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Abstract

Theories of prospective memory (PM) posit that it can be subserved either by working memory 

(WM) or episodic memory (EM). Testing and refining these multiprocess theories of PM requires 

a way of tracking participants’ reliance on WM versus EM. Here we use multi-voxel pattern 

analysis (MVPA) to derive a trial-by-trial measure of WM use in prospective memory. We 

manipulated strategy demands by varying the degree of proactive interference (which impairs EM) 

and the memory load required to perform the secondary task (which impairs WM). For the 

condition in which participants were pushed to rely more on WM, our MVPA measures showed 1) 

greater WM use and 2) a trial-by-trial correlation between WM use and PM behavior. Finally, we 

also showed that MVPA measures of WM use are not redundant with other behavioral measures: 

in the condition in which participants were pushed more to rely on WM, using neural and 

behavioral measures together led to better prediction of PM accuracy than either measure on its 

own.
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INTRODUCTION

Prospective memory (PM) refers to our ability to remember to do things in the future. 

Theories of PM (Cohen and O’Reilly, 1996; Gollwitzer and Brandstätter, 1997; McDaniel 

and Einstein, 2000) posit that two strategies can be used: Participants can use working 

memory (WM) to actively monitor the environment for an appropriate time or event 

(Koechlin and Hyafil, 2007; Gilbert, 2011) or they can store the intention in episodic 
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memory (EM) and hope that it is automatically retrieved when the time comes to act on that 

intention (McDaniel and Einstein, 2007b; Beck et al., 2014; for related ideas about dual 

systems involved in PM and control see Cohen and O’Reilly, 1996 and Braver, 2012). PM is 

typically studied using a dual-task paradigm in which a PM task is embedded in another 

cognitive task that requires vigilance and frequent behavioral decisions (the “ongoing task”). 

The PM task requires a response after a particular event (the PM “target”) or after a certain 

amount of time has elapsed (McDaniel and Einstein, 2007a).

This multiprocess view of PM (Cohen and O’Reilly, 1996; McDaniel and Einstein, 2000) 

raises important questions about when people will rely on one memory strategy vs. the other, 

and how this strategy choice will affect performance. The current framing of the theory 

posits an adaptive view of the memory system in which there is a bias to minimize the 

cognitive demands of the PM task, thereby reducing interference costs from strategic 

monitoring (Smith, 2003; Einstein et al., 2005; Hicks et al., 2005). Thus an automatic 

retrieval strategy (relying on EM) is favored whenever possible so as not to overly burden 

ongoing processing. However, the theory also specifies that some circumstances, when 

sustained, should favor strategic monitoring (relying on WM); for example, “non-focal” 

tasks in which identification of a PM target requires attention to features that are not relevant 

to ongoing processing demands (Einstein et al., 2005; Scullin et al., 2010) and thus might be 

missed if not actively monitored.

To date, the primary approach to tracking use of strategic monitoring has been indirect: 

measure RT costs on the ongoing task, with the logic being that greater monitoring for the 

PM target will lead to slower RTs on the ongoing task (Smith, 2003; Einstein et al., 2005; 

Smith, 2010; Einstein and McDaniel, 2010; Scullin et al., 2010). Neural data has also been 

used to assist in identifying the strategy in use. fMRI studies of PM have linked strategic 

monitoring in PM tasks to sustained activity in frontoparietal control networks including 

anterior regions of the prefrontal cortex (e.g., Reynolds, 2009; McDaniel et al., 2013). In 

another study, Gilbert (2011) used multi-voxel pattern analysis (MVPA; Lewis-Peacock and 

Norman, 2014b) of fMRI to successfully decode the contents of WM. However, these 

measures were unrelated to PM performance. In subsequent analyses, Gilbert et al. (2011) 

demonstrated that PM accuracy could be predicted by regional increases in fMRI activity 

and by multivariate measures of similarity between encoding and retrieval. However, most of 

the above studies used neural measures of WM engagement that were not sensitive enough 

to predict PM accuracy on a trial-by-trial basis.

One goal of our study was to use a more sensitive, time-varying measure of WM 

engagement (MVPA decoding of PM target processing) in an effort to improve trial-by-trial 

predictions of PM behavior beyond what is possible by observing behavior alone. The other 

goal was to gain a richer understanding of the factors that shape PM strategy use. We 

designed a PM experiment that manipulated proactive interference and WM load, and that 

used a non-focal task design – that is, stimuli for the ongoing task (letter strings) that were 

completely non-overlapping with stimuli for the PM task (faces and scenes). One condition 

was designed to bias participants to use strategic monitoring (WMbias; high proactive 

interference + low memory load), and another was designed to bias participants to rely on 

automatic retrieval (EMbias; low proactive interference + high memory load). Using this 
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paradigm, we found that strategic monitoring (measured using MVPA) was both higher 

overall and more tightly linked to behavior in the WMbias condition than the EMbias 

condition; we also found that our MVPA measure of strategic monitoring improved the 

ability to predict PM performance from trial to trial, beyond what is possible based on 

behavior alone.

MATERIALS AND METHODS

Participants

Twenty-five participants (14 female; ages 18 to 34, mean = 23.2; all right-handed) were 

recruited for this study using online scheduling software provided by the Department of 

Psychology at Princeton University. Participants were compensated with $20 per hour for 

their participation in the two-hour experiment. Written informed consent was obtained in a 

manner approved by the Princeton Institutional Review Board.

