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Abstract

Tissue injury can initiate bidirectional signaling between neurons, glia and immune cells that 

creates and amplifies pain. While the ability for neurotransmitters, neuropeptides, and cytokines to 

initiate and maintain pain has been extensively studied, recent work has identified a key role for 

reactive oxygen and nitrogen species (nitroxidative species), including superoxide, peroxynitrite, 

and hydrogen peroxide. In this review, we describe how nitroxidative species are generated after 

tissue injury, and the mechanisms by which they enhance neuroexcitability in pain pathways. 

Finally, we discuss potential therapeutic strategies for normalizing nitroxidative signaling, which 

may also enhance opioid analgesia, to help to alleviate the enormous burden of pathological pain.
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The link between nitroxidative signaling and pain

Investigation of oxidative processes, such as rusting, began with the “phlogiston theory”, 

developed by Georg Ernest Stahl during the scientific revolution, which postulated that a 

fire-like element (phlogiston) is released during combustion. Oxidation was formally linked 

to biology during the early 20th Century, when it was found to underpin cellular metabolism 

[1–3]. The connection between reactive oxygen species (ROS) and altered sensory 

processing was empirically identified around the same time [4]. Since then, research has 

shown that prolonged, unchecked increases in reactive oxygen and nitrogen (nitroxidative) 

species after infection or tissue damage can promote cytotoxicity and inflammation. These 
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processes can cause peripheral and central sensitization, which underlie pathological pain 

(see Glossary) [5,6]. Thus, restoring nitroxidative balance in peripheral and central nervous 

systems (PNS, CNS) is a possible therapeutic approach for ameliorating neuropathology [6–

10].

In this review, we summarize recent research on how nitroxidative species participate in 

neuroimmune signaling throughout the neuraxis to drive pathological pain. We additionally 

discuss potential therapeutic strategies for normalizing nitroxidative signaling by activating 

endogenous antioxidant systems, which may also enhance opioid analgesia. As pathological 

pain is often intractable to current therapies, new strategies to normalize nitroxidative 

signaling may help to alleviate the enormous burden of pain [11].

Production of nitroxidative species by neurons, glia, and immune cells

The role of nitroxidative signaling in pain has been studied using rodent experimental 

models of inflammatory pain (e.g. intraplantar complete Freund’s adjuvant (CFA), formalin) 

and neuropathic pain (e.g. peripheral nerve injury (PNI), chemotherapy-induced peripheral 

neuropathy (CIPN), diabetic neuropathy (DN), spinal cord injury (SCI), experimental 

autoimmune encephalomyelitis (EAE)), which have recently been reviewed elsewhere [12]. 

There are numerous endogenous sources of ROS and nitric oxide (NO) that are engaged 

during pain processing [13]. Nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidases, NO synthases and mitochondrial respiration are among the best characterized 

ROS/NO producers, and will be discussed here (Figs. 1 and 2).

NADPH oxidases

NADPH oxidases (NOX) are membrane-bound enzyme complexes. They transport electrons 

donated from cytosolic NADPH to generate extracellular or luminal superoxide anions or 

hydrogen peroxide, that can be transported into the cytosol via aquaporin channels [13,14]. 

In contrast to other sources of ROS that are generated as a byproduct of catabolism, ROS 

generation is the primary function of NOX. There are seven members in the NOX family; 

NOX1, 2, and 4 have been implicated in pathological inflammatory and neuropathic pain 

models [13,15,16]. NOX1 and 2 are expressed at the cellular membrane, and produce 

superoxide anions following phosphorylation of cytosolic subunits [17]. NOX4 is expressed 

on organelles, such as the endoplasmic reticulum, and constitutively produces hydrogen 

peroxide [17].

NOX1 is inducibly expressed by microglia, neurons, astrocytes, and macrophages in the 

dorsal root ganglion (DRG) and CNS [17–19]. Nociceptive hypersensitivity induced by the 

inflammatory stimuli formalin and carrageenan is attenuated in Nox1 deficient mice [18]. 

NOX1-derived ROS induce translocation of PKCε to the membrane to enhance Transient 

Receptor Potential (TRP) V1 activity in DRG neurons [18], a change consistent with pain 

amplification (Fig. 2). In contrast, another study showed that NOX1 mRNA failed to 

upregulate in the DRG following peripheral nerve injury (PNI) [20]. These results indicate 

that DRG NOX1 may have a preferential role in inflammatory versus neuropathic pain.
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NOX2 is predominantly expressed by phagocytic cells—peripheral macrophages and CNS 

microglia [13]. PNI induces a rapid upregulation of NOX2 mRNA by DRG macrophages 

and spinal microglia, which is correlated with increased intracellular superoxide [20,21]. 

