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Summary

Alopecia areata (AA) development is associated with both innate and adaptive immune cell 

activation, migration to peri-and intra-follicular regions, and hair follicle disruption. Both CD4+ 

and CD8+ lymphocytes are abundant in AA lesions; however, CD8+ cytotoxic T lymphocytes are 

more likely to enter inside hair follicles, circumstantially suggesting that they have a significant 

role to play in AA development. Several rodent models recapitulate important features of the 

human autoimmune disease and demonstrate that CD8+ cytotoxic T lymphocytes are 

fundamentally required for AA induction and perpetuation. However, the initiating events, the self-

antigens involved, and the molecular signaling pathways, all need further exploration. Studying 

CD8+ cytotoxic T lymphocytes and their fate decisions in AA development may reveal new and 

improved treatment approaches.
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Introduction

Alopecia areata (AA) is a common, non-scarring hair disorder involving sudden loss of hair 

with spontaneous remission, reoccurrence, and exacerbation [1]. Human AA typically 

CORRESPONDENCE TO: Kevin McElwee. Department of dermatology and Skin Science, University of British Columbia, 835 West 
10th Avenue, Vancouver BC, V5Z 4E8, Canada. kmcelwee@mail.ubc.ca. 

Financial and competing interests disclosure
This work was supported by grants from the North American Hair Research Society (NAHRS) and the Canadian Dermatology 
Foundation (CDF). K McElwee is a recipient of the Canadian Institutes of Health Research (MSH-95328) and Michael Smith 
Foundation for Health Research [CI-SCH-00480(06-1)] investigator awards. K McElwee and J Shapiro are founders and shareholders 
of Replicel Life Sciences Inc. The authors have no other relevant affiliations or financial involvement with any organization or entity 
with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those 
disclosed.

Expert Rev Clin Immunol. Author manuscript; available in PMC 2016 December 09.
Published in final edited form as:

Expert Rev Clin Immunol. 2015 ; 11(12): 1335–1351. doi:10.1586/1744666X.2015.1085306.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



presents as patchy hair loss in the early acute phase, but with time, it can progress to the loss 

of all scalp hair (alopecia totalis) or body hair (alopecia universalis) in subsets of affected 

individuals [1]. Hair loss affected areas of skin are smooth with natural color, or 

occasionally slightly pink. The hair fibers at the border of AA patches may be short, broken 

“exclamation mark” hair fibers with a broader distal end compared to the proximal end [1,2]. 

Nail pitting and longitudinal ridging abnormalities can also be observed in around 17% of 

AA patients [3]. The lifetime incidence of AA is greater than 1% in most populations; in a 

recent analysis the rate in North America was calculated at 2.1% [4]. It is one of the more 

common hair loss diseases accounting for 25% of all dermatology clinic alopecia cases 

[5,6]. The distribution of AA across both sexes and different races is believed to be generally 

comparable [6]. The course of the disease is unpredictable and no treatment is curative or 

preventive [7]. Consequently, the onset of disease can be emotionally disturbing, despite it 

being non-life threatening, and mental health comorbid conditions (depression, anxiety) are 

common in AA patients [8]. AA is likely associated with other autoimmune diseases 

including thyroid disorders, anemia, and psoriasis, though the true correlative statistical 

significance remains somewhat controversial [9–12]. More consistently demonstrated in 

epidemiology studies is a high prevalence of atopy (allergic rhinitis, asthma, and/or eczema) 

among individuals with AA [13,14].

Substantial progress in basic and clinical immunology research suggests that AA is a CD8+ 

cell, Th1-type autoimmune reaction against anagen stage hair follicles [15]. Many other cell 

types, including keratinocytes [16], fibroblasts [17], mast cells [18] and dendritic cells [19–

21] also contribute to AA pathogenesis, coordinating with T cells. Immune activity is 

particularly enriched in the skin [22] and discrete populations of resident and recirculating 

memory T cells with differing territories of migration and distinct functional activities have 

been identified [23]. In this review we set out to establish the principle mechanisms by 

which lymphocytes, particularly CD8+ cytotoxic T lymphocytes (CTLs), may contribute to 

AA pathogenesis and propose potential approaches through which lymphocytes can be 

modulated to curb the development of this common autoimmune disease.

Basic evidence in support of a lymphocyte mediated disease mechanism

Genetic studies, including single-nucleotide polymorphisms (SNPs) and genome-wide 

association (GWAS) investigations, demonstrate that AA is a polygenic disorder involving a 

complex interaction of environmental and genetic factors [24]. Most of the identified GWAS 

loci implicate genes with innate and adaptive immune function and several have previously 

been linked to other autoimmune diseases [25]. While there is no obvious, clinically visible 

inflammation in most AA patients’ skin, histopathological examination reveals anagen stage 

hair follicles to be affected by a peri-and intra-follicular inflammatory cell infiltrate of 

primarily CD4+ and CD8+ cells [26]. In association with active disease, there is increased 

expression of major histocompatibility complex (MHC) class I and II along with increased 

numbers of antigen presenting cells (APCs) in AA lesions [27]. CD8+ cells readily penetrate 

to intra-follicular regions while CD4+ cells are located almost exclusively in a peri-follicular 

location in AA [26,28,29]. As considerable cell destruction in inflammation typically occurs 

through close association between lymphocytes and target cells, the CD8+ cells are in the 

most suitable location to disrupt hair follicle growth in AA. Factors expressed by activated 
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CTLs, perforin, granzymes, granulysin and Fas-ligand that trigger programmed cell-death, 

are all elevated in AA affected hair follicles [30–33]. CTLs in AA can also release tumour 

necrosis factor alpha (TNFα) and interferon-gamma (IFNγ) which may potentiate cell 

killing [34]. CD4+ T-cells, the T helper (Th) cells, likely play a critical supporting role for 

CTLs by means of the cytokines they produce, particularly IL-2 and IFNγ [34,35]. 

Surprisingly, while follicular inflammation can be quite intense, there is typically no scar 

tissue formation in AA [36]. Anagen stage hair follicles may enter a telogen resting phase to 

avoid CTL aggression and permanent destruction. Subsequently, hair follicles may return to 

anagen if the inflammation subsides [37]. Counteracting follicular inflammation in AA with 

immunosuppressive drugs can enable hair regrowth [38][8].