Behavioral Paradigm

We developed a task to examine how participants strategically use episodic memory (EM) 

versus working memory (WM) to remember targets in a dual-task prospective memory (PM) 

experiment. Participants were shown a series of words while pictures of faces and scenes 

were presented in the background (Fig. 1a). Participants performed an ongoing task (OG; 

making lexical decisions about strings of letters) while monitoring for a picture target (a 

particular face or a particular scene) to reappear. Whereas many studies (see McDaniel and 

Einstein, 2007a) have used letter stimuli for both the OG task and the PM task, we used 

pictures (faces and scenes) in the PM task and letters in the OG task (making this a “non-

focal” PM task; Einstein et al., 2005; McDaniel et al., 2013). We did this because thoughts 

about faces and scenes can be tracked effectively using fMRI (Lewis-Peacock & Norman, 

2014b); as such, using faces and scenes maximized our ability to use fMRI to track the 

maintenance of PM targets in WM. Each “PM+OG” trial (in which participants performed 

both the PM task and the OG task) began with the introduction of a picture target for 2 sec, 

followed by a 2-sec blank screen, followed by a variable-length sequence of 2-sec memory 

probes, each containing two pictures and a string of letters. In one-third of the trials, 

randomly selected, the target introduction screen at the beginning of the trial was blank, 

indicating to participants that they could ignore all subsequent pictures for the remainder of 

that trial and focus solely on the OG task (we call these “OG-only” trials). Participants were 

required to make repeated lexical judgments about the letter strings until the picture target 

reappeared (between 2 sec and 42 sec after its introduction). In the OG task, a lexical 

judgment for a given probe required an n-back comparison (n = 1 or 2) of lexical status: i.e., 

does the current probe have the same lexical status (word or non-word) as the 1-back or 2-

back probe? For example, in the 1-back condition, the letter string “apple” (a word) on one 

probe followed by the letter string “boat” (also a word) on the next probe required a same 
response for the OG task. If, instead of “boat” appearing on the second probe, the letter 

string “glorb” (a nonword) appeared, the appropriate response on the OG task was different. 
The proportion of same/different responses required was balanced across the experiment. 

Participants made lexical judgments by pushing a button with the index finger (same 
response) or middle finger (different response) of their right hands on a four-button response 
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box. Participants had a 1.9 sec deadline within which to register their responses. For the PM 

task, participants could identify the picture target when it reappeared by pushing a third 

button with their pinky finger. Participants were instructed to ignore the OG task on such 

probes, but they were not prevented from responding to both tasks on any probe (e.g., they 

could make an OG task response first and then make a PM response, or vice versa, before 

the response deadline). The PM target reappeared only once per trial, and its reappearance 

always marked the end of the trial. The probe in which the PM target appeared was varied 

randomly, from the 1st to the 21st, thus trials varied randomly in their length.

Visual feedback was provided after every response. In the OG task, white letter strings 

immediately turned green if the participant responded correctly, and they turned red if the 

participant responded incorrectly. In the PM task, if a participant false-alarmed to a 

distractor picture during a probe (i.e., they incorrectly endorsed a distractor picture as the 

target picture) the border of the screen turned red for the duration of that probe, but then the 

trial continued without disruption. When a participant correctly identified a picture target, 

the border of the screen turned green for the duration of that probe (which was the final one 

for the trial, as explained above). After this, a screen appeared that indicated whether the 

participant correctly identified the PM target (black screen with green text stating “You got 
it!”), or failed to identify the target (yellow screen with red text stating “Oops, you missed 
it…”). This feedback was omitted and the screen remained black on OG-only trials. There 

was a brief 6-sec rest period between each trial to allow for the hemodynamic signal to 

return to baseline. At the end of each block of trials, participants were shown their average 

response accuracy for both the OG task and the PM task on that block.

The logic of our experiment was motivated by the multiprocess framework of PM (Cohen 

and O’Reilly 1996; McDaniel and Einstein, 2000) and the dual mechanisms of control 

framework (Braver, 2012), which suggest that there are multiple processes than can support 

prospective remembering: strategic/attention-demanding processes, and also relatively 

automatic processes. In our PM task, we reasoned that a participant would be able to identify 

the picture target by either maintaining an active representation of the target (in WM) and 

strategically monitoring for its reappearance throughout the trial, or spontaneously retrieving 

the identity of the target (from EM) at the moment that it reappeared. To manipulate 

participants’ strategy use, we varied the WM load associated with the OG task and the 

degree of proactive interference associated with the PM targets across trials. Specifically, 

there were two trial conditions that we refer to as “EMbias” (high working memory load + 

low proactive interference) and “WMbias” (low working memory load + high proactive 

interference). EMbias trials were designed to bias participants to use retrieval from EM for 

prospective remembering. We reasoned that, when a trial involved a higher WM load for the 

OG task (2-back lexical judgments), participants would be less likely to maintain the picture 

target in WM, relying instead on retrieval from EM. On these trials, we also used a large set 

of trial-unique, heterogeneous pictures to reduce the amount of proactive interference 

amongst the target and distractor pictures and thus further favor use of EM as an effective 

strategy. Note that, because participants were shown a target only once, they did not have the 

opportunity to establish a stimulus-response association for that item; therefore, if they were 

not actively monitoring for the target, we argue that they must have relied on EM to identify 

it. In contrast, WMbias trials were designed to bias participants to use WM to maintain the 
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picture target and to actively monitor for its reappearance. We reasoned that high proactive 

interference (resulting from the repetition of a small, homogeneous set of pictures that 

repeated within and across trials; Wickens et al., 1963) would interfere with EM retrieval, 

and that a lower WM load on the ongoing task (Meier and Zimmermann, 2015; 1-back 

lexical judgments) would encourage a WM strategy for prospective remembering in these 

trials.

The experiment was divided into six 15-trial blocks of trials, alternating between blocks of 

WMbias and EMbias trials. The trial condition used for the first block was randomly assigned 

to each participant and counter-balanced across participants. Each block consisted of 12 

“real trials” (with exactly one trial of each length, ranging from 10 to 21 probes per trial, 

inclusive) and three “catch trials” (ranging in length between one and nine probes per trial, 

with the selection of trial lengths balanced across blocks). Only data from real trials were 

used for analysis; the catch trials were used to balance cognitive demands throughout the 

entire trial, i.e., to prevent participants from ignoring the pictures in the first nine probes 

before engaging in the PM task. There were five trials in each block for each target category 

(face-target, scene-target, and no-target), consisting of four real trials and one catch trial per 

category per block. Ignoring catch trials, there were eight PM+OG trials (face or scene 

target) and four OG-only trials (no target) in each block. The trials were configured such that 

there were an equal number of probes in each block (62 probes from real trials, and 15 

probes from catch trials). Each target category was presented in all of the 12 real-trial 

lengths and in three of the possible catch-trial lengths in both WMbias and EMbias 

conditions, resulting in a total of 90 trials (72 real trials, 18 catch trials) across the entire 

experiment. The trials were arranged in this way to reduce participants’ ability to predict the 

length of any given trial; no participant reported an ability to predict trial length, or 

knowledge of any structure or pattern of trial lengths across the experiment.