PNI-induced nociceptive hypersensitivity was attenuated in Nox2 deficient mice [20,21]. 

Nox2 deficiency attenuated TNF, but not IL-1β, mRNA expression, as well as expression of 

the neuronal injury marker ATF3 in DRG (Fig. 2) [20]. However, Nox2 deficiency did not 

influence macrophage recruitment to the injured DRG, suggesting a role for NOX2 in 

macrophage function rather than chemotaxis [20]. Nox2 deficiency attenuated PNI-induced 

Iba1 expression and the attendant expression of pro-inflammatory cytokines TNF and IL-1β 
in the spinal dorsal horn [21]. As these studies were performed in global knockouts, it is still 

unclear whether alterations in the DRG and dorsal horn are subject to NOX-dependent 

changes in macrophage function at the injury site. In contrast to NOX1, NOX2 activity in 

monocytes appears to play no role in inflammatory pain [22].

NOX4 is expressed by DRG neurons—both myelinated (A-fibers) and unmyelinated (C-

fibers) DRG neurons—and by microglia, astrocytes and macrophages [13,23,24]. 

Nociceptive hypersensitivity following PNI is attenuated in Nox4 deficient mice, with 

attenuation of hydrogen peroxide at the sciatic nerve injury site [23]. These results are 

supported by the absence of NOX4 upregulation in the DRG after PNI [20]. The myelin 

proteins MPZ and PMP22 are decreased at the sciatic nerve injury site over time in an 

NOX4-dependent fashion, suggesting that myelin degeneration by hydrogen peroxide may 

maintain neuropathic pain (Fig. 2). However, attenuated damage at the injury site did not 

alter expression of the nitroxidative stress and neuroinflammation indices at the spinal dorsal 

horn or DRG (microglia proliferation, hydrogen peroxide levels) [23]. This contrasts with 

other studies showing that such processes are dependent on manipulations at the sciatic 

nerve [25–27]. Finally, a role for NOX4 may be limited to neuropathic, rather than 

inflammatory pain [23].

Together, these data suggest that NOX1, 2, and 4 isoforms contribute to pathological pain. 

Future studies could expand the role of various NOX isoforms to other sites in the neuraxis, 

and well as identifying a role for other NOX isoforms in pain. These data may help to guide 

development of therapeutics that target the activity of specific NOX isoforms to reduce 

nitroxidative stress and pain.

Nitric oxide synthases

NO is a diffusible gas mediator that is synthesized from L-arginine by one of three nitric 

oxide synthase (NOS) isoforms: NOS1 (neuronal), 2 (inducible), and 3 (endothelial). NO 

and all three NOS isoforms have a well-established role in nociception (Fig. 2) [28]. It easily 

passes through membranes to directly impact nearby cells.

NOS1 is constitutively expressed in the cytosolic compartment of postsynaptic terminals of 

neurons, and of stressed Schwann cells, and requires calcium for its activation [29–31]. In 

abnormal pain states, N-methyl-D-aspartate (NMDA) receptors are activated, resulting in 

calcium influx and activation of NOS1 [28]. Nociceptive hypersensitivity induced by PNI 

and CIPN is attenuated by genetic ablation and pharmacological inhibition of NOS1 [32–

35].
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NOS2 is a cytosolic isoform that is widely expressed in many immune cells and in glia. 

Transcription of NOS2 is initiated by Toll like receptors (TLRs) and, once translated, is 

constitutively active—that is, unlike NOS1 and 3, its activity is independent of calcium [28]. 

NOS2 inhibition attenuates nociceptive hypersensitivity associated with inflammatory and 

neuropathic pain models [15,36,37].

NOS3 is best known for its expression in the cardiovascular system as a regulator of vascular 

tone. NOS3 is a membrane-bound enzyme that is constitutively expressed; however, it 

requires the interaction of calcium and calmodulin for its activation [28]. NOS3 expression 

is increased in the DRG after subcutaneous administration of CFA, and is correlated with 

allodynia, suggestive of increased NOS3 activity [38]. CFA-induced inflammatory pain is 

attenuated by NOS3 inhibition [38].