The role of lymphocytes in alopecia areata pathogenesis

Hair follicle immune privilege

The current popular hypothesis to explain AA pathogenesis focuses on “immune privilege” 

(IP) collapse in hair follicles and an associated activation of autoreactive lymphocyte cells 

[39]. Anagen stage hair follicles have a thick proteoglycan-rich basement membrane that 

may block the penetration of the hair follicle by immune cells [40]. The lower one third of 

hair follicles are normally devoid of MHC class I and Class II which are required for the 

presentation of antigens to the immune system [40–42]. Research also suggests hair follicles 

may have some ability to block lymphocyte activity through the Fas – Fas ligand system as 

identified in eye graft models [33,43,44]. Recent studies indicate that the connective tissue 

sheath cells of hair follilces express PDL1 [45]. PDL1 is significant in feto-maternal 

tolerance [46–48]; it delivers an inhibitory signal through PD1 on T cells to induce cell 

anergy [49,50]. In addition, one of the first lines of defense in hair follicle IP likely involves 

secretory factors. Secreted immune suppressors αMSH, IGF-1, and TGFβ are all expressed 

in hair follicles [40,51]. Studies also suggest pleiotropic secretory factors such as 

somatostatin may further help support hair follicle IP [52]. These factors could allow hair 

follicles to regulate immune cells in the surrounding vicinity in advance of actual contact 

with hair follicle tissues.

Immune privilege collapse in alopecia areata

Antigenic challenge or activated lymphocyte cell transfer can induce autoimmune disease 

against most immune privileged sites including the testes [53,54], cornea [55], and pregnant 

uterus [56]. Any putative hair follicle IP may also similarly be broken by activating the 

immune system against hair follicle autoantigens. Potentially, focal infection, microtrauma, 

neurogenic inflammation, or endocrine dysfunction, disrupts hair follicle IP. A deficiency of 

some immunoregulatory factors in the hair follicle such as red/IK, an antagonist of IFNγ-

induced expression of MHC class II antigens [57], may further facilitate IP breakdown. With 

loss of immune suppressor functions, any ectopic upregulation of MHC class I expression 

may be recognized by autoreactive CD8+ cytotoxic cells which are intrinsically able to 

perceive and be activated by very few peptide -MHC class I complexes [58]. The activation 

of CD8+ cells may potentially lead to a more extensive immune response. Cells disrupted by 

CD8+ cytotoxic cells release nucleic acids and self-antigens, these complexes can activate 

APCs promoting T cell priming, additional lymphocyte recruitment, and effector 
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differentiation [31,39,59,60]. Peri-and intra-follicular inflammatory cell infiltration promotes 

formation of dystrophic anagen stage hair follicles in early AA and later may enforce a 

chronic inactive telogen state [61].

More fundamental evidence has been amassed in support of an IP collapse mechanism: 

CD8+ cells, CD4+ cells, and CD56+ cells (NK cells) are rarely seen around anagen hair 

follicles in healthy skin, however, these cells prominently infiltrate in and around hair 

follicles in AA lesions [62]. MHC class I is strongly expressed in AA lesions, along with 

MHC II. Classical upregulators of MHC I expression like interferon (IFN)-γ [31], tumor 

necrosis factor (TNF)-α, and interleukin (IL)-1β [63] are enhanced in AA lesions and 

down-modulators of MHC I expression (IL-10, αMSH, IGF-1, TGFβ) are modified in AA 

lesions as well [18,31,64]. Specific genetic polymorphisms of HLA-DQB1 and HLA-DRB1, 

which belong to the HLA class II beta chain paralogs, strongly correlate to increased 

probability of AA onset [65–67].

Furthermore, IFNγ can be used to induce AA in C3H/HeJ mice [68], though this 

observation has been difficult to replicate [69]. However, mice genetically deficient in IFNγ 
are resistant to the development of AA [70]. It has also been shown that αMSH, IGF-1, and 

TGFβ can downregulate IFNγ induced ectopic MHC class I expression in human anagen 

hair follicles in vitro [71]. A failure of normal MHC suppression in the proximal anagen hair 

bulbs may render these hair follicle cells susceptible to recognition by CD8+ cytotoxic cells 

and/or APCs. Loss of hair follicle IP might be an early key event in the pathogenesis of AA. 

Currently, AA research is challenged with identifying the key inducers of hair follicle IP 

collapse and “hair follicle -IP guardians” that prevent and/or can restore IP collapse [39].

T cell-mediated immune responses in alopecia areata

Lymphocyte balance between self-tolerance and autoimmunity

T cell-mediated immunity includes priming of naïve T cells, effector functions of activated T 

CD4+ T helper cells and cytotoxic CD8+ T cells and later, long-term persistence of memory 

T cells [72]. A predominance of inhibitory over stimulatory signals is required for the 

maintenance of self-tolerance and conversely, a predominance of stimulatory signals over 

inhibitory signals is required for effective immune responses to pathogens or for 

autoimmunity to develop. Autoimmunity results from failure to maintain peripheral 

tolerance to self-antigens [73]. T cells can oppose or promote autoimmune disease through 

regulatory and suppressor cells activities, or as helper and cytotoxic effectors, respectively 

[74]. CTLs can help prevent autoimmune disease by assisting with the elimination of self-

reactive cells and self-antigen sources [75]. Breakdown of immune regulatory mechanisms 

may enable the onset of autoimmunity [76].CTLs can promote autoimmune disease by 

dysregulated secretion of pro-inflammatory cytokines to skew lymphocyte differentiation 

profiles and induce inappropriate apoptosis induction of target cells.

Activation of lymphocytes in alopecia areata

Scalp immunohistochemistry reveals that activated CD4+ and CD8+ T cells, APCs and a few 

neutrophils and mature mast cells, accumulate around anagen stage hair follicles [18]. The 
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CD8+ cells localize to intra-follicular regions in the proximal hair bulb early in acute AA 

[31,77,78]. CD8+ cells are less numerous than CD4+ T cells, but their ability to penetrate to 

intra-follicular locations likely enables greater disruption and destruction by CD8+ CTLs. 

The changes in lymphocyte subsets are not just localized to the skin, but are also reflected at 

the systemic level in draining lymph nodes and spleens of AA affected mice, and peripheral 

blood mononuclear cell (PBMC) populations of AA patients [31,35]. With loss of hair 

follicle IP, infiltrating CTLs can recognize antigenic peptides presented in the context of 

MHC class I via their TCR [79].