Stimulus Details

A large collection of face and scene images was gathered through various online and in-

house sources. A subset of these stimuli were chosen for this experiment. Words for the 

lexical comparison task consisted of nouns, verbs, and adjectives selected from an online 

psycholinguistic database (http://websites.psychology.uwa.edu.au/school/MRCDatabase/

uwa_mrc.htm) with concreteness, imageability, and verbal frequency within one standard 

deviation of the mean of the entire database. Pseudo-words consisted of single-syllable, 

pronounceable letter strings.

To manipulate proactive interference amongst picture targets, we varied the type and 

quantity of pictures used in each trial condition. In the WMbias condition, we used a small 

set of eight homogeneous face images (adult white males) and eight homogeneous scene 

images (indoor living rooms) that repeated within and across trials. In the EMbias condition, 

we used a large set of heterogeneous faces (789 total; 321 female) and scenes (223 total; 82 

indoor) that were trial-unique. The assignment of stimuli to the targets and distractors in 

each trial was done randomly for each participant.
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fMRI Data Collection

The experiment was presented using Psychophysics Toolbox Version 3 in Matlab running on 

a Mac Pro. First, we ran a brief scout localizer scan (15 s) to verify that head position was 

within the designated field of view and to derive automatic AC-PC alignment parameters for 

subsequent scans. Next, we used a MPRAGE sequence to acquire high-resolution T1-

weighted images (TR = 2300 ms, TE = 3.08 ms, 0.9 mm3 isotropic voxels, 9 m 0 s 

acquisition time) while the participants practiced one block of trials in both WMbias and 

EMbias conditions prior to functional scanning. The experiment was divided into six 15-trial 

blocks of trials (with each block lasting 10 min 3 sec). Total functional scanning time for the 

experiment was 60 m 18 s. All blocks were preceded by 20 s of dummy pulses to achieve a 

steady state of tissue magnetization. Between blocks, participants were given a break during 

which the experimenter checked that the participant was comfortable and alert. Whole-brain 

images were acquired with a 3T Siemens Skyra MRI scanner. For functional scans, we used 

a gradient-echo, echo-planar sequence (TR = 2000 ms, TE = 34 ms), with automatic 

shimming enabled, to acquire T2*-weighted data sensitive to the BOLD signal within a 64 × 

64 matrix (196mm FoV, 34 axial slices, 3 mm3 isotropic voxels, AC-PC aligned) using 

integrated parallel acquisition techniques (iPAT) with both retrospective and prospective 

acquisition motion correction (PACE) enabled.

fMRI Preprocessing

Preprocessing of the functional data was done with the AFNI (Cox, 1996) software package 

using the following preprocessing steps (in order): (1) correction for slice time acquisition 

with 3dTshift, (2) rotation of oblique data to cardinal direction with 3dWarp, (3) resample to 

a 3 mm3 gridset with 3dresample, and (4) realign to the first volume of the Phase 1 data 

using rigid body alignment with 3dvolreg. Anatomical data were aligned to the first volume 

of the functional data with align_epi_anat.py. A whole-brain voxel mask was created for 

each participant by combining the results of 3dAutomask (dilation = 1) across all six 

functional runs.

Multi-Voxel Pattern Analysis: Overview

Our goal in analyzing the fMRI data was to sensitively measure processing associated with 

the PM task. To accomplish this goal, we used multi-voxel pattern analysis (MVPA; Haynes 

and Rees, 2006; Norman et al., 2006; Lewis-Peacock and Norman, 2014b) to decode face 

and scene processing (associated with PM task) and lexical decision processing (associated 

with the OG task) at every time point throughout the trials. The use of category classifiers to 

track memory maintenance and retrieval has become a standard approach in the memory 

literature (see Rissman and Wagner, 2012, for a review). We use the approach here to decode 

the contents of WM, by identifying the degree to which the category of the PM target (a face 

or a scene) is actively represented prior to its actual reappearance. Neural evidence of such 

activity could arise from a combination of maintenance of the target (e.g. a particular face) 

in WM and the processing of distractor pictures from the target’s category (non-target faces) 

during the trials. Importantly, either source of target-related neural evidence would indicate 

the use of a WM-dependent strategic monitoring strategy – reactive control relying on EM 
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retrieval should not produce target-related activity prior to the reappearance of the PM 

target.

Multi-Voxel Pattern Analysis: Details

fMRI pattern classifiers were trained, separately for each participant, from a subset of all 

trials and then used to decode independent data from held-out trials (i.e., using k-fold cross 

validation: training on k-1 blocks of data and testing on the kth block and then rotating and 

repeating until all blocks had been tested.) Both EMbias and WMbias trails were combined 

for classifier training. Specifically, classifiers were trained on individual brain scans 

(acquired at 2-sec intervals) from the probe period of each trial, plus data from the 6-sec rest 

intervals between trials, in the training set. Training scans were labeled according to the 

category of the picture target from that trial: either face, scene, or no-target. Scans from the 

inter-trial intervals were labeled as rest. Note that visual input was identical in all three trial 

conditions (participants were viewing letter strings in the middle of the screen flanked 

above/below by faces and scenes). The purpose of including the no-target condition in 

classifier training was to provide additional “negative examples” for the face and scene 

target classifiers (i.e., trials where faces and scenes were onscreen but participants were not 

actively monitoring for face or scene targets). As is standard practice in MVPA (Lewis-

Peacock and Norman, 2014b) all trial regressors were shifted forward in time by 6 sec to 

account for hemodynamic lag of the BOLD signal (typically estimated as 4–8 sec to peak 

after event onset). In each training block, there were 58 scans each for face, scene, and no-

target categories, and 45 scans for the rest category, for a total of 290 scans for task 

categories and 225 scans for the rest category in each training set. We used the trained 

classifier in each fold of the cross-validation procedure to decode the moment-to-moment 

cognitive state throughout the held-out block of test data. For each individual 2-sec scan 

within a test block, the four classifiers (face, scene, no-target, and rest) each produced an 

estimate (from 0 to 1) of the degree of neural evidence for the condition they were trained to 

detect.