Cellular respiration

One critical function of mitochondria is energy metabolism. The mitochondrial electron 

transport chain (mETC) is a series of five molecular complexes through which electrons are 

transported to synthesize ATP from ADP. Premature electron leakage can occur during 

cellular respiration, particularly at Complexes I and III, resulting in superoxide production 

(Fig. 2) [39].

Mitochondrial ROS are elevated in spinal neurons, microglia and astrocytes in neuropathic 

pain models [21,40,41]. Furthermore, blocking the mETC attenuates hyperalgesia associated 

with a range of inflammatory and neuropathic pain models [42–45]. However, a direct link 

between mETC-dependent pain and mitochondrial ROS has yet to be shown. These results 

suggest that cellular respiration is increased, but is inefficient due to enhanced ROS-

generating electron leakage from the mETC, as ATP production by sciatic nerves is impaired 

during CIPN [46].

Mechanisms of nitroxidative signaling in neuronal hyperexcitability

Injury or disease can provoke intense, repeated, and sustained activity of primary afferent 

(sensory) neurons. This activity, together with the release of mediators from reactive glia and 

immune cells, elicits well-characterized changes in neuronal and biochemical processing at 

peripheral terminals and central synapses [5,47–50]. This is termed ‘sensitization’, and 

results in nociceptive hypersensitivity. Here, we discuss how nitroxidative signaling engages 

neurons in pain pathways, leading to peripheral and central sensitization (Figs. 1 and 3).

Nitroxidative species as neuromodulators in pain pathways

Nitroxidative species can directly increase the excitability of nociceptive neurons. 

Intraplantar administration of superoxide, peroxynitrite, or intrathecal delivery of the ROS 

donor tert-butyl hydroperoxide (tBOOH) is sufficient to induce nociceptive hypersensitivity 

in naïve rats [51–54]. These studies demonstrated that ROS activates calcium calmodulin-

dependent protein kinase II (CamKII) in glutamatergic spinal neurons, and induced 

presynaptic inhibition of GABAergic interneurons (disinhibition). Furthermore, hydrogen 

peroxide enhanced the frequency and amplitude of action potentials of DRG neurons from 

neuropathic rats (Fig. 3) [55].
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In neuropathic pain models, administration of the non-selective ROS scavenger phenyl-N-

tert-butylnitrone (PBN), selective small molecule superoxide and peroxynitrite 

decomposition catalysts such as M40403, FeTMPyP5+ and MnTE-2-PyP5+, or selective 

peroxynitrite decomposition catalysts such as SRI6 and SRI110 attenuated nociceptive 

hypersensitivity [15,51,53,54,56–58]. Accordingly, PBN attenuated injury-induced 

hyperexcitability of spinal dorsal (sensory) horn “pain” responsive neurons and 

phosphorylation of CamKII [51,57], an effect consistent with pain normalization. Several 

mechanisms of enhanced excitatory signaling have been identified. Hydrogen peroxide can 

activate cGKIα, resulting in increased neurotransmitter release from the terminals of 

primary afferent neurons in the dorsal horn [59,60]. Peroxynitrite and ROS disrupt glutamate 

homeostasis leading to potentiation of synaptic currents and calcium influx, and ultimately 

excitotoxicity [56,61]. Mechanisms include nitration and phosphorylation of several NMDA 

receptor subunits, as well as inhibition of glutamine synthetase and the glutamate transporter 

GLT-1 that limit the synaptic half-life of glutamate [15,56,62,63]. Nitroxidative products 

also induce disinhibition after PNI, as PBN normalized the decrease in GAD-67+ 

GABAergic dorsal horn neurons, and increased GABA release (Fig. 3) [53,64]. Together, 

these data suggest that nitroxidative species directly enhance neuroexcitability in pain 

pathways.

Nitroxidative species activate TRP channels

The TRP family of nonselective cation channels plays a vital role in the molecular 

integration of multiple endogenous and exogenous sensory stimuli [65]. Several of these 

channels, expressed at the peripheral and central terminals and cells bodies of primary 

afferent neurons, are activated by nitroxidative species and products. TRP channel activation 

by nitroxidative species can also initiate neurogenic inflammation— recruitment and 

activation of immune cells following release of neuropeptides by neurons—which is a key 

process underlying pathological pain (Fig. 3) [5,66]. Here, we focus on known roles of 

TRPA1, TRPM2, and TRPV1.

