions between irregularly-spaced spike-
pairs with negative time lag destroy this requirement and almost
completely abolish synaptic depression induced by post-pre
spike-pairs.

So far, neurons were driven to fire irregularly, but every
presynaptic spike was followed by a postsynaptic spike,
leading to the strongest possible timing constraints (i.e., cor-
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pair-based model.

relation coefficient p = 1 between pre-
synaptic and postsynaptic spike trains).
The obtained synaptic changes there-
fore provide an upper bound for the ef-
fect of spike timing on plasticity. To
relax this strong timing constraint, we
next allowed only a fraction p of presyn-
aptic spikes to be followed by a postsyn-
aptic spike after a fixed time lag A (Fig.
5A). For simplicity, we keep the overall
firing rates of the two neurons equal by
introducing a fraction 1-p of uncorre-
lated postsynaptic spikes (Fig. 5A). In
this setting, the fraction p is equivalent
to the correlation coefficient between
the presynaptic and postsynaptic spike
trains (p p) and quantifies the
strength of timing constraints. Decreas-
ing p (i.e., p) from 1 (fully correlated
spike trains) to 0 (uncorrelated spike
trains) does not impact the shape of
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Light and dark red lines indicate the firing rate increase evoking the same synaptic change as spike-pair correlations with p = 0.2and p = 0.4, respectively.

STDP curve but progressively decreases its magnitude (Fig.
3C,E). Realistic correlations range up to p = 0.4 (Cohen and
Kohn, 2011), which corresponds to an ~50% reduction of the
synaptic changes relative to the upper bound given by p = 1
(Fig. 3C,E).

In summary, a simple modification of the standard spike timing
stimulation protocol, consisting of presenting spike-pairs irregularly
rather than periodically, strongly changes the dependence of synap-
tic changes on both firing rate and spike timing.

Synaptic changes induced by spike timing can be reproduced
by varying the firing rate alone

We next asked how the magnitude of synaptic changes from
spike-pair correlations compares with changes from increases

in firing rate for uncorrelated presynaptic and postsynaptic
neurons.

Increasing the rate of uncorrelated (p = 0), irregular firing in
presynaptic and postsynaptic neurons gives a Bienenstock-
Cooper-Munro-like curve (Bienenstock et al., 1982) in the
calcium- and the triplet-based models: no synaptic change at low
rates, depression at intermediate, and potentiation at high firing
rates (Fig. 5B, C, black lines). The decrease in slope of change in
synaptic strength versus firing rate beyond 20-30 spk/s is due to
the multiplicative scaling of the learning rules. In contrast, syn-
aptic changes in the classical pair-based model depend only
weakly on firing rate: the equilibrium value of the synaptic
strengths attained for along induction protocol is independent of
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firing rate, but the timescale needed to reach this asymptote de-
creases with firing rate (Rubin et al., 2001), so that in a fixed-
duration protocol used here (T = 10 s), the change in synaptic
strength shows a weak dependence on firing rate (Fig. 5D, black
line).

Adding spike-pair correlations with fixed positive time lags
(p > 0and A = 10 ms) increases synaptic strength (Fig. 5B-D)
with respect to the uncorrelated case in all models, whereas cor-
relations with short negative time lags decrease synaptic strength
(Fig. 5B-D; e.g., A = —10 ms) in the triplet- and the pair-based
models. Strikingly, in both calcium and triplet-based models, the
magnitude of synaptic changes elicited by adding correlations can
in most cases also be induced by increasing or decreasing the
firing rates of both neurons in the absence of correlations (Fig.
5B,C). For instance, for the triplet-based model, the synaptic
strength increase obtained by correlating spike trains at 20 spk/s
(p = 0.4) is 0.28, and the same change in synaptic strength can be
attained by increasing the firing rate in the absence of correlations
to 35.3 spk/s (an increase by 76.5%; Fig. 5C). However, in the
triplet model, correlations with negative time lags induce stron-
ger synaptic depression than what can be reproduced by varying
the firing rate of uncorrelated neurons alone.