All pattern classification analyses were performed using the Princeton MVPA Toolbox in 

Matlab (downloadable from http://www.pni.princeton.edu/mvpa), using L2-penalized 

logistic regression. The L2 regularization term biases the algorithm to find a solution that 

minimizes the sum of the squared feature weights. Logistic regression uses a parameter (λ) 

that determines the impact of the regularization term. To set the penalty λ, we explored how 

changing the penalty affected our ability to classify the data (using the cross-validation 

procedure described above). We found that the function relating λ to cross-validation 

accuracy was relatively flat across a wide range of λ values (spanning from 0.001 to 1,000). 

We selected a λ value in the middle of this range (λ = 50) and used it for all of our classifier 

analyses.

Voxel Selection

To select brain regions to use for the pattern classifiers, we ran a mass-univariate GLM 

analysis of all functional data using AFNI’s 3dDeconvolve to identify brain regions that 

were more strongly engaged during probes (i.e., stimulus displays after the target 

introduction but prior to its reappearance) on PM+OG trials vs. OG-only trials. This analysis 
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reveals voxels sensitive to the presence of the PM task on top of the OG task. All trial events 

were modeled with boxcar regressors of appropriate lengths: target (2 sec), probes (2 sec per 

probe), PM probes (the final probe of the trial in which the target reappears; 2 sec) and 

feedback (2 sec). A third-order polynomial was used for the null hypothesis, and all basis 

functions for trial events were normalized to have an amplitude of one. A contrast of probes 
from PM+OG trials > probes from OG-only trials was used to calculate percent-signal-

change in BOLD data for a second-level group analysis. Only voxels that showed enhanced 

signal in PM+OG trials were included. The reverse contrast (OG-only > PM+OG trials) 

revealed a network of voxels, including in the anterior medial prefrontal cortex, that 

deactivated with the addition of the PM task (Gilbert, 2011; Momennejad & Haynes, 2012, 

2013). However, pattern classification of PM stimulus processing (target and distractor 

pictures) from these regions was at chance levels and therefore these voxels were excluded 

from further analysis. Participant results in native space were transformed into atlas space 

and resampled to 4mm3 isotropic voxels using AFNI’s @auto_tlrc and then spatially blurred 

with a 8mm FWHM kernel using 3dmerge. The normalized group data were analyzed using 

3dttest++, and the results were extracted using a cluster radius of four voxels with a 

minimum cluster size of 40 voxels, and thresholded at the individual voxel level using 

AFNI’s false discovery rate (FDR) algorithm with q = .05. Finally, this group-level ROI was 

backward-transformed into each participant’s native space and intersected with that 

participant’s whole-brain mask to create subject-specific ROIs. The mean number of voxels 

retained in this “PM-sensitive” mask was 11,686 (SD = 1,122) (Fig. 2a). Finally, a feature 

selection ANOVA was applied to the preprocessed fMRI data within the PM-sensitive mask 

to select those voxels whose activity varied significantly (p < .05) between the four 

categories over the course of the experiment. Feature selection was performed separately for 

each iteration of the cross-validation classifier training algorithm to avoid any circularity in 

the analysis (Kriegeskorte et al., 2009). The pattern of activity across these feature-selected 

voxels was used as the input to the pattern classifiers and the data were analyzed in each 

participant’s native space.

Relating Classifier Evidence to Prospective Remembering

The primary goal of our analysis was to evaluate the relationship between neural classifier 

evidence for PM monitoring during the trial (prior to target reappearance) to PM accuracy at 

the end of each trial. We first extracted (separately for each trial in every subject) the levels 

of face and scene classifier evidence at each time point throughout the trials, and used these 

data rather than classifier accuracy (whether the correct category had the highest likelihood 

estimate) for all subsequent analyses (see Lewis-Peacock et al., 2012; Lewis-Peacock and 

Norman, 2014a). Classifier evidence provides a more sensitive measure of neural processing 

(and in particular dual-task processing) compared to classifier accuracy because it does not 

require forced-choice selection of a single “best match” category. To aggregate data across 

trials that were of varying lengths, we aligned data to the beginning of each trial. Note that 

the minimum trial length used for analysis contained 10 2-sec probes. Accounting for the 

target introduction (2 sec) and the brief delay prior to the probes (2 sec), the earliest that the 

target reappeared in any trial was 2 + 2 + 10*2 = 24 sec. Each trial’s data therefore consisted 

of 11 brain scans (22-sec, unshifted for hemodynamic lag) aligned to the start of the trial and 

ending prior to the reappearance of the target.
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On a PM+OG trial, target classifier output alone does not show how sensitive the classifier is 

to the attentional demands of the PM task. High target activation (e.g., “face” on a face-

target PM+OG trial) could reflect a highly differentiated attentional state in which target 

(“face”) is high and distractor (“scene”) is low, or it could reflect a totally undifferentiated 

state in which both target and distractor are high. Therefore, to track neural processing 

specifically related to the PM task, we calculated a difference score by subtracting the 

distractor category evidence from the target category evidence at each time point. Finally, we 

averaged these difference scores during the PM delay period (t = 12 to 22 secs), which 

started after the evoked neural response to the target introduction had subsided, and ended 

before the target reappeared on any of the trials. This method provides a unique neural 

estimate of PM processing for each trial.