TRPA1 is a chemoreceptor expressed exclusively by peptidergic C-fibers [65]. Nitroxidative 

species induce protein carbonylation, and membrane phospholipid peroxidation and 

nitration, and subsequent production of reactive aldehydes such as acrolein (Fig. 1). These 

products all share the ability to induce nociceptive hypersensitivity by directly activating 

TRPA1 [67–72]. Acrolein is elevated in the DRG and spinal cord after SCI, and blockade 

with hydralazine or phenelzine partially attenuated allodynia [73,74]. Moreover, nociceptive 

hypersensitivity induced by CIPN was abolished in Trpa1 deficient mice, or with a TRPA1 

antagonist [75]. In this model, the chemotherapeutic bortezamib did not directly activate 

TRPA1, suggesting that ROS may act as an intermediate [75].

TRPM2 is expressed by neurons, and abundantly by immune cells, including monocytes/

macrophages, neutrophils and T cells, and microglia. This channel is directly activated by 

hydrogen peroxide, and cytosolic ADP-ribose that is generated after nitroxidative damage to 

mitochondria [76–81]. Furthermore, TRPM2 activation is critical for activation of spinal 

microglia and for macrophage infiltration into the spinal cord after PNI [82]. TRPM2 also 

activates ERK MAPK and induces nuclear translocation of NFκB, resulting in production of 
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proinflammatory cytokines and chemokines [76,77,81,83,84]. Consequently, 

pharmacological and genetic studies have demonstrated that TRPM2 contributes to 

inflammatory and neuropathic nociceptive hypersensitivity [77–79,82,85].

TRPV1 is found on unmyelinated, slowly conducting neuronal C-fibers, and is an essential 

component underlying injury-elicited thermal hyperalgesia and nociceptive hypersensitivity 

[65]. TRPV1 expression is upregulated by an exogenous ROS donor (tBOOH), and is a 

target of oxidation and nitration events that increase responsiveness of the channel [18,86–

88]. Moreover, linoleic acid metabolites, created during production of eicosanoids, are 

endogenous TRPV1 agonists when oxidized, and contribute to nociceptive signaling [89,90].

Nitroxidative species induce mitochondrial dysfunction

Mitochondria have pivotal roles in a variety of cellular functions, including energy 

metabolism, calcium homeostasis, lipid synthesis, and apoptosis. As noted above, cellular 

respiration can be elevated under neuropathic pain conditions, with an attendant elevation of 

ROS derived from neuronal and microglial mitochondria [21,40,41]. Together with 

nitroxidative species derived from NOX and NOS enzymes, these species disrupt 

mitochondrial homeostasis via several mechanisms, leading to bioenergetic crisis (due to 

impaired mETC efficiency) and degeneration of primary afferents (Fig. 3) [91].

Mitochondrial DNA is a target of oxidation and nitration, while peroxidated lipid end-

products, such as reactive aldehydes, can form covalent modifications (adducts) with an 

array of mitochondrial proteins, including antioxidants [92,93]. Together, these changes 

impair the structural integrity and function of mitochondria. Nitroxidative species can also 

trigger release of pro-apoptotic factors from mitochondria. For example, NO can disrupt 

mitochondrial dynamics (fission and fusion; responsible for maintaining metabolic 

homeostasis) that results in translocation of Bcl-2-associated X protein from the cytosol to 

the organelle membrane, where it activates apoptosis pathways [94–96]. Activation of 

apoptosis pathways contributes to neuropathic pain, as inhibition of several caspase enzymes 

attenuates vincristine- and dideoxycytidine-induced nociceptive hypersensitivity [97]. 

Neuropathic pain is associated with impaired mitochondrial function, and nociceptive 

hypersensitivity is accordingly attenuated by pharmacologically normalizing mitochondrial 

dynamics or preventing mitotoxicity [46,98–100].

Nitroxidative species induce neuroinflammatory signaling

Pro-inflammatory mediators released by glial and immune cells increase neuroexcitability in 

pain pathways after injury (e.g. TNF, IL-1β, BDNF) [5,50,101–103]. Several mechanisms 

include enhanced glutamate release, increased AMPA receptor expression, phosphorylated 

NMDA receptor subunits, and downregulated astrocyte glutamate transporters [5]. These 

proinflammatory mediators can also induce disinhibition of neuronal excitability by 

attenuating GABA and glycine release from interneurons and inhibitory descending 

projections, and downregulating KCC2 on postsynaptic terminals [5].