Using a skin graft-induced mouse model and a sequential time course study, rapid changes 

occur in the immune system several weeks in advance of visible hair loss. APCs are depleted 

from the skin and accumulate in draining lymph nodes, while proinflammatory cytokine 

expression increases [80]. Presumably, upon recognition of autoantigens (in this case, hair 

follicle-associated proteins) presented by APCs, naïve CD8+ T cells differentiate into CTLs 

and undergo clonal expansion in secondary lymphoid organs; primarily skin draining lymph 

nodes. As activated effector cells, they migrate to peripheral tissues. Subsequently, but still 

in advance of overt hair loss, a diffuse lymphocyte infiltrate accumulates in mouse skin, and 

over time exhibits greater focus on hair follicles [29]. Similarly, the earliest observations on 

human AA reveal an extravasation from dermal capillaries and diffuse accumulation of 

lymphocytes around the upper regions of follicles, swiftly followed by a more focused 

inflammation of hair follicle bulbs as hair loss occurs [81].

CD8+ cytotoxic lymphocyte mediated hair follicle disruption

Mounting evidence, primarily derived from studies with animal disease models, has 

demonstrated that CD8+ CTLs are fundamentally required for AA induction and 

perpetuation [82]. By microarray analyses, several key effector CTL specific transcripts have 

been identified in mouse and human AA skin [16]. Depletion of CD4+ or CD8+ cells using 

monoclonal antibodies (mAb) enables hair regrowth in mouse and rat models [83–85]. 

Transfer of CD8+ T cells in conjunction with CD4+ T cells can induce extensive AA lesions 

in mouse models [16,77,86–88]. Subcutaneous injection of CD8+ cells alone induces 

localized hair loss and CD4+ cells alone promotes systemic AA [86], highlighting the 

different characteristics and roles of CD8+ T cells and CD4+ T cells in skin disease, with 

CD8+ T cells as executors and CD4+ T cells as a helper cells [89]. Further, it has been shown 

that clonal class I MHC-restricted CD8+ lymphocytes can independently mediate AA after 

intravenous transfer into mice [77]. The transfer of human CD8+ cells alone suffices to 

induce AA in AA patients’ scalp skin transplanted to severe combined immunodeficient 

(SCID) mice [87]. Therefore, it has been proposed that CD8+ cells promote AA 

pathogenesis, acting as cytolytic effectors responsible for the autoimmune attack on hair 

follicles [16].

However, much less is known about how the inflammatory infiltrate elicits hair loss. 

Destruction of hair follicle cells by CTLs may be mediated directly through the Fas or 

perforin pathways and/or indirectly by the release of cytokines to cause cellular damage and 

tissue destruction [74]. The elevation of pro-inflammatory mediators such as IFNγ and IL-6 

family cytokines in AA affected skin could directly adversely affect hair growth [51,90]. 
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Notably, while apoptosis is significantly increased in inflamed, AA affected, anagen stage 

hair follicles, and the pathology of the follicles is severely disrupted, the follicles are not 

completely destroyed [91]. Hair follicles have superior regenerative ability [92], and it may 

also be possible that the CTL action is somewhat restrained by any residual IP activity.

TH17 cells may contribute to alopecia areata development

TH17 cells are a subset of T helper cells producing interleukin 17 (IL-17) that are 

developmentally distinct from TH1 and TH2 cell types [93]. The proinflammatory activity of 

TH17 cells can be beneficial during infection [94]. However, the production of IL-17 by 

TH17 cells is strongly implicated in the development of autoimmune disorders including 

psoriasis, rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and multiple 

sclerosis (MS). There is a reciprocal developmental pathway for the generation of 

pathogenic TH17 cells and protective T regulatory (Treg) cells in the immune system. TH17 

and Treg subsets may therefore have evolved to induce or regulate tissue inflammation, 

analogous to the dichotomy of TH1 and TH2 T-cell subsets [95]. Cytokines TGFβ, IL-6 and 

IL-1β are essential for initiating TH17 cell development, but they inhibit Treg differentiation 

[96]. IL-23, a cytokine produced by dendritic cells and other antigen-presenting cells, serves 

as a pivotal factor that drives both the differentiation and inflammatory functions of 

pathogenic TH17 cells [97]. It has been revealed that SNPs of the IL17RA gene are 

associated with AA onset age in Korean patients [98]. Serum cytokine levels of IL-17A are 

significantly increased, and TGFβ1 is significantly decreased, in patients with AA compared 

with controls [99]. In AA lesions, infiltration of CD4+IL-17A+ TH cells have been found in 

the dermis, particularly around hair follicles [100][101]. Recently, a decrease in the number 

of skin infiltrating IL-17+ T cells was observed after topical immunotherapy with squaric 

acid dibutylester (SADBE) [102]. The data suggests that IL-17 is involved in the 

pathogenesis of AA, though the full significance remains unclear.

Deficient function of regulatory T cells in alopecia areata

Regulatory T cells are subpopulations of T cells which modulate the immune system, 

maintain tolerance to self-antigens, and are involved in preventing autoimmunity [103]. 

Tregs come in many forms with the most well-understood being those that are CD4+CD25+ 

and Foxp3+ (natural Tregs) [104]. The cells manifest their regulatory function through cell 

contact mediated regulation via TCR, and other molecules such as CTLA-4, GITR, and 

LAG-3 [105]. Foxp3+ T cells also produce a number of regulatory cytokines, including 

TGFβ, IL-10 and IL-35 [106–109]. Of these, TGFβ appears to have a crucial role in Foxp3 

maintenance of Treg cells and the ability of Treg cells to induce non-Tregs to develop 

regulatory properties, a feature known as infectious tolerance [110,111]. Evidence from 

murine studies suggests that suppression mediated by cytokines is of particular importance 

at environmental interfaces, such as the gut, skin and lungs [106,112,113]. In autoimmunity, 

a lower frequency of Tregs is often observed in the active disease state [114,115]. Genetic 

deficiency in Treg production significantly increases the risk of autoimmune disease 

development [116]. Also of note, some CD8+ T-cells can express Foxp3. These cells have 

been shown to be induced in vitro through TCR-dependent stimulation and exhibit 

immunosuppressive activity [117].
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Research on Tregs in AA is limited. There is a decrease in the number of Tregs in AA 

affected C3H/HeJ mice [86]. Transfer of unexpanded Treg cells from AA mice to healthy 

recipients was less likely to induce an AA phenotype. Treg transfer was also able to prohibit 

systemic AA development induced by CD4+CD25− cells as well as prevent injection site-

specific hair loss induced by CD8+ cells [86]. Mice resistant to the onset of AA exhibit high 

levels of regulatory cytokines such as IL-10 [79]. These observations indicate that deficiency 

in the potential regulatory properties of CD4+CD25+ Treg cells may further enable AA 

development. In humans with AA, significant defects in the activity of Treg cells have been 

identified. Circulating Treg cells from AA patients are incapable of restraining activated 

lymphocytes while pathogenic cells exhibit apoptosis resistance [34,35]. Although overall 

Foxp3+ Treg numbers seem to be normal in PBMC populations of AA patients, their 

function is impaired [99,118]. SNPs in the promoter regions of gene Foxp3 and gene 

ICOSLG (inducible T-cell co-stimulator ligand) which affects Treg functions have been 

associated with a reduced expression of the FOXP3 and ICOSLG genes in AA patients 

[119]. It has recently been shown that cutaneous memory Tregs (mTregs) reside in human 

skin which have unique cell surface marker expression and cytokine production [120]. 