Statistical Procedures for Assessing Reliability

When analyzing behavioral data (without respect to neural data) and neural data (without 

respect to behavioral data) we used standard random-effects statistics (paired t-tests, with 

subjects as a random effect) to assess the reliability of results across participants. For 

analyses relating neural data to behavior (i.e., PM performance), we combined individual 

trial data from each participant into a single “supersubject” and subsequently performed all 

statistical analyses on these amalgamated data (Detre et al., 2013; Kim et al., 2014; Lewis-

Peacock and Norman, 2014a), using bootstrap procedures (Efron, 1979) to assess 

population-level reliability of the results (see details below). We used this approach, chosen 

a priori, instead of the conventional random-effects approach (used elsewhere in the study) 

in which the average results from each subject are used for group-level hypothesis testing. 

The reason for using the supersubject approach here is that, despite a large amount of 

imaging data per subject, the total number of behavioral outcomes for each subject was 

relatively low, making it difficult to reliably estimate the relationship between neural data 

and behavioral outcomes within individual subjects. Note that each trial lasted between 24 

and 46 sec, depending on the number of probes on that trial, but there was only one PM 

behavioral outcome (hit or miss) on each trial regardless of its length.

In the experiment, each participant (N=25) contributed 12 trials per category/condition 

combination (e.g., face-target and WMbias condition) for a total of 300 trials per 

combination. To assess population-level reliability of the results (i.e., whether or not they 

driven by a small subset of participants) from each of the analyses, we also ran a bootstrap 

test in which we resampled data from participants with replacement and re-computed the 

analyses for this resampled data (Efron, 1979). The population-level reliability of the results 

was reflected in the proportion of bootstrap samples in which the effect of interest was 

present.

RESULTS

Behavioral Results

Prospective Memory Task—We assessed the impact of trial condition (WMbias vs. 

EMbias) and target type (face vs. scene) on both accuracy and RT in the prospective memory 

task (PM task; Fig. 1A). With regard to PM accuracy: the hit rate was reliably higher for 
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scene-target trials (p<.01 in both trial conditions), but we nonetheless combined data from 

both face-target and scene-target trials to increase statistical power for subsequent analyses. 

PM accuracy was marginally higher for WMbias trials compared to EMbias trials (t(24)=1.96, 

p=.061). There was no interaction between trial condition and target type (F(1,24)=.017, p=.

898). The false-alarm rate to non-target items was very close to floor across all trials, 

although the rate was slightly higher in WMbias trials than EMbias trials (0.6% vs. 0.2%; 

t(24)=3.98, p<.001). Because of this very low false alarm rate, we also calculated PM 

accuracy using the A’ signal detection metric, which considers both hits and false alarms 

(Stanislaw and Todorov, 1999). Consistent with the raw hit rates, the A’ signal detection 

analysis showed a non-significant trend for higher accuracy in WMbias trials (0.926) 

compared to EMbias trials (.914), t(24)=1.71, p=.100. With regard to PM target detection 

RTs: mean target detection RTs did not differ significantly between EMbias trials (1.16 sec) 

and WMbias trials (1.19 sec), t(24) = 1.33, p=.197. No speed-accuracy tradeoff (i.e., a 

positive correlation between accuracy and RT) was observed in either condition (WMbias: 

r(23) = −.52, p=.008; EMbias: r(23)= −.08, p=.714).

Ongoing Task—We assessed the impact of trial condition (WMbias vs. EMbias) and task 
type (dual-task: PM+OG vs. single-task: OG only) on both RT and accuracy in the ongoing 

lexical-judgment task (OG task). There was no main effect of trial condition on OG task RTs 

(F(1,24)=2.27, p=.15), but participants did respond more slowly on dual-task trials compared 

to single-task trials (F(1,24)=63.7, p<.001). As noted in the Introduction, this slowing of 

responses in the OG task — a dual-task interference cost that we refer to as “PM cost” — 

has been interpreted as a behavioral marker for the use of a WM strategy (i.e., that working 

memory resources were deployed for strategic monitoring of the PM target; McDaniel and 

Einstein, 2000). We predicted that PM costs would be higher on WMbias trials, and this 

prediction was corroborated. There were PM costs in both trial conditions, but PM costs 

were significantly greater in WMbias trials (F(1,24)=18, p<.001; Fig. 1C). The same result 

was obtained when restricting analyses to the PM delay period (t = 12 to 22 secs) that was 

used to extract neural measurements of PM task processing on each trial (F(1,24) = 16.8, p<.

001). With regard to OG task accuracy (Fig. 1B): participants responded more accurately in 

WMbias trials compared to EMbias trials (F(1,24)=56.1, p<.001), and also more accurately on 

single-task trials compared to dual-task trials (F(1,24)=28.94, p<.001), but there was no 

significant interaction of trial condition and task type (F(1,24)=0.47, p=.5). These 

differences in accuracy are consistent with the assumption that the OG task was more 

demanding in EMbias trials (2-back) compared to WMbias trials (1-back); similarly, the 

greater number of errors in the dual-task condition than the single-task condition is 

consistent with the greater demands of the former.

Individual Differences in PM Performance—PM accuracy and PM cost (i.e., dual-task 

interference RT costs: OG RT on dual-task trials [PM+OG] minus OG RT on single-task 

trials [OG only]) both reflect the outcome of strategy choices, and specifically, working 

memory allocations spread across the dual PM and OG tasks. These two metrics were 

positively correlated across subjects (r(24) = .37, p = .034; Fig. 1C), indicating that higher 

PM costs were associated with better PM performance. This relationship was previously 

reported by Smith (2003; but see McNerney and West, 2007). The correlation was 
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significant for WMbias trials (r(24) = .45, p = .024), but not for EMbias trials (r(24) =.199, p 

= .340). However, the correlation did not significantly differ between the two conditions (z = 

−.755, p=.45).

fMRI Results

Classifier Cross-Validation—A univariate GLM was used to identify voxels that were 

more active on PM+OG trials vs. OG-only trials (see Methods). These voxels were located 

mostly in ventral temporal, occipital, and parietal areas (Fig. 2a), and were used as input for 

pattern classification. Pattern classifiers, trained and tested separately for each participant, 

successfully distinguished task-related brain activity on (1) face-target trials, (2) scene-target 

trials, and (3) no-target trials, and also task-unrelated brain activity during (4) rest periods 

between trials. Cross-validated classifier accuracy was greater than chance-level 

performance (0.25) for all four categories (all p’s < .001), and all three task-related 

categories showed higher accuracy in WMbias trials vs. EMbias trials (all p’s < .001), while 

accuracy for rest-period activity did not differ between conditions (t(24)=0.189, p=0.852). 