Nitroxidative species regulate the production of proinflammatory mediators during 

pathological pain. For example, NFκB and p38 MAPK are responsible for the production of 

a wide array of proinflammatory mediators in immune cells. Nitroxidative products degrade/
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inhibit IκB and MAPK phosphatases, resulting in activation of NFκB and p38 that both 

mediate inflammatory and neuropathic pain [52,104–107]. Furthermore, nitroxidative 

species may promote release of neuron-to-glia signals, such as matrix metalloproteases 

(MMPs) (Fig. 3) [108].

Nitroxidative species also elicit proinflammatory responses via toll-like receptor (TLR) 

signaling. TLRs bind a variety of endogenous ligands (danger associated molecular patterns: 

DAMPs), including DNA and N-formyl peptides from nitroxidatively damaged 

mitochondria, to trigger innate immune responses that contribute to pathological pain 

[5,109]. ROS serve a vital role as second messengers for TLR signaling. A rapid (minutes) 

respiratory burst occurs upon activation of TLR2 and 4, which is mediated by a direct 

interaction with the intracellular domains of NOX1, 2, and 4 enzymes. This NOX activity is 

essential for downstream NFκB- and p38 MAPK-dependent cytokine production [110–114]. 

Furthermore, activation of NOX enzymes by TLR signaling induces transcription of TLRs, 

and promotes membrane expression in lipid rafts, which is necessary for efficient signaling 

[111,115,116]. In concert with disruption of blood-brain barrier tight junctions by 

nitroxidative species, the TLR2-NOX1 interaction also upregulates adhesion molecules via 

CCL3 to facilitate transendothelial cell migration, which contributes to nociceptive 

hypersensitivity after PNI (Fig. 3) [102,110,117].

ROS have been implicated in the activation of NLRP3 inflammasomes [118]—protein 

complexes responsible for the proteolytic activation of IL-1β, a pro-inflammatory cytokine 

with a well-established role in pathological pain [5,101,119]. Among the various sensor 

molecules that trigger formation of inflammasomes, NLRP3 has been most widely 

investigated, and has a recently described role in neuropathic pain [120]. The relative 

contributions of ROS to the activation versus priming of NLRP3 inflammasomes remains to 

be elucidated [119]. Mitochondria are key participants in the activation of NLRP3 

inflammasomes; they are a source of ROS that can directly activate NLRP3, as well as 

oxidized mitochondrial DNA that can also activate NLRP3 (Fig. 3) [118,121–123]. 

Furthermore, TRPM2 activation by nitroxidative species induces a calcium flux that 

activates the NLRP3 inflammasome [124].

Finally, there is a reciprocal relationship between nitroxidative species and inflammatory 

signaling. For example, the transcription of NOX and NOS enzymes is upregulated by TLR4 

and 9 signaling, and by NFκB and p38 activation [19,125–129]. The purinergic receptor 

P2X7, which has a documented role in pathological pain, also induces ROS production 

[5,120,130]. ATP signaling through P2X7R activates NOX2 in a calcium and p38-dependent 

fashion [131–133].

Endogenous regulators of nitroxidative signaling

Under healthy conditions, nitroxidative species and antioxidants exist in a balanced state, as 

nitroxidative products play a vital physiological role in cellular processes (e.g. signal 

transduction, pathogen defense [134–136]). In response to increased production of 

nitroxidative species during injury or infection, antioxidant and regulatory systems are 

activated in an attempt to recover homeostasis (Fig. 1) [14].
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Antioxidant defense

Transcription of antioxidant genes is a critical step in controlling nitroxidative signaling. 

One key transcription factor is nuclear factor E2-related factor 2 (Nrf2). Nrf2 is expressed in 

CNS and PNS neurons, macrophages, Schwann cells, astrocytes, and microglia [137–139]. 

Under homeostatic conditions, cytosolic Nrf2 is sequestered by the protein Keap1 and 

ubiquinated for degradation. However, in the presence of oxidants and electrophiles Nrf2 is 

released from Keap1 and translocates to the nucleus [140]. Nrf2 binds to the antioxidant 

response element (ARE) promoter region to elicit expression of 200+ antioxidant genes, 

including superoxide dismutases (SOD1: cytosolic; SOD2: mitochondrial), catalase, 

glutathione, and heme-oxygenases [140]. Another transcription factor, forkhead box, class O 

(FoxO), is also responsible for the production of SOD2 and catalase [141]. Many of these 

antioxidants are ubiquitously expressed, and their catabolic function is summarized in 

Figure 1 [142].