Interestingly, mTregs preferentially localize to hair follicles and are more abundant in skin 

with high hair density [120]. The potential role of mTregs in AA has not so far been 

investigated.

Dysregulation of cytotoxic T lymphocyte activation in alopecia areata

Naïve T cells are produced in the thymus and released into the bloodstream in low numbers 

until they encounter foreign antigens in secondary lymphoid tissues. The cells are 

maintained in a quiescent and non-dividing state by interleukin-7 (IL-7) and TCR signaling, 

which sustain expression of antiapoptotic molecules and allow the cells to survive in 

interphase [121]. TCR-peptide-MHC ligation and costimulatory signals on the surface of 

APCs are a prerequisite for naïve T cell activation [122,123]. With antigenic peptides 

engaged by TCR and costimulatory signals from APCs, classically first encountered in 

draining lymph nodes [88], naïve T-cells proliferate and differentiate into effector cells 

(Figure 1). Subsequently, 90–95% of the effector cells undergo apoptosis following the peak 

of the expansion phase during which effector cells exhibit significant cytokine production 

and cytolosis functions. The remaining 5–10% of T cells survive and give rise to long-lived 

memory populations [124]. The peripheral maturation of naïve T cells is regulated by 

cytokine and TCR signaling [125]. In contrast to naïve T cells, the homeostatic proliferation 

of memory T cells is not dependent on MHC molecules; only IL-2, IL-15 and IL-7 are 

required for induction of memory CD8+ T cell proliferation [125,126]. Expression of genes 

involved in the IL-7 receptor (IL-7r) pathway and TCR signaling correlates with poor a 

prognosis in some autoimmune diseases [127].

In a transgenic model of AA, mice with dual TCR expression develop spontaneous AA at 

nearly 100% incidence [77]. Notably MHC class I restricted CD8+ T cells are capable of 

independently mediating alopecia development and progression, while MHC class II are not 

required for disease development in this model [77,86]. Similarly in a humanized mouse 

model, CD8+ cells promote AA [88]. The data identify the key role of MHC class I 

restricted antigen presentation to CD8+ T cells in AA. Surprisingly, only a few genome 
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studies indicate MHC class I loci are associated with AA susceptibility, whereas several 

studies demonstrate strong linkage between MHC class II loci and AA in both humans and 

rodent models [24,128].

Notably, there is an unusually high frequency of AA in polyendocrinopathy-candidiasis-

ectodermal dystrophy (APECED) patients [129]. Mutations of the autoimmune regulator 

(AIRE) gene, causes the monogenic autoimmune disease APECED [130]. APECED patients 

have significantly decreased expression of IL-7r, as well as a decreased expression of the 

homing factors CCR7 and CD62L on CD8+ T cells. The, dysregulation induces a naïve 

CD8+ T cell population skew towards an effector CD8+ CTL phenotype [131]. Gene 

expression profiles from lesions of AA patients show modulation of IL7r expression [132], 

and upregulation of IL-15 and IL-15Rβ on infiltrating CD8+ T cells have been found in 

human AA [16]. The data suggest there is dysregulation of CD8+ cell activation in AA.

Lymphocyte homeostasis and migration in alopecia areata

T cell homeostatic mechanisms involve maintenance of a diverse repertoire of naïve cells, 

rapid elimination of effector cells after pathogen clearance, and long-term survival of 

memory cells [121]. Naïve T cells, effector T cells, and memory T cells, are characterized by 

different phenotypes and anatomical locations [133]. Lymph node homing molecules L-

selectin (CD62L), CCR7 and lymphocyte function-associated antigen (LFA-1) are highly 

expressed on naïve CD8+ T cells and are critical for the homing of the cells. Effector CD8+ 

T cells lose expression of CD62L and CCR7, while gaining the expression of P-and E-

selectin ligands, inflammatory chemokine receptors (e.g., CXCR3 and CCR5) and additional 

integrins, resulting in efficient recruitment of these cells to inflamed tissues [124]. Memory 

CD8+ T cells re-express CCR7 and CD62L and memory CD8+ T cells heterogeneously 

express higher levels of β1 (CD29, CD49d and CD49e) and β2 (CD11a, CD11b and CD18) 

integrins, CD2, CD44, CD54, CD58 and other cell surface molecules [134]. Compared to 

naïve cells, memory T cells express the IL-2R β-chain (CD122), Ly-6C and the common 

leukocyte antigen (CD45) [133].

The selective migration of T cells is regulated by the combined expression of selectins, 

integrins and chemokine receptors [135]. CCL17/CCR4 and CCL20/CCR6 which are 

important for effector T cells to reach to inflamed tissues are increased in AA lesions [21]. 

CD8+ T cells in AA development have low expression of CD62L and high expression of 

CD44 and CD44 variants which are important for the migration of leukocytes to inflamed 

tissue [21,80]. Transfer of CD8αβ+NKG2D+ T cells with an activated T effector memory 

cell phenotype (CD62lowCD44hi) induced AA in healthy recipients [16,36]. The studies 

suggest that AA is associated with markedly increased proportions of memory effector cells 

as defined by diminished levels of CD45Rb and CD62L and increased expression of CD44, 

CD69 and CD25 [77]. Taken together, circulating effector memory CD8+ T cells with skin 

homing properties are present in AA development.

Potential role of skin resident T cells in alopecia areata

The circulating memory T-cell population is divided into three subsets: effector memory 

(TEM), central memory (TCM) and tissue-resident memory (TRM) cells. These subsets can 
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be distinguished by their localization, as TCM home to secondary lymphoid organs and 

provide spontaneous help to B cells [121], TEM circulate through non-lymphoid tissues, and 

TRM are found in peripheral tissues where they exert reactive memory functions [136]. 

Since the majority of TRM cells are CD8+ T cells, tissue-resident CD8+ T cells are now 

commonly referred to as TRM [137]. The origins of the TRM subset and how this subset 

relates to TCM and TEM remains unclear, it is possible that TRM arises directly from the 

effector T cell pool by unique signals from the microenvironment of the peripheral tissue 

[137].