Classification performance did not differ between face-target and scene-target trials (p>.4), 

therefore classifier estimates from all target trials were relabeled and combined (e.g., on a 

face-target trial, the “face-target” classifier’s output was relabeled as “target” and the “scene-

target” classifier’s output was relabeled as “distractor”).

The PM classifier evidence scores (i.e., “target - distractor”) showed a significant interaction 

of trial condition (WMbias vs. EMbias) x time (target introduction: 4–12 secs vs. delay 

period: 12–22 secs; F(1,24) = 32.37, p < .001). PM evidence did not differ between WMbias 

and EMbias trials during the early part of the trials when the target was introduced and 

encoded into WM (8 secs following target introduction, t = 4 to 12 secs, p = .598), but it did 

differ during the subsequent delay period (F(1,24) = 31.26, p < .001; Fig. 2b) with higher 

PM evidence on WMbias trials during the delay. The fact that classifier performance was 

matched for WMbias and EMbias trials during the early (encoding) phase of the trial suggests 

that subsequent differences in classification cannot be attributed to generally poorer 

classification of the large set of heterogeneous face and scene stimuli on EMbias trials vs. the 

small set of homogeneous stimuli on WMbias trials; rather, the difference in classifier 

performance appears to be specific to the delay period and likely reflects a greater use of 

WM for the PM task on WMbias trials relative to EMbias trials.

It is possible, however, that lower classifier performance in EMbias trials was due to 

increased measurement noise in that condition, resulting from the presence of a more 

demanding OG task (2-back). To address this possibility, we computed the within-trial 

variability (standard deviation) of classifier evidence scores during the delay period. 

Variability of target evidence was higher in EMbias trials relative to WMbias trials (0.123 vs. 

0.100; t(24)=3.5, p<.001), however, distractor evidence was less variable in EMbias trials 

relative to WMbias trials (0.141 vs. 0.151; t(24)=2.1, p=.024), which by itself is inconsistent 

with a “measurement noise” account of these neural data. However, we also assessed the 

effects of extra “measurement noise” by adding random noise, sampled from a Gaussian 

distribution (mu=0, sigma=0.100), into both the target and distractor classifier evidence 

scores from WMbias trials, thus simulating a “noisy WMbias” condition. If WMbias vs. 
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EMbias differences were merely due to extra measurement noise in the latter, then the 

qualitative pattern of results in the “noisy WMbias” condition should match the pattern that 

was observed in the EMbias condition; conversely, if the results do not match, this indicates 

that additional measurement noise alone can not account for WMbias vs. EMbias differences. 

Adding noise in this fashion increased the variability of both target and distractor 

measurements in WMbias trials (ps<.001), and also increased their variabilities relative to 

EMbias trials (ps < .004). However, the added noise did not change the mean evidence for 

either target or distractor (both ps > .178). The mean distractor evidence remained higher in 

EMbias trials relative to the “noisy WMbias” trials (0.699 vs. 0.653; t(24)=3.4, p=.001), and 

most importantly the PM evidence (target – distractor evidence) remained lower in EMbias 

trials (0.066 vs. 0.166; t(24)=6.2, p<.001).

Relating Classifier Evidence to PM Performance

For each trial, we calculated a PM classifier evidence score (as described above) and used 

this score to predict PM performance (hit or miss) at the end of each trial. Logistic 

regression was used to relate each continuous classifier evidence score to the binary outcome 

variable of PM accuracy. To increase statistical power for this regression, individual trial 

data were combined across subjects into a supersubject analysis (see Methods), and 

reliability of the regression analysis was assessed using a bootstrapping procedure.

Consistent with the prediction that participants would rely more heavily on WM in the 

WMbias condition, PM classifier evidence scores were positively correlated with PM 

accuracy in WMbias trials (logistic regression β1 > 0 in 99.6% of 1,000 bootstraps), but they 

were not reliably correlated with PM accuracy in EMbias trials. Regression coefficients were 

higher for WMbias trials compared to EMbias trials in 94.4% of bootstraps (Fig. 2d), 

indicating that trial-by-trial fluctuations in PM classifier evidence were more predictive of 

behavior on WMbias trials compared to EMbias trials.

Relating OG Task Behavior to PM Performance

As has previously been observed, OG task behavioral metrics (accuracy and RT) were also 

predictive of PM accuracy across trials. OG task accuracy was positively correlated with PM 

accuracy in both trial conditions (β1 = .284, which was positive on 99.3% of bootstraps in 

both trial conditions), with no reliable difference between the coefficients in the two 

conditions. OG task RT was weakly, but positively correlated with PM accuracy in both trial 

conditions (β1 = .212 for WMbias and β1 =.160 for EMbias). These coefficients were positive 

on 93.2% and 89.1% of bootstraps, respectively, with no reliable difference between the 

coefficients in the two conditions.