These endogenous antioxidant systems collaborate to detoxify reactive nitroxidative species 

(Fig. 1). Evidence is mixed whether neuroinflammatory or traumatic events increase nervous 

system antioxidant levels [143–152]. This likely reflects a temporally-and injury-specific 

antioxidant response, and the fact that injury-induced nitroxidative species can negatively 

regulate antioxidant production [15,76]. Antioxidant system activation can limit pathological 

pain: deletion of SOD1 exacerbates neuropathic pain, while exogenous antioxidants 

attenuate nociceptive hypersensitivity in a range of inflammatory and neuropathic pain 

models [37,108,153–155]. Similarly, hemeoxgenases, which elicit expression of various 

antioxidants, protects cells and could improve inflammation and neuropathic pain [21]. 

Therefore, therapies that increase antioxidant systems could resolve neuroinflammation and 

pain symptoms.

Anti-inflammatory cytokine and adenosine signaling

Cytokines such as IL-10 and TGFβ counter-regulate proinflammatory signaling and 

contribute to the resolution of neuropathic pain hypersensitivity [5,156,157]. One 

mechanism of action is regulation of nitroxidative signaling. For example, IL-10 and TGFβ 
inhibit NOX2 activity and promote antioxidant production [158–160]. This is a reciprocal 

relationship, as antioxidants can also drive production of anti-inflammatory cytokines 

[161,162]. Adenosine signaling is also anti-nociceptive in pathological pain models [163–

165]. Signaling through A2A and A3 receptors inhibits NOX activity, and drives production 

of anti-inflammatory cytokines and antioxidants [163,166,167].

Opposition of opioid analgesia by nitroxidative species

Opioid analgesics remain the cornerstone of management of moderate-to-severe pain. 

However, the clinical utility of opioids is limited by tolerance, which is characterized by 

dose escalation due to reduced sensitivity to an opioid agonist, as well as hyperalgesia, a 

paradoxical increase in pain sensitivity due to opioid exposure [168,169]. Recent evidence 

has identified a role for nitroxidative signaling in these phenomena [6,170].

Grace et al. Page 8

Trends Neurosci. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NOX activity is elevated by morphine, and genetic or pharmacological disruption of these 

enzymes attenuates tolerance and hyperalgesia [171–173]. Superoxide and peroxynitrite 

have been implicated as downstream mediators, as decomposition catalysts also attenuate 

tolerance and hyperalgesia [174–176]. It remains unclear how morphine engages these 

enzymes, but it may be mediated by classical μ-opioid receptors and/or TLR4 [168]. The 

pro-nociceptive mechanisms of nitroxidative species, described above, may act as an 

opponent process of neuronally-mediated opioid analgesia to create tolerance, or may 

overshadow analgesia to induce hyperalgesia. Therefore, correcting nitroxidative imbalance 

may improve the clinical profile of opioids [170].

Nitroxidative signaling also disrupts endogenous opioid analgesia in supraspinal sites that is 

engaged to inhibit spinal nociception via descending projections. For example, induction of 

peroxynitrite during inflammatory pain results in nitration of met-enkephalin in the rostral 

ventromedial medulla (RVM), which reduces opioid receptor binding affinity [177]. This 

may be normalized by intra-RVM microinjections of FeTMPyP5+, which was 

antinociceptive in inflammatory and neuropathic pain models [177].

Nitroxidative signaling as a therapeutic target for pathological pain

Under pathological conditions, endogenous antioxidant responses can be insufficient, 

leading to an accumulation of toxic nitroxidative species. As mentioned above, unchecked 

increases in nitroxidative species can promote cytotoxicity and inflammation via cascading 

pronociceptive signaling. Therefore, discovering therapeutic treatments that enhance cellular 

antioxidant capacity could help achieve nitroxidative balance to recover homeostasis.

Initial efforts to combat increases in nitroxidative species in a wide range of neurological 

disorders used direct antioxidant compounds (e.g. vitamins C and E, co-enzyme Q). The 

consensus view is that the possible beneficial effects are outweighed by unfavorable 

pharmacokinetic and pharmacodynamic profiles [13,178,179]. A variety of redox-active 

therapeutics are being developed to overcome these issues and are effective in in treating 

cancer-induced bone pain, inflammatory, and neuropathic pain, and can also potentiate 

opioid analgesia [9,10,180].