To further contrast the variation of synaptic plasticity with
respect to spike-pair correlations and firing rate, we systemati-
cally compared the change in synaptic strength induced by
adding correlations to uncorrelated spike trains, to the change
induced by a firing rate increase of uncorrelated neurons. We call
those measures sensitivity to correlations or rate variations, re-
spectively. The sensitivity to correlations is the difference in syn-
aptic strength between the correlated and the uncorrelated value,
for a given firing rate (for the definition, see Eq. 25; for an illus-
tration, see Fig. 5C). The sensitivity to rate changes is the differ-
ence between the synaptic strength attained at a baseline firing
rate and the synaptic strength attained by increasing the firing
rate by a given amount (for the definition, see Eq. 26; for an
illustration, see Fig. 5C). Both quantities depend on the starting
or baseline firing rate of the neurons, and the sensitivity to cor-
relations in addition depends on the time lag A and the correla-
tion coefficient p (Fig. 5E-I). We did not calculate the sensitivity
to rate changes for the pair-based model as the dependence on
firing rate is very weak (see above).

The sensitivity of synaptic plasticity to spike-correlations
reaches a maximum at low firing rates (~12 spk/s for the
calcium-, ~17 spk/s for the triplet-, and ~19 spk/s for the pair-
based model) and decreases as the firing rates are increased fur-
ther (Fig. 5E-G). Similarly, the sensitivity to rate changes displays
a maximum at low firing rates and vanishes at high firing rates in
the calcium- and the triplet-based models (Fig. 5H,I). Both
models exhibit a good quantitative match in their sensitivities to
rate changes (compare Fig. 5H and Fig. 5I). To quantitatively
compare the effects of correlations and firing rates, we computed
the amount of firing rate increase needed to reproduce the syn-
aptic changes induced by correlations of a given strength (Fig.
5H,1, light and dark red lines). In the calcium-based model,
the sensitivity to correlations vanishes at high firing rates; in
turn, its relative influence compared with rate changes de-
creases with firing rate (Fig. 5H; see Discussion). Because the
influence on plasticity of both correlations and firing rate co-
vary with the baseline firing rate in the triplet-model, their
relative impact remains approximately constant over a large
range of firing rates in that case (most changes induced by
spike timing correlations, p = 0.4, can be reproduced by in-
creasing the firing rate by <16 spk/s; Fig. 5I).
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Together, our results show that synaptic changes due to spike
timing can in most cases be reproduced by varying the firing rate
in the absence of constraints on spike timing. Correlations and
rate changes both have a strong impact on synaptic plasticity at
low baseline firing rates (<20 spk/s). As the baseline firing rates
are increased, the impact of additional correlations or rate
changes decreases.

Correlations due to common inputs

In physiological conditions, the timing between correlated pre-
synaptic and postsynaptic spikes is variable, unlike the fixed-pair
correlations considered in previous sections. We now turn to
correlations generated by common inputs to presynaptic and
postsynaptic neurons (Fig. 6A), a realistic source of correlations.
We show that our central finding obtained for fixed-pair corre-
lations directly extends to this case: the effects of pre-post corre-
lations on synaptic plasticity can be reproduced by a modest
variation of the firing rates in absence of correlations.

We consider two integrate-and-fire neurons mutually cou-
pled by plastic synapses (Fig. 6A). The two neurons receive fluc-
tuating inputs mimicking the barrage of synaptic inputs neurons
receive in vivo. A fraction of this input is shared between the two
neurons, the remaining part being independent (de la Rocha et
al., 2007). Varying the fraction of shared input allows us to vary
the amplitude of the correlation between the two neurons with-
out changing their firing rates, which can be controlled indepen-
dently. We again compare the effects of correlations and firing
rate on synaptic changes.

Increasing the fraction of common inputs increases the corre-
lation coefficient between presynaptic and postsynaptic spike
trains and leads to a change in synaptic strength (Fig. 6B). The
relationship between the correlation coefficient and the induced
synaptic change appears to be approximately linear over a large
range (for illustration, see Fig. 6B), and the corresponding slope
can be mathematically computed for the models studied here (see
Materials and Methods). This slope is determined by two factors:
(1) the correlation function between presynaptic and postsynap-
tic spike trains (Fig. 64, right); and (2) and the effective STDP
kernel determined by correlations from spike-pairs with fixed
time lag (Fig. 3 B, D). Both of these quantities depend on the firing
rate, which therefore influences the slope of the dependence be-
tween correlations and synaptic changes. The range of correlation
coefficients over which the linear approximation is accurate de-
pends on the model considered (Fig. 6B).