Combining Behavioral Data and Neural Data to Predict PM Performance

The findings above indicate that both behavioral and neural measures were predictive of PM 

performance from trial to trial. Here we address the question of whether neural evidence 

provided extra predictive power beyond what what was possible from behavioral 

observations alone. Using our neural measure (PM evidence) and the two behavioral 

measures (OG accuracy and RT) together in a three-predictor logistic regression model 

explained the most variance in PM accuracy scores. To control for differences across models 

Lewis-Peacock et al. Page 12

Neuropsychologia. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the number of predictors, we used a leave-one-participant out cross-validation procedure 

(Hastie et al., 2005): each model was fit using data from N-1 participants and then used to 

predict data from the held out participant. Average log likelihood values across all iterations 

for each model were used to calculate Bayes factors (B10), which assess the relative 

likelihood of each model (Kass and Raftery, 1995) taking into account the number of 

predictors. The three-predictor model outperformed the two-predictor model (OG accuracy 

and OG RT) in WMbias trials (log10(B10) = 3.12; this constitutes “decisive” evidence 

according to Kass and Raftery, 1995), but not in EMbias trials (log10(B10) = 0.38; this is “not 

worth more than a bare mention” according to Kass and Raftery, 1995). Importantly, this 

analysis demonstrates that the neural measurements of PM task processing contributed 

predictive power concerning PM performance on a given trial, above and beyond what could 

be predicted based on observable OG task behavior alone.

Individual Differences in Relating Neural Measurements to Performance

The neural findings also revealed individual differences in performance across participants. 

The amount of PM classifier evidence for a given participant was positively correlated with 

both overall PM accuracy (r(25)=.73, p<.001) and overall dual-task PM costs (r(25)=.43, p<.

05; Fig. 3).

DISCUSSION

We developed a novel experimental paradigm, designed to bias strategy choice for 

prospective memory (PM) on a trial to trial basis, by concurrently manipulating proactive 

interference and working memory load. When participants were biased to use working 

memory (WM) over of episodic memory (EM), the PM task exerted a larger cost on the 

ongoing task (as evidenced by slower RTs) — this dual-task interference cost is considered 

to be a behavioral hallmark of strategic monitoring (Smith, 2003; Einstein et al., 2005; 

Scullin et al., 2010; Meier and Zimmermann, 2015). Previously, behavioral interference 

costs have been used to demonstrate effects of a wide range of factors on PM strategy use, 

including: the availability of cognitive resources and the sensitivity to interference costs 

(Marsh et al., 2003; Smith, 2003; Marsh et al., 2006), the instructional emphasis on the PM 

task and the duration of the ongoing task (Einstein et al., 2005), the degree & type of 

planning (Mäntylä, 1996; Burgess and Shallice, 1997), and individual differences in 

cognitive capacities and personality characteristics (McDaniel and Einstein, 2000). In this 

study we identified another set of task demands that bias participants towards a WM 

strategy: high proactive interference (which makes it harder to use EM) combined with a low 
working memory load (which makes it easier to use WM).

In addition to behavioral evidence, we used pattern classifiers applied to fMRI data from 

visual processing regions in temporal and occipital cortices during the PM task to acquire 

second-by-second readouts of neural activity associated with the use of WM to maintain 

and/or monitor for a PM picture target. Neural readouts of PM processing were higher when 

participants were biased to use WM (vs. EM). Furthermore, across trials, PM classifier 

evidence was more predictive of successful PM performance when participants were biased 

to use WM compared to when participants where biased to use EM, even though PM 
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accuracy was equivalent across the two conditions. These findings complement and extend 

prior work that has leveraged fMRI data to dissociate PM strategies using activity from a 

distributed network of brain regions. For example, work by McDaniel et al. (McDaniel et al., 

2013) showed that activity in frontoparietal control networks was greater in conditions that 

require greater levels of strategic monitoring (e.g., non-focal vs. focal PM targets; for other 

relevant data, see Reynolds et al., 2009; Burgess et al., 2011; McDaniel et al., 2013; Barban 

et al., 2014; Beck et al., 2014).

Our interpretation of the converging behavioral and neural data of this study is that 

participants used WM more for the PM task during trials when they were biased to do so. A 

plausible alternative explanation for the neural findings, however, is that PM evidence (i.e., 

target evidence – distractor evidence) was lower in EMbias trials due to increased 

measurement noise, resulting from the presence of a more demanding OG task (2-back) in 

that condition. To address this concern, we assessed the variability in classifier readouts in 

both conditions, and then simulated the effects of adding measurement noise to the classifier 

in WMbias trials. Together, the observations in EMbias trials of (a) more stable distractor 

evidence relative to WMbias trials, and (b) lower PM evidence compared to simulated “noisy 

WMbias” trials are incompatible with the possibility that differences in classifier 

performance between the two conditions could be due to increased measurement noise in 

EMbias trials. While alternative explanations may exist for any individual portion of these 

data, the idea of greater WM use in the WMbias vs. EMbias condition parsimoniously 

explains, with a single mechanism, the full set of neural and behavioral findings, including 

the correlations between these measures.

Crucially, our neural measure of WM use provided additional predictive power concerning 

PM performance, beyond that provided by behavior alone. This demonstrates how decoding 

the contents of WM from fMRI data can provide unique evidence concerning the selection 

and success of cognitive strategies deployed during complex cognitive tasks. Prior work has 

shown that the content of delayed intentions (e.g., waiting for a word versus a picture to 

reappear) can be decoded from posterior cortical regions (Gilbert, 2011). However, these 

neural measurements were unrelated to behavioral metrics of PM performance (but see 

Gilbert et al., 2011). Here, we found that (particularly when participants were biased to use 

WM to store their delayed intention) neural readouts of WM use were diagnostic of PM 

target detection accuracy on a trial-by-trial basis. Across participants, these neural measures 

were also diagnostic of individual differences both in PM accuracy and dual-task 

interference costs.