There are distinct differences in the skin localization of CD4+ and CD8+ T cells. It has been 

shown that slow-moving CD8+ T cells actively patrol the epidermis, isolated from the 

circulating pool. In contrast, dynamic CD4+ T cells traffic rapidly through the dermis as part 

of a wider recirculation pattern [89,138]. Generation of TRM cells in skin requires CD69, 

TGFβ and IL-15 signals [139,140]. Skin resident T cells are able to respond to antigen 

exposure more rapidly than circulating memory CD8+ T cells [139] and potentially, they 

could effect a range of peripheral immune phenomena [89]. They can recruit new antigen-

specific memory CD8+ T cells and bystander cells from the circulation, activate neighboring 

NK cells and B cells by providing a local source of IL-2, IFNγ, and TNFα, and directly kill 

local cells [140].

Skin resident T cells have recently been characterized [141,142]. There are a significant 

number of memory T cells in normal skin; nearly twice the number of T cells observed in 

the circulation [136]. Skin resident T cells uniformly express high levels of cutaneous 

lymphocyte function-associated antigen (CLA), CCR4, and CCR6. CLA is a skin-homing 

receptor uniquely expressed by skin T cells [141]. Also, CCR4, and CCR6 have been 

implicated in cutaneous T cell homing under homeostatic as well as inflammatory 

conditions [143,144]. Theoretically, skin resident T cells may play initial roles in AA 

progression. Infiltrating T cells in AA lesions strongly express CLA, CCR4, and CCR6, 

suggesting skin resident T cells may be active in AA pathogenesis [21,145].

Other cell types involved in alopecia areata pathogenesis

Dendritic cells as specialized sentinel cells in alopecia areata

Dendritic cells (DCs) control both steady-state T cell tolerance and the development of 

autoreactive T cells, serving as a bridge between the innate and adaptive immune systems 

without engaging directly in effector functions [146]. There are three main cutaneous DC 

populations: epidermal Langerhans cells, plasmacytoid DCs (pDCs) and conventional or 

classical DCs (cDCs) (previously called Myeloid DCs, mDCs) [147][148]. In healthy human 

skin the majority of cDCs express CD1c and CD11c [149]. During steady-state conditions, 

pDCs are absent from the skin, they have only been identified in inflamed skin where they 

promote wound repair and mediate the systemic pro-inflammatory response [150]. DCs are 

dedicated APCs that have a characteristic dendritic morphology and express high levels of 

MHC class II molecules and are highly effective at antigen presentation and T-cell 

stimulation [59]. DCs recognize pathogen-associated molecular patterns (PAMPs) using 

pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), and then they 

migrate to T cell areas of lymphoid organs (such as initial afferent lymph vessels of the skin) 
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to present pathogen-derived antigens to antigen-specific T cells [151]. Antimicrobial 

peptides may lead to pDC activation and protective immune responses to skin injury, 

however overexpression of antimicrobial peptides in psoriasis drives excessive sensing of 

self-nucleic acids by pDCs resulting in IFN-driven autoimmunity. Therefore type I IFN 

production by pDCs, might represent a common mechanism that leads to pathogenesis in 

autoimmune diseases such as psoriasis, systematic lupus erythema (SLE) and diabetes 

mellitus type 1 (T1D) [148].

In AA, immunohistochemical detection of pDCs using anti-BDCA-2 (a marker highly 

specific for DCs) and anti-myxovirus resistance protein A (MxA) (for detection of IFN-β 
neutralizing antibodies) respectively showed that pDCs were present in peri-bulbar locations 

in all AA lesions and in an active state producing type I IFNs [19]. The number of epidermal 

LCs in the epidermis of the AA patients do not differ from healthy controls, whereas 

diphenylcyclopropenone (DPC) induced contact sensitization leads to an increased number 

of MMP-9+ CD1a+ dermal cells during the initial phase of sensitization, suggesting the 

migration of LCs from the epidermis, through the dermis, and later to the draining lymph 

nodes [20]. The limited data suggest that DCs could contribute to AA pathogenesis, though 

the underlying significance needs further research.

Activation of mast cells in alopecia areata initiation and progression

Mast cells are the lead effector cells in the immediate responses that can occur when 

sensitized individuals come into contact with allergens in peripheral tissues [152][153]. 

Significant mast cell activity is elicited by allergens complexed to immunoglobulin-E (IgE) 

molecules, as well as many other non-allergic triggers including anaphylatoxins (C3a and 

C5a), aggregated IgG, certain drugs, venoms, and physical stimuli (pressure and temperature 

changes), cytokines and neuropeptides [154,155]. Activation of mast cells leads to 

degranulation and release of a broad array of mediators including histamine, serotonin, 

proteases, and tumor necrosis factor (TNF) [152,154]. Mast cells can also selectively release 

pro-inflammatory mediators without degranulation, particularly IL-6 and vascular 

endothelial growth factor (VEGF) [156]. Abnormal interactions between mast cells and 

lymphocytes has been demonstrated in multiple sclerosis (MS), rheumatoid arthritis (RA), 

insulin-dependent diabetes mellitus (IDDM), bullous pemphigoid, chronic idiopathic 

urticaria, atopic dermatitis and experimental vasculitis [157]. In AA, significantly more 

physical mast cell/CD8+ T cell contact is observed compared to healthy or non-lesional 

human skin. During the interaction with CD8+ T cells, mast cells prominently express MHC 

class I and OX40L, suggesting that mast cells may potentially present antigens and/or co-

stimulatory signals to CD8+ T-cells [18]. Treatments targeting mast cells have been 

investigated for use in some autoimmue diseases [156,157 {Theoharides, 2015 #233], drugs 

considered to ‘stabilize’ mast cells (for example, cromolyn sodium) have been showed 

ameliorating disease severity in EAE.[158]. Use of anti-histamines as an adjunct treatment 

in AA has been suggested [15].
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Alopecia areata treatments and treatment development

Current common treatments for alopecia areata

Among the various therapies presently available for AA, the most common approach is the 

use of intralesional and topical steroids [159]. Though rarely used in North America, 

systemic corticosteroid regimens are also effective [7]. Intralesional injections of 

corticosteroid suspensions, primarily triamcinolone acetonide, have been used for the 

treatment of AA for over 50 years [160]. Several clinical studies demonstrate hair regrowth 

at the site of injection [161]. Although widely used for AA, there are few placebo controlled 

studies on corticosteroid efficacy for AA and none fully satisfy the requirements of evidence 

based medicine (EBM). However, comparative intra-control investigations demonstrate a 

significant beneficial effect [162].