In the absence of common inputs, the change in synaptic
strength as a function of the firing rate of the two connected
neurons follows a Bienenstock-Cooper-Munro-like profile
similar to uncorrelated neurons firing Poisson spike trains for
the calcium- and the triplet-based models (Fig. 6C,D; compare
Fig. 5B, C). Increasing the fraction of common inputs results
generally in an increase of synaptic changes. As before, an
equivalent increase can be induced by increasing the firing
rates of the two neurons in the absence of common inputs in
the calcium-based and the triplet-based model (Fig. 6C,D) but
not in the pair-based model as explained in the previous sec-
tion (Fig. 6E).

The sensitivity of synaptic changes to common inputs (Eq. 25)
and firing rate variations (Eq. 26) in the calcium-based and
triplet-based models shows a behavior similar to the one found
for fixed time lag correlations (compare Fig. 6 F,G,I,] and Fig.
5E,F,H,I): synaptic changes exhibit maximum sensitivity to
common inputs and firing rate variations at low baseline firing
rates, and both sensitivities decrease with increasing firing rate
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the baseline firing rate (two examples shown for the calcium- and the triplet-based models). (~E, Change in synaptic strength as a function of the firing rate of uncorrelated, intermediate and
strongly correlated integrate-and-fire neurons, for the calcium- (with linear calcium dynamics, €), the triplet- (D), and the pair-based (E) models. Both neurons receive (1) no common input (p =
0, black), (2) weak common input yielding p = 0.2 (light red), and (3) strong common input yielding p = 0.4 (dark red). F-H, Sensitivity of synaptic plasticity to correlations (Eq. 25) as a function
of the firing rate, for the calcium- (E), the triplet- (G), and the pair-based (H) models. The correlation coefficients are p = 0.2 (light red) and p = 0.4 (dark red). /, J, Sensitivity of synaptic plasticity
tofiring rate changes (Eq. 26) for the calcium- (/) and triplet-based (J) models. Color codeillustrates the synaptic change for a given baseline firing rate (x-axis) and increase in firing rate (y-axis). Light
and dark red lines indicate the firing rate increase evoking the same synaptic change as correlations from common input with p = 0.2 and p = 0.4, respectively, for the respective baseline rate.

correlations increases the synaptic strength. This additional
increase is the strongest when either the presynaptic or the post-
synaptic firing rate is low (Fig. 7B). To compare the effects of
correlations and firing rates, we computed the amount of firing
rate increase in both presynaptic and postsynaptic neurons

(Fig. 6 F,G,1,]). Quantitatively, the sensitivity to rate changes is
nearly matched between the calcium- and the triplet-based mod-
els (Fig. 6 1,]). The only notable difference between the two mod-
els appears in the sensitivity to correlations at high firing rates
(compare Fig. 6F and Fig. 6G), as this sensitivity vanishes in the

calcium-based model for firing rates >40 spk/s.

So far, we focused on the situation in which presynaptic and
postsynaptic firing rates are equal, but our analysis can easily be
extended to the more general case of different presynaptic and
postsynaptic activities. In absence of correlations, the amount of
synaptic change depends mainly on the postsynaptic firing rate in
both calcium-based and triplet-based models (Fig. 7A4). Adding

needed to reproduce the synaptic changes induced by correla-
tions corresponding to a correlation coefficient p = 0.4 (Fig. 7C).
The amplitude of the equivalent firing rate increase is comparable
with the equal baseline firing rate case considered above (v,
Vpose) fOr most values of presynaptic and postsynaptic firing rates,
except for aregion at low presynaptic and high postsynaptic firing

rates in the triplet model where a large equivalent increase in
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ms); we refer to those as firing rate corre-
lations (mean = SD, 0.5504 = 0.221; Figs.
2, 8B; see Materials and Methods).