It is important to note that both the EMbias and WMbias conditions in our experiment were 

“non-focal” tests of PM, insofar as the stimuli pertaining to the ongoing task (letter strings) 

were distinct from the stimuli that pertained to the PM task (faces and scenes). As such, both 

conditions required some degree of strategic monitoring: Specifically, participants had to 

allocate some attention to the stream of faces and scenes, in order to be able to detect the 

face or scene target when it appeared. Our key prediction was that, in the EMbias condition, 

participants might favor monitoring for the target category without actively maintaining the 

specific identity of the target stimulus. For example, if the participant knew that the target 

was a face, they might actively monitor the stream of faces, with the expectation that the 
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target face would trigger episodic retrieval of its status as a target. By contrast, in the 

WMbias condition, participants might devote extra WM resources to monitoring for the 

specific target face. The fact that some strategic monitoring was required in both conditions 

fits with the finding that dual-task costs (on OG task reaction times) were obtained in both 

conditions, although (as predicted) they were larger in the WMbias condition.

Our data are consistent with the multiprocess view of PM (Cohen and O’Reilly, 1996; 

McDaniel and Einstein, 2000) and the dual mechanisms view of PM (Braver, 2012), which 

posit distinct routes for successful PM performance: proactive control via working memory, 

and reactive control via episodic memory. Here, we found behavioral and neural signatures 

of the former, but unlike previous work (Braver et al., 2003; Reynolds et al., 2009; McDaniel 

et al., 2013), we did not find reliable neural signatures for the latter. The reason could be 

methodological, insofar as the design of our experiment was tailored to identify sustained 

working memory processing during the PM task (long delay periods, and therefore relatively 

few PM trials). This may have reduced our ability to detect transient activity spikes 

associated with episodic memory retrieval in the resulting small set of PM trials. Regardless, 

we found that PM performance was preserved for trials in which our neural measurement of 

WM processing was low (e.g., EMbias trials), and thus PM performance had to have been 

supported by some process that complemented the diminished engagement of active 

monitoring via WM. The multiprocess view of PM suggest that it is a reactive control 

process by which the delayed intention is encoded into episodic memory as a stimulus/

response association (e.g., “when this picture appears, hit a special button”) and the retrieval 

of this intention is automatically triggered by the reappearance of the stimulus.

One potential limitation of the MVPA measure we used to index WM engagement is that it 

is sensitive to both of the types of monitoring described above: checking the “stream” of 

face stimuli (without holding a specific face in mind), and monitoring for a specific face. 

There is no way to disentangle the contribution of these two processes to our neural 

measures. Nevertheless, both sources reflect the engagement of some form of strategic 

monitoring. The finding that our MVPA measure of WM function was stronger in WMbias 

trials is consistent with the engagement of both monitoring processes on those trials 

(checking the target category “stream”, plus monitoring for specific target stimuli), whereas 

only the checking process may have been engaged in EMbias trials. This might also explain 

why our neural measure of WM was more predictive of behavior in WMbias trials: 

monitoring for the specific target stimulus should substantially increase the likelihood of 

responding correctly when the target appears, thus WM use should be correlated with correct 

responding. By contrast, merely checking the target category stream (without actively 

holding the correct stimulus in mind) is insufficient to ensure a correct response – even when 

the target stimulus is seen, it might fail to trigger the corresponding episodic memory, 

resulting in a PM error; thus, there should be a weaker relationship between WM use and 

correct responding.

In conclusion, we designed an experiment to bias participants to use either WM or EM to 

solve a PM task while simultaneously engaged in a demanding ongoing task. Using MVPA 

to measure strategic monitoring (Lewis-Peacock and Norman, 2014b), we validated that our 

manipulation was effective in biasing participants’ strategies. More generally, using MVPA 
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improved our sensitivity to detect participants’ strategy use beyond what was possible based 

on behavior alone, leading to improved trial-by-trial predictions of PM accuracy. Future 

work can leverage these improvements to further characterize the factors that shape PM 

performance both within and across individuals.
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Highlights

• We measured participants’ use of working memory for prospective 

remembering on a trial-by-trial basis using functional MRI.

• Our neural measure of working memory varied according to task 

conditions that were designed to manipulate strategy use, and it led to 

better prediction of trial-by-trial prospective memory accuracy than 

could be achieved based purely on behavioral measures.

• These data provide the strongest connection to date between neural 

data and prospective memory behavior
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Figure 1. 
Task diagram and behavioral performance. The dual-task experiment consisted a picture-

target detection prospective memory task (“PM”) embedded in an ongoing lexical-decision 

task (“OG”). Half of the trials were WMbias trials (1-back lexical decisions and a small set of 

repeating homogeneous pictures) and half were EMbias trials (2-back lexical decisions and a 

large set of trial-unique heterogeneous pictures). Two-thirds of all trials included both tasks 

(“PM+OG”), and one-third did not require PM responses (“OG only”) Behavioral 

performance on (A) the PM task in PM+OG trials and (B) the OG task in all trial conditions. 
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(C) Dual-task costs on reaction time in the OG task due to the addition of the PM task (“PM 

cost”) , and its relationship to PM accuracy across participants. Error bars indicate s.e.m.,*p 

< .05.
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Figure 2. 
Pattern classification of fMRI data during the delay period predicts PM performance. (A) 

Voxels that showed significantly greater activity (p < .05, FDR) during probes on PM+OG 

trials compared to OG-only trials are colored on an inflated atlas brain. This group-level 

mask was transformed into each participant’s native space and used to mask voxel time 

series data as input for the pattern classifiers. (B) Trial-averaged classifier evidence for PM 

trials. PM classifier evidence indicates the difference between target category and distractor 

category evidence (e.g., “face minus scene” for face-target trials). Error shades indicate +/

− 1 s.e.m., interpolated between mean scores from every 2-sec brain scan. Data are not 

shifted to account for haemodynamic lag. (C) Relating trial-by-trial classifier evidence 

scores during the delay period (12 to 22 sec) to PM accuracy (hit vs. miss). Data reflect the 

logistic regression fits (β1) between PM classifier evidence and PM accuracy. Error bars 

indicate 95% bootstrap confidence intervals, *p < .05 for 1,000 bootstrap samples.
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Figure 3. 
Classifier evidence scores predict PM accuracy and dual-task PM costs across participants. 

Higher PM classifier evidence was predictive of (A) better PM accuracy and (B) higher 

dual-task costs. *p < .05.
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