Use of skin irritants to treat AA have been recorded in literature since ancient times and AA 

has been treated with contact sensitizing agents for more than 30 years [163–165]. Today, 

diphenylcyclopropenone (DCP) or squaric acid dibutylester (SADBE) are widely used in 

countries outside of the USA for the treatment of more extensive AA presentations [7]. 

Though the mode of action is not fully understood, inducing a mild inflammatory response 

to contact sensitizing agents enables hair regrowth in some individuals. Treatment with DCP 

and SADBE have been shown to be effective according to the rules of EBM [160].

The discovery of the underlying mechanisms of current therapies may shed light on the 

future treatment development. Rodent AA models have been used to screen experimental 

and approved drugs for efficacy [166]. In SADBE-treated mice, the number of perifollicular 

FasL positive cells is strikingly increased [167]; leukocyte traffic to the skin is hampered 

[168], and the emigration of APCs into the draining lymph nodes is hindered [21]. Studies 

suggest that the therapeutic efficacy of contact sensitizers in AA may also involve driving 

autoreactive T cells into activation-induced cell death [167], reversing a disturbed 

chemokine balance that interferes with effector T-cell homing into AA-affected skin, 

reducing antigen presentation in draining lymph nodes [21,168], and possibly, expansion of 

myeloid suppressor cells that contribute to autoreactive T cell silencing [169].

Immunoregulatory drug treatments for alopecia areata investigated with rodent models

Differences between rodents and humans mean that not all treatments can be screened or 

investigated with disease models, particularly biologics specifically designed to target 

human molecules. Further, research data from rodents is not always directly translatable to 

the human state. However, a potential significant advantage with animal models of human 

disease is for rapid screening of new treatment candidates and/or investigation of their mode 

of action [166].

Previously, C3H/HeJ mice and DEBR rats have been treated successfully with tacrolimus 

(FK506). The treated rodents had reduced perifollicular infiltrates of CD4+ and CD8+ cells 

and a decreased expression of MHC class I and II and ICAM-1 on hair follicle epithelium, 

providing evidence that suppressing the T cell mediated immune response and reversing hair 

follicle IP deficiencies are effective approaches for AA therapy [170]. However, studies with 

topical tacrolimus formulations in humans have proven less effective, possibly due to a lack 
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of skin dermis penetration [171,172]. Similar rodent studies with cyclosporin in topical 

liposome formulations have also been conducted [173].

More recently, the mouse model has been used to study Janus kinase (JAK) inhibitors. IFNγ 
produced by CD8+ effector T cells signals via JAK1 and JAK2 intracellular pathways to 

produce IL-15 and IL-15r. The binding of IL-15 and IL-15r on CD8+ T cells mediates 

activation and further enhances the production of IFNγ by CD8+ T cells via JAK1 and JAK3 

pathways [16]. Ruxolitinib and tofacitinib are US Food and Drug Administration (FDA)–

approved small-molecule JAK inhibitors. While ruxolitinib inhibits JAK1 and JAK2, 

tofacitinib inhibits JAK3 [36]. Systemic ruxolitinib and tofacitinib prevents the onset of AA 

in mice, and topical ruxolitinib and topical tofacitinib result in complete hair regrowth in AA 

mice, associated with a markedly reduced number of CD8+NKG2D+ T cells in the treated 

skin and lymph nodes [16]. Notably, three AA patients treated with oral ruxolitinib achieved 

near-complete hair regrowth within 5 months of treatment, suggesting the potential clinical 

utility of JAK inhibition in human AA [16]. Currently, there are several promising 

investigations into the use of these and other JAK inhibitors for treating AA (unpublished 

data).

Design of effective immunotherapies for alopecia areata

Taken together, from treatments currently in use and treatment investigations in rodent 

models, plus the research into hair follicle IP and its loss in AA development, the data 

suggest several approaches to the development of new, potentially superior AA treatments. 

The current conventional therapy for human AA is based on nonselective immunoregulation 

achieved with corticosteroids or contact sensitizers. The emergence of more specific immune 

modulators in recent years has provided new candidate treatment options [174]. Targeting 

and modulation of the immune cells, their production and activity, which may include 

depleting pathogenic T cell populations and dampening the pathological immune response, 

may be effective in treating AA [175]. In principle, there are two basic approaches to the 

design of effective immunotherapies for human autoimmunity: non-antigen-specific immune 

checkpoint inhibitors which target MHC-TCR signaling, costimulation, and cytokine inputs 

[176], and antigen-specific therapies that induce tolerance to self-antigens [177]. As 

examples, immunotherapy development for other autoimmune diseases has focused on the 

induction of tolerance to beta cell antigens in Type I diabetes mellitus, anti-alpha 4 integrins 

and altered peptide ligand of myelin basic protein (MBP 83–99) in multiple sclerosis, anti-

cytokine therapy (anti-TNFα and IL-1Rα) in rheumatoid arthritis, and anti-CD20 

monoclonal antibody for in vivo B cells depletion and subsequent autologous peripheral 

stem cell transplants for systemic lupus erythematosus patients [178].

Targeting cytokine signaling

Activated CD8+ T cells can produce very high levels of TNFα and IFNγ, which may 

contribute directly and/or indirectly to target cell destruction in autoimmune mechanisms 

[179]. Blockade of TNFα has clear therapeutic benefit in some autoimmune diseases, 

particularly psoriasis [180]. TNFα is expressed in both lesions [181] and sera of patients 

with AA [182], but notably, TNFα inhibitors have been shown to have little effect on AA 

and may even be associated with AA development in some individuals [183,184]. The data 
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suggest TNFα plays a rather more complicated role in AA pathogenesis than was previously 

thought and may even have some protective function [181]. In small scale studies, anti-IFNγ 
treatment showed significant hair restoration potential in patients with AA [185]. IFNγ 
deficient mice are resistant to the development of AA [70] and blockade of IFNγ prevented 

AA onset and reduced accumulation of CD8+NKG2D+ T cells in AA mouse skin [16,68], 

suggesting an approach to abrogate the IFNγ signaling in CD8+ T cells could be a therapy 

for AA. Targeting of other proinflammatory cytokines may also be effective.

Interference with antigen presentation and costimulation

Disruption of the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) mediated CD28-

CD80/CD86 costimulatory pathway can prevent onset of AA in the mouse model [186]. The 

absence of co-stimulation during antigen presentation can induce deletion and anergy of 

cognate T cells [187]. It implies that an AA treatment may interfere with co-stimulation or 

APC assisted activation of effector CD8+ T cells [188]. Cytotoxic T-lymphocyte–associated 

antigen 4–IgG (CTLA4-Ig), known as abatacept and belatacept, prevents binding of CTLA4 

on T cells to CD80 and CD86 on APCs. These treatments have been approved for the 

treatment of rheumatoid arthritis in humans [189,190]. It may not be enough to target just 

one costimulatory pathway given the immune activity in AA is very strong. Importantly, new 

strategies are being devised to target several co-signaling molecules, or other components of 

the immune response, in combination therapies. These combination strategies include, but 

are not limited to, targeting additional surface molecules, targeting specific signaling 

molecules, cell-based vaccination strategies, or use in conjunction with more traditional drug 

treatments [190].