To disentangle the effect of short-time
and firing rate (long timescale) correla-
tions on synaptic plasticity, we apply two
Gaussian jitters to the spike trains: (1) a
short jitter with 80 ms SD, which selec-
tively removes short-time correlations but
leaves firing rate correlations intact; and
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(2) a long jitter with 1 s SD, which addi-
tionally strongly reduces firing rate corre-

Figure7.

10 s stimulation.

firing rate is required (it does not exceed 15 spk/s for the calcium-
based model, and 20 spk/s for the triplet-based model; Fig. 7C).

In summary, our findings for fixed-pair correlations directly
extend to the case of correlations from common inputs: synaptic
changes due to pre-post correlations can be reproduced by a
modest variation of the firing rates in absence of correlations.
Indeed, we expect this result to hold for any type of correlations
between presynaptic and postsynaptic spike trains regardless of
origin, as changes in response to weak correlations of any type can
be mathematically derived from the case of fixed-pair correla-
tions considered above (see Materials and Methods).

Natural firing patterns

Our interest ultimately lies in understanding how naturally occur-
ring firing patterns shape synaptic plasticity. We therefore used
single-unit activities recorded simultaneously in cortical area MT
of awake macaque monkeys to drive plasticity changes in models
of synaptic plasticity. An important difference with the previous
stimulation protocols is the nonstationary nature of the monkey

Dependence of synaptic changes on dissimilar presynaptic and postsynaptic firing rates. A, Change in synaptic
strength for uncorrelated integrate-and-fire neurons, for the calcium-based model (with linear calcium dynamics, left) and
the triplet-based model (right). The coefficient of variation for both neurons was fixed to 1independently of the firing rate.
B, Sensitivity to correlations (Eq. 25). Additional increase in synaptic strength obtained by adding common inputs leading
to a correlation coefficient p = 0.4. C, Firing rate increase in both presynaptic and postsynaptic neurons needed to
reproduce the synaptic changes induced by common-input correlations with p = 0.4 (B). All changes are in response to a

lations (Figs. 2G—J, 8B; see Materials and
Methods).

Two mutually connected model neu-
rons were exposed to the recorded spike
trains as well as to jittered spike train
surrogates. Synaptic changes for similar
mean firing rate over 10 s firing epochs
exhibited large fluctuations due to het-
erogeneous firing rates of presynaptic
and postsynaptic neurons, varying amounts of firing rate fluc-
tuations and a wide range of correlations (Fig. 2A-D). Despite
the variability, the average change in synaptic strength showed
a marked dependence on the mean firing rate in both the
calcium- and the triplet-based models (Fig. 8C,D), whereas
the mean synaptic strength did not depend on the firing rate in
the pair-based model, as previously noted (Fig. 8E).

Short-time correlations induced potentiation in all models.
Removing such short time-scale correlations reduced synaptic
strength, resulting on average in positive sensitivity to short-time
correlations (Fig. 8F-H, green lines). Firing rate fluctuations
around the mean rate during the 10 s epoch induce on average
potentiation, leading to a positive sensitivity to firing rate corre-
lations in the calcium- and triplet-based models but have no
effect in the pair-based model (Fig. 8F-H, magenta lines). As
before, the sensitivity to short-time correlations and firing rate cor-
relations (for calcium- and triplet-based models) both exhibit a
maximum at intermediate firing rates and decreases at high rates
(Fig. 8F—H ). The sensitivity to short-time correlations and firing rate
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Synaptic plasticity induced by spiking activity recorded in monkey area MT. 4, lllustration of multiunit recordings in monkey area MT. Moving dots stimuli were displayed for 500 ms

while the monkeys fixated. B, Short and long time-scale correlations in the monkey data. Applying a Gaussian jitter with zero mean and a 80 ms SD eliminates short-time but preserved firing rate
correlations (magenta lines), whereas a jitter with a 15 SD eliminates short and strongly reduces long time-scale correlations (black lines). (~E, Change in synaptic strength induced by experimen-
tally recorded spiking activity in the calcium- (with linear calcium dynamics, €), the triplet- (D), and the pair-based models (E). The mean and the SD of the change in synaptic strength is shown as
function of the mean firing rate (bin size 2 spk/s) for the original spike trains and the jittered surrogate spike trains. F~H, Sensitivity to short-time correlations and firing rate correlations in the
calcium- (F), the triplet- (G), and the pair-based models (H). The mean and the SD of the difference in synaptic strength from the original spike train and the short jittered spike train (green); as well
asfor the synapticstrength difference between the spike trains with short and longjitter (magenta; bin size 2 spk/s) is shown. I, J, Sensitivity of synaptic strength to firing rate changes in the calcium-
() and the triplet-based model (J). Color code illustrates the synaptic change for a given baseline firing rate (x-axis) and increase in firing rate (y-axis) based on the spike train with longjitter (C, D,
black line). Magenta and the green lines indicate the firing rate increase evoking the same synaptic change as short-time and firing rate correlations as depicted in F, G. All data and changes are

derived from 10-s-long epochs of the recorded firing patterns.

correlations exhibit similar amplitudes across all firing rates in the
calcium- and the triplet-based model (Fig. 8 F, G, compare magenta
and green lines), implying that temporal variations in the instanta-
neous firing rate have quantitatively the same effect on plasticity as
correlations of spike times on a short time-scale.

Synaptic changes induced through short-time- and firing rate
correlations are both small compared with those induced by a
modification of the mean firing rate in the calcium- and the
triplet-based models (Fig. 81,]). Similarly to the sensitivity to
short-time and firing rate correlations, modifications of mean
firing rates induce large synaptic changes at low baseline firing
rates, and their impact decreases at high baseline rates (Fig. 81,]).
Strikingly, a 6 spk/s increase in mean firing rates alone is suffi-

cient to reproduce changes from short-time and firing rate cor-
relations in the calcium-based model (except for very low
baseline firing rate), whereas a 12 spk/s increase in mean firing
rate captures those changes in the triplet-based model (Fig. 8 1,]).
In the data, an average firing rate fluctuation above mean >6
spk/s (12 spk/s) occurs for mean rates >3 spk/s (13 spk/s) (Fig.
2E), illustrating that typical firing rate fluctuations are much
larger than what would be required to account for synaptic
changes from correlations.

Consistent with our results for numerically generated, irregu-
lar spike trains, we find that, for natural spike trains, synaptic
changes induced by timing constraints between spikes can be
equivalently induced by a modest increase in mean firing rates.
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Synaptic plasticity in the calcium-based model with nonlinear calcium dynamics. 4, B, Fits of the calcium-based model with nonlinear calcium dynamics to the experimental data

obtained for reqular (4) and irregular (B) spike-pairs (Sjostrom et al., 2001) (same depiction as Fig. 14). €, Change in synaptic strength versus time lag between presynaptic and postsynaptic spike
for reqular spike-pairs presented at low frequency. The change is elicited by 75 spike-pairs occurring at 1 Hz. D, Change in synaptic strength as a function of the time lag between presynaptic and
postsynaptic spikes for irregular (orange) and reqular spike-pairs (blue) at different firing rates (see top of each panel). E, Change in synaptic strength as a function of firing rate for several values of
the correlation coefficient p and time lag A. F, Sensitivity of synaptic changes to spike-pair correlations. G, Sensitivity of synaptic changes to firing rate changes. E-G, Same depiction as in Figure
5B, E, H, respectively, but for the calcium-based model with nonlinear calcium dynamics. D-G, The reported synaptic changes are in response to a 10 s stimulation.

The magnitude of synaptic changes induced by timing con-
straints is moreover quantitatively similar to synaptic changes
due to firing rate fluctuations.

Calcium-based model with nonlinear calcium dynamics
In the calcium-based model, synaptic changes are driven by pre-
synaptically and postsynaptically evoked calcium influx. Up to
this point, we considered a simplified model of the calcium dy-
namics in which calcium transients elicited by presynaptic and
postsynaptic spikes sum linearly. Could a more realistic, nonlin-
ear calcium dynamics, mediated by the coincidence-dependent
NMDAR current, enlarge the effect of synchronous inputs and
therefore increase the impact of spike timing on plasticity? To
answer this question, we examined a nonlinear calcium dynamics
implementation that includes a coincidence-dependent NMDAR
current. Here we show that our main results do not depend on the
implementation of the calcium dynamics.