Skin localized immune checkpoint blockade

In AA, a treatment hindering the activation of tissue resident cells into effector CD8+ T cells 

may be effective. As skin TRM do not need to leave the epidermis and enter the draining 

lymph nodes to be primed, disruption of the interaction between TRM and APCs or co-

stimulation in the skin could be an ideal target. Priming of CD8+ TRM within the tissue 

requires recruitment of APCs as well the help from specific CD4+ T cells [136,191]. A 

combination therapy aimed at targeting skin resident autoreactive CD4+, CD8+ T cells and 

APCs may be efficacious [179]. Once skin resident T cells are activated and the immune 

response is underway, neutralizing CTL action could be a potential treatment approach for 

AA. There are at least two CD8+ T-cell subsets (Tc1, Tc2) in human skin, both of which can 

express the Fas ligand and perforin cytotoxic pathways and display significant cytotoxic 

activity against keratinocytes [192]. Inactivation and degradation of perforin/granzyme B 

[193] and blockade of Fas-FasL signaling [194] may be novel therapeutic strategies for AA 

treatment. Early treatment with immune checkpoint inhibitors to delete active CD8+ T cells, 

or blockade CD8+ T cell recruitment, might hold promise when the antigen specificity is not 

known or the disease has already progressed to a stage where more specific therapy may be 

inefficient [179].

Promoting immune tolerance and Treg cell activity

It has recently been shown that Tregs residing in human skin have unique cell surface 

marker expression and cytokine production [120]. Interestingly, cutaneous Tregs 
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preferentially localize to hair follicles and are more abundant in skin with high hair density 

[120], implying that modulating the balance of TRM and Tregs might be a potential AA 

treatment approach. Studies demonstrate the beneficial effects of Tregs in inducing tolerance 

in multiple autoimmune and inflammatory diseases such as cardiac fibrosis [195], bacteria 

induced sepsis [196], diabetes [197] and asthma [198]. Notably, in vitro expansion of Tregs 

followed by adoptive transfer has become an active area of research for autoimmune disease 

treatment [115]. However, such an approach requires knowledge of the specific target 

antigens to allow relevant epitope specific Tregs to be isolated. Non-specific Treg 

stimulation in situ may be an alternative. IL-2 at low dosages can non-specifically stimulate 

Treg cells. In a small pilot study, subcutaneous IL-2 injections increased Treg cell numbers 

and enabled partial hair regrowth in AA patients [199].

Vitamin D may hold promise for treatment and prevention of autoimmune disease [200]. 

The vitamin D receptor is expressed on immune cells (B cells, T cells and APCs), and 

vitamin D can suppress immune responses and promote a more tolerogenic status in part 

through supporting Treg cell function [201][202]. Notably, vitamin D affects the expression 

of the IFN signature in SLE [203] and immune cells from multiple autoimmune diseases 

appear to respond to the immunosuppressive effects of vitamin D [201]. Vitamin D 

deficiency may be a significant risk factor for AA occurrence [204]. Application of 

calcipotriol, a strong vitamin D analog, is associated with hair regrowth in AA patients [205]

{Cerman, 2015 #674}.

Control of cell migration

Priming of CD8+ T cells requires recruitment of APCs as well as help from specific CD4+ T 

cells in secondary lymphoid tissues [136,191]. Lymphatic entry, which controls the 

recruitment of mature Ag-charged APCs from the periphery via afferent lymphatics, acts as 

a rate limiting step in the development of immunity and is a potential target for localized 

immunotherapy [206]. One of mechanisms by which contact sensitizers may work in AA is 

to impede skin-derived APC migration into draining lymph nodes, as shown in AA mice 

[21]. It has been proposed that therapeutic siRNA-mediated silencing of inflammatory 

monocyte migration is a potential strategy for the treatment of inflammatory diseases [207]. 

Alternatively and perhaps more practical, leukocyte traffic control into the skin has been 

proposed as a novel therapeutic strategy. Blockade of CD44v10 with mAbs impaired 

lymphocyte homing to the skin and prevented AA onset in a mouse model [208]. The 

expression of adhesion molecules on tissue microvasculature acts as a gateway, mediating 

the migration of activated leukocytes into tissue [209]. Natalizumab, a humanized 

monoclonal antibody against the cell adhesion molecule α4 integrin which inhibits 

leukocyte migration, is FDA-approved for the treatment of multiple sclerosis and Crohn’s 

disease [210]. These and other treatments to control cell migration may be effective for early 

stage AA.

Anergy promotion in pathogeneic T cells

Antigen-specific immunotherapy (ASIT) is based on the identification of pathogenic T cell 

subsets or the inciting autoantigen(s) that induce antigen-specific clonal responses 

[179,211]. ASIT provides a treatment approach focused on anergy and deletion of specific 
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autoreactive T cells and/or promotion of regulatory cells. These therapies ideally promote 

the specific tolerance of self-reactive immune cells without altering host immunity to 

infectious insults [212]. ASIT strategies that are currently under investigation involve T-cell 

vaccination (TCV), T-cell receptor (TCR) peptide vaccination, DNA vaccination, and altered 

peptide ligand (APL) vaccination [213]. Encouraging results in animal models using 

vaccines have prompted the design of novel and selective immune-based therapies for 

human autoimmune disease [214]. Recent initiatives to optimize immune monitoring should 

facilitate rational design, monitoring and mechanistic understanding of ASIT for human 

autoimmune diseases [175].

Development of ASIT for human AA has not been launched since the primary autoantigens 

of AA remain undetermined [188]. Studies suggest enrichment of CD8+ T cell subsets that 

target hair follicle keratinocyte expressed trichohyalin and melanocyte expressed epitopes, 

though other antigens are also likely targeted [215]. In mice, some preliminary investigations 

suggest autoantigen peptides may be used to control immune responses. Vaccination of mice 

with keratin K71 or K31 peptides significantly retarded AA induction and prevented disease 

progression. Dendritic cell-presented K71 and K31 peptides induced long-lasting T cell 

anergy in vitro [216]. However it is not known whether these keratins are natural 

autoantigens targeted in AA.

Restoring hair follicle immune privilege

As an alternative to the specific targeting of pathogenic immune cells, a focus on rescue and 

reassertion of IP in and around the hair follicle unit may be effective. The two approaches to 

treatment development are not necessarily mutually exclusive and potentially, a single 

treatment could have an effect on both the immune system and hair follicle IP. Hair follicle 

IP is present during anagen, but is lost during the resting and regression phases of the hair 

cycle [217], indicating the state of IP during the anagen phase of the hair follicle might be 

taken into account when developing any treatment for AA. The mechanism of maintaining 

hair follicle IP could include downregulation of the MHC class I pathway and IFN 

regulatory factor-1 expression and/or upregulation of secreted immunosuppressive factors 

such as TGFβ1 and TGFβ2, ACTH, and αMSH among others [217]. Alternatively, hair 

follicle IP could be reinforced by addition of new IP defenses. Given its potent suppressive 

effects, bolstering PDL1 expression with the addition of PDL1 expressing cells may provide 

protective reinforcement [45,218]. Exposure of AA patients’ PBMCs ex vivo to cord blood-

derived stem cells attenuates CD8+NKG2D+ T cells via PDL1 and B and T lymphocyte 

attenuator (BTLA)/herpesvirus entry mediator (HVEM) pathways. Reinfusion of the 

conditioned cells enables hair regrowth associated with increased TGFβ expression around 

hair follicles [219]. Whether this approach will prove to be practical is unknown, but a larger 

scale trial is underway. Provision of indoleamine 2,3-dioxygenase (IDO) expressing 

fibroblasts can significantly increase the number of CD25+FOXP3+ Treg cells and promote 

CD8+ T cell apoptosis [220]. Rodent model studies using injected IDO expressing cells to 

treat AA are ongoing (unpublished data).
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Conclusions

Taken together, a large body of evidence has accumulated supporting a CD8+ T cell 

mediated attack on hair follicles with CD4+ T cell help as the underlying mechanism of AA. 

Though the primary targets of lymphocytes have not been confirmed, it seems likely that 

hair follicle specific autoantigens are the main focus for effector and memory T cells. Future 

treatments for AA could be immunosuppressive or immunomodulatory to shield selected 

tissue compartments from autoaggressive immune attack via proper adjuvants, delivery 

systems, and optimized administration schedules [39,160,221]. Topical or skin localized 

treatments are a key focus of interest since AA is a relatively organ-restricted autoimmune 

condition. In the near future, topical therapy with JAK inhibitors shows potential as a first 

line defense against skin immune cell activity [16].

Expert commentary

In the last 10 years significant progress has been made in understanding the pathogenesis of 

alopecia areata. Large scale genome wide association studies have revealed multiple loci 

associated with susceptibility towards disease onset. Several of the loci have been shown to 

be associated with other autoimmune diseases, suggesting alopecia areata exhibits some 

disease features common to other autoimmune conditions. Using rodent models, functional 

data has identified specific lymphocyte subsets that mediate the disease pathology. While the 

epitope targets in hair follicles have not yet been identified, almost all evidence confirms 

alopecia areata is primarily a CD8+ cytotoxic T cell driven autoimmune disease. With our 

much improved understanding of alopecia areata, there are opportunities to develop new 

treatments or to adapt treatments developed for other diseases.

Five-year view

Key issues in alopecia areata will likely be addressed with new research in the near term. 

Information is severely lacking on environmental inputs; particularly candidate triggers for 

the onset of alopecia areata. Investigations by several laboratories are already underway to 

identify the inciting (auto)-antigen epitopes. Further characterization of lymphocyte subsets 

and other cells types will occur with a specific focus on the nature of the mode of action 

utilized to disrupt hair follicles and prevent fiber growth. Though characterization of normal 

hair follicle immune privilege is progressing well, still relatively little is known about the 

changes that occur in alopecia areata and the true significance of these changes for alopecia 

areata onset. In the near term, new treatments targeting the JAK-STAT signaling pathway, as 

topical formulations, are likely to emerge as more effective therapies for alopecia areata.

Abbreviations

APC antigen presenting cell

DS dermal sheath

IFN interferon

IL interleukin
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IRS inner root sheath

MHC major histocompatibility complex

ORS outer root sheath

TNF tumor necrosis factor

TRM tissue resident memory
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Key issues

• Alopecia areata is a hair follicle – specific autoimmune disease involving both 

innate and adaptive immune cells

• Activated lymphocytes, along with antigen presenting cells, synergize to 

initiate and promote alopecia areata

• CD8+ cytotoxic T lymphocytes are fundamentally required for alopecia areata 

induction and perpetuation

• The function of regulatory T cells may be defective in alopecia areata

• Hair follicles normally exhibit immune privilege, but these properties may be 

deficient in alopecia areata

• Blockade of antigen presentation and co-stimulation may prevent lymphocyte 

activation

• Targeting immune cells and their cytokine production may be effective in 

alopecia areata treatment

• Promoting regulatory T cells may restore immune system balance

• Restoring or augmenting hair follicle immune privilege may prevent alopecia 

areata pathogenesis
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Figure 1. Effector CD8+ T cells plays a critical role in initiating alopecia areata
Changes in normal hair follicle parameters in response to exogenous factors, such as 

infectious agents and/or trauma, in conjunction with endogenous factors, such as elevated 

stress hormones and/or genetic susceptibility, elicits activation of skin resident antigen 

presenting cells (APCs). APCs process hair follicle specific antigen epitopes in the presence 

of proinflammatory signals. Activated APCs migrate to skin draining lymph nodes to mature 

and present the pathogenic peptides to naïve T cells. Upon recognition of peptide-major 

histocompatibility complexes (MHC), in association with proinflamatory costimulatory 

signals on the surface of APCs, naïve T-cells proliferate and differentiate into effector T 

cells. Then, the effector T cells migrate to the skin and accumulate around anagen stage hair 

follicles. Primarily CD8+ T cells penetrate to intrafollicular locations to initiate the 

autoimmune attack in response to autoantigens in anagen stage hair follicles, while CD4+ 

cells remain in perifollicular locations. Hair follicle disruption may be mediated via pro-

apoptotic signals such as perforin and granzymes, and/or hair follicle regression may be 

induced via inflammatory cytokines. In addition to the inflammatory lymphocyte infiltrate, 

inflamed hair follicle keratinocytes in dystrophic hair follicles release cytokines, including 

IL-15 and IL-7, and may induce tissue resident memory T cell proliferation. The activated 
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memory T cells recruit new autoantigen-specific memory T cells and bystander cells from 

the circulation and further support direct disruption of hair follicle cells.
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