In the nonlinear calcium implementation, the calcium tran-
sient elicited by a postsynaptic spike consists of two components
(see Materials and Methods): (1) a voltage-dependent calcium

channel-mediated part; and (2) a nonlinear NMDA part con-
trolled by a parameter that characterizes the increase of the
NMDA mediated current in case of coincident presynaptic acti-
vation and postsynaptic depolarization. The calcium transient
elicited by a presynaptic spike remains unchanged and has the
amplitude C,.

To compare the results of the calcium-based model from the
“nonlinear calcium dynamics” with the “linear calcium dynam-
ics,” we first fit the calcium-based model to the Sjostrom et al.
(2001) datasets using the nonlinear calcium dynamics (Fig.
9A,B). Interestingly, the calcium-based model with the non-
linear calcium implementation provides the best fit of the
regular- and jittered spike-pairs presented at different fre-
quencies compared with the calcium-based model with linear
calcium dynamics and the triplet-based model (compare Fig.
9A, B with Fig. 14, B).

We then compared the STDP curves for regular- and irregular
spike-pairs at different rates (Fig. 9D). As before, we furthermore
varied the firing rate for a given A and correlation between pre-
spikes and postspikes to quantitatively compare the impact of
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firing rate changes and correlations on synaptic changes (Fig. 9E).
Strikingly, despite the fact that the detailed shape of the STDP
curve is different in the calcium-based model with nonlinear cal-
cium dynamics, the conclusions drawn previously do not depend
on the implementation of the calcium dynamics. When compar-
ing synaptic changes induced by irregular spike-pairs with those
induced by regular spike-pairs: (1) irregular spike-pairs induce
less depression and more potentiation than regular spike-pairs;
and (2) the influence of spike timing is reduced for irregular
spike-pairs compared with regular spike-pairs (compare Fig. 9D
and Fig. 3B). The sensitivity to correlations reaches a peak at low
firing rates (~15 spk/s) and decreases as the firing rates are in-
creased further (Fig. 9F). Similarly, the sensitivity to rate changes
displays a maximum at low firing rates and decreases at high
firing rates (Fig. 9G). The results for the nonlinear calcium model
are therefore qualitatively similar to the calcium-based model
with linear calcium dynamics and the triplet-based model. Quan-
titatively, the magnitude of the sensitivity to correlations is sim-
ilar to the triplet-based model (compare Fig. 9F and Fig. 5F) at
low (<20 spk/s) firing rates, whereas it vanishes at high firing
rates as in the calcium-based model variant with linear calcium
dynamics (compare Fig. 9F and Fig. 5E).

In summary, the extension of the model by a nonlinear ver-
sion of the calcium dynamics demonstrates that the conclusions
drawn on the overall reduction in sensitivity to spike timing cor-
relations in the calcium-based model does not depend on the
calcium implementation.

Discussion

Combining numerical simulations with mathematical analyses of
synaptic plasticity models, we have examined the effect of in vivo-
like, irregular spiking activity on synaptic changes. We have char-
acterized the spiking activity in terms of two basic statistical
properties, the firing rate, and the correlations between presyn-
aptic and postsynaptic spike trains that quantify the spike timing
constraints. Our overarching finding is that synaptic changes in-
duced by realistic correlation strengths can in most cases be re-
produced by a modest variation of the firing rates alone. These
results call into question the dominant role of spike timing for
long-term synaptic plasticity in natural conditions, and suggest a
more nuanced picture in which depending on spike rate and
irregularity both firing rate and correlations shape synaptic
changes with variable influence.

Generality of the findings

Our central finding (that synaptic change from correlations can
be attained by uncorrelated firing rate variations) holds for both
firing rate-dependent plasticity models investigated here: the
calcium-based and the triplet-based models. The parameter val-
ues in these models were determined from fits to cortical plastic-
ity data (Sjostrom et al., 2001). Qualitatively, our findings,
however, do not depend on the precise parameter values. Numer-
ical simulations show that our results also extend to other mod-
els, such as the voltage-based plasticity rule by Clopath et al.
(2010). Generally, the sensitivity of synaptic plasticity to firing
rate changes and correlations decrease as the firing rate is in-
creased in multiplicative update schemes of synaptic strength,
such as used here. Quantitatively, we find that the experimental
data constrained the models to yield very similar sensitivities to
rate changes (Figs. 5H,I, 61,], 81,]). Differences between the
models emerged with respect to the sensitivities to correlations:
(1) The triplet-based model is up to two times more sensitive to
correlations at intermediate firing rates (depending on the stim-
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ulation protocol; see Figs. 5E, F, 6 F,G, 8 F,G) than the calcium-
based model with linear calcium dynamics (the magnitudes
nearly match when comparing triplet-based model and the non-
linear calcium dynamics variant; Figs. 5F, 9F). (2) The sensitivity
to correlations vanishes in the calcium-based model at high firing
rates (Figs. 5E, 6F, 8F, 9F). This latter difference stems from the
fundamentally dissimilar approach to link spikes with synaptic
changes in both models. In the triplet-based model, the depres-
sion and potentiation rates are determined by the statistics of
doublets and triplets of spikes. In contrast, the thresholding of
calcium to determine potentiation and depression strength in the
calcium-based model reduces sensitivity to the statistics of the
spike train at high firing rates. We expect the same reduction in
sensitivity to correlations to occur in models involving the
thresholding of calcium (e.g., Shouval et al., 2002; Rubin et al.,
2005; Urakubo et al., 2008).

Comparing the effects of spike timing and rate

Our aim was to determine the respective influences of spike tim-
ing and firing rate on synaptic plasticity in natural spike trains.
The typical values of firing rates and spike-time correlations,
however, vary strongly between species, cortical regions, behav-
ioral conditions, and even between neighboring neurons (Cohen
and Kohn, 2011; Buzsaki and Mizuseki, 2014) and are constantly
reevaluated as recording techniques evolve. The primate data
used here lie at the higher end of the spectrum both in terms of
maximal firing rates and correlations attained. Firing rates attain
up to 25 spk/s in visual cortex (Livingstone and Hubel, 1981), <5
spk/s in the auditory cortex (Edeline et al., 2001), and <1 spk/s in
the barrel subfield of the somatosensory cortex (Crochet and
Petersen, 2006). In turn, plasticity induction rules might be
adapted to the prevalent firing rate, with spike timing-based
learning playing a key role in structures exhibiting low firing rates
(Celikel et al., 2004). However, low rates necessarily imply low
spike-time correlations (de la Rocha et al., 2007), and this is the
case in the barrel cortex (Celikel et al., 2004), so that very small
changes in firing rates might suffice to produce plastic changes
comparable with those obtained from correlations. According to
our results, the impact of correlations on plasticity might also be
dominant in structures exhibiting more regular firing, or spiking
linked to the 6 rhythm, such as in the hippocampus (Buzsaki and
Draguhn, 2004). Ultimately, to conclusively compare the effects
of spike timing and rate among structures and species, we would
need to know plasticity parameters for the different systems in
addition to the activity statistics. The available plasticity data
points to large variations of the shapes of STDP curves, the mag-
nitude of changes and processes underlying plasticity between
regions, species, and even synapse types. To which extent and in
which manner this variability in plasticity is matched to statistics
of activity is currently not clear.

Experimental predictions

A few experimental studies explored cortical plasticity in re-
sponse to irregular firing patterns. By jittering presynaptic and
postsynaptic spikes in a spike-pair protocol, LTD was induced at
low presentation rates and LTP at high rates in synapses between
layer V neurons in the visual cortex (Sjostrom et al., 2001). Re-
peated presentations of 1-s-long spike trains recorded in the vi-
sual cortex in vivo from L2/3 neurons with partially overlapping
receptive fields evoked plasticity, which could be predicted based
on the spike timing relationships between presynaptic and post-
synaptic spikes (Froemke and Dan, 2002). Furthermore, AP time
series recorded simultaneously from hippocampal place cells in



Graupner et al. o Natural Firing Patterns and Synaptic Plasticity

freely moving rats were replayed at CA1 synapses and shown to
induce LTP (Isaac et al., 2009). However, a systematic compari-
son between the effects on synaptic changes of firing rate and
spike timing in irregular spike trains has not been experimentally
performed, to our knowledge. Our study suggests that an optimal
protocol would consist of Poisson distributed spike-pairs at var-
ious frequencies (Fig. 3), as the effect of more general correlations
can be deduced from this specific case. Other factors in addition
to irregular spiking patterns, such as the high-conductance state
of neurons (Rudolph et al., 2005; Delgado et al., 2010), inhibition
often blocked in in vitro studies (Schulz et al., 2010), neuromodu-
lation (Pawlak et al., 2010), and changes in extracellular calcium
concentration (Higgins et al., 2014), might further complicate
the extrapolation from in vitro plasticity results to the in vivo
situation.

Spike timing as a ground rule for synaptic plasticity

From a theoretical standpoint, the experimental evidence for
STDP (Magee and Johnston, 1997; Markram et al., 1997; Bi and
Poo, 1998) led to the proposal that spike timing constitutes a
ground rule for synaptic plasticity (but see Shouval et al., 2010).
That proposal was embodied in the standard pair-based plasticity
rule (Kempter et al., 1998; Song et al., 2000; Rubin et al., 2001).
Although the simplicity of that rule is extremely appealing, the
pair-based rule is anomalous in the sense that it depends mainly
on the second-order correlations of spike trains, but only weakly
on the first-order statistics (i.e., their firing rates: a possible reso-
lution is the nearest-neighbor implementation of the pair-based
rule (Izhikevich et al., 2003)). The lack of firing rate dependence
in the all-to-all pair-based model leads to an inflated sensitivity to
correlations and challenges its common use for network plasticity
studies. More generally, experimental data have shown that plas-
ticity depends on both first-order (firing rate) and second-order
spiking statistics (spike timing correlations). We find for the
calcium- and triplet-based models, two very different instances of
learning rules, that second-order statistics (correlations) have
second-order effects on the plasticity outcome with respect to
firing rate.

Implications for network dynamics

Theoretical studies have extensively used spike-based plasticity
rules to model learning in networks of neurons. Understanding
the effect of these rules on the dynamics of recurrent networks is
challenging because of the complex interplay between synaptic
and neural dynamics. Our results suggest a possible way forward.
In a majority of network models, the dynamics are dominated by
firing rate changes, while the spike-time correlations are often
small (Renart et al., 2010). In such a situation, plastic changes are
largely determined by variations in firing rates, and the interplay
between plasticity and network dynamics could be amenable to
analysis in the framework of mean-field theory based on time-
varying firing rates (Brunel, 2000).

By dissecting the influence of firing rate and spike timing on
synaptic plasticity, we aimed here to provide a conceptual link
between in vitro plasticity results and in vivo firing patterns. As
the majority of existing studies, here we assessed the effects of
activity on plasticity by looking at an individual synapse. The
strength of a single synapse, however, is not necessarily a good
measure for the efficiency of learning, as large effects on network
activity could be generated by a conjunction of many weak
changes at the level of individual synapses (see, e.g., Yger et al.,
2015). Ultimately, the quantity of interest is the pattern of synap-
tic changes at the network level, and the main question is how this
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pattern is translated into behaviorally relevant motifs of neural
activity (Bienenstock et al., 1982; Gjorgjieva et al., 2011). Relating
network-wide synaptic changes with network activity under nat-
ural conditions is currently challenging, both from an experi-
mental and theoretical point of view. Recent experiments that
track network activity during learning using calcium imaging
(Kato et al., 2015; Makino and Komiyama, 2015; Poort et al.,
2015) may provide an important foray in this direction. Theoret-
ically, the framework developed here to link natural firing pat-
terns and plasticity should facilitate the study of plasticity at the
network level.
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