Newer approaches have instead aimed to inhibit sources of nitroxidative species, stimulate 

endogenous antioxidants, and prevent nitroxidative damage [13,178]. To this end, inhibitors 

of specific NOX and NOS isoforms, and ROS toxifiers such as MPO, are being developed 

and may prove effective for pain treatment [13,181]. As noted above, A2A and A3 adenosine 

receptor agonists attenuate spinal NOX activity and promote antioxidant production, with a 

concomitant decrease in neuropathic pain [163–165]. Another promising approach is the 

development of small molecules that catalyze the clearance of reactive aldehydes [182].

Indirect antioxidants augment the redox response without being antioxidants themselves. For 

example, sulforaphane, resveratrol, and curcumin induce nuclear translocation of Nrf2, a 

transcription factor responsible for the production of a wide array of antioxidants, and 

attenuate nociceptive hypersensitivity in neuropathic pain models [21,183–186]. Non-

pharmacological approaches may also function in this capacity. For example, exercise 
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increases Nrf2 expression and promotes the expression of antioxidants in the CNS as well as 

peripherally [187–189]. Consequently, voluntary wheel running has been shown to both 

prevent and reverse neuropathic pain [187,190].

Finally, ROS have a role in normal physiological processes [134–136], and there is some 

evidence that ROS may have protective effects after injury. For example, inflammation 

induced by endotoxin is exacerbated in NADPH-impaired mice, relative to their wild-type 

counterparts [191]. In another study, yeast survival to hydrogen peroxide stress was 

dependent on superoxide [192]. Further work is required to determine whether reactive 

oxygen species may also have a protective role after sterile nervous system injury. However, 

agents have been developed to spare superoxide (e.g. peroxynitrite decomposition catalysts 

SRI110 and SRI6 [15]), and such approaches may prove to be important for restoring 

homeostasis after nervous system injury.

Concluding remarks

Nitroxidative species are generated by mitochondria and by NOX and NOS enzymes. They 

enhance neuroexcitability in pain pathways through direct neuronal interactions, and 

indirectly by impairing mitochondria and inducing neuroinflammation. Normalizing 

nitroxidative signaling may be an alternative strategy to help to alleviate the enormous 

burden of pathological pain, which affects ∼20% of the population, and is poorly treated 

[11,193,194]. There are several areas of basic science research that may move us towards 

that goal (see Outstanding Questions).

Despite the extensive research implicating nitroxidative species in pathological pain states, 

no studies to date have quantified the critical relationships between real-time local cellular 

creation of nitroxidative species, their concentration at the effect site, or the distribution of 

their direct effect. This challenge has not been overcome owing to the volatility of these 

nitroxidative species and hence the very short life-time in vivo and ex vivo. Several new 

technologies are being developed to address these issues, and are discussed in Box 1.

Lessons from the failure of direct antioxidants to improve clinical disease need to be 

recognized within the pain field; the effects of direct antioxidants on preclinical pain models 

continue to be reported, despite the strong probability that the results will not translate 

clinically. Several studies suggest that more robustly engaging antioxidant systems after 

injury can help alleviate pain: for instance, in animal pain models, increasing action of 

master antioxidant transcription factors Nrf2 or FoxO, or activating the heme-oxygenase 

system show promising pain-relieving effects. Future studies could explore whether 

combinatorial strategies – aimed at boosting multiple antioxidants or targeting both 

antioxidant and nitroxidative systems simultaneously – dampen inflammation and pain. 

Nitroxidant dysregulation clearly contributes to neuropathology; thus, discovering new 

targets and therapies that restore nitroxidative balance could help relieve pathological pain.
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Glossary

Neuroimmune signaling
bidirectional communication between leukocytes, glia and neurons

Pathological pain
maladaptive pain that serves no useful purpose
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Box 1

New and emerging tools to study nitroxidative species

Colorimetric and fluorescent methods for detecting the “shadow” of the presence of 

nitroxidative species production is well established by the quantification of attendant 

cellular events (e.g. oxidative stress such as lipid peroxidation (TBARS) [195]; and DNA 

damage (8-Oxoguanine: 8-OxoG) [196,197]) or the quantification of more stable 

metabolites (e.g. nitrite/nitrate using Griess reaction [198]). These methods are not only 

limited in their temporal and spatial resolution, but also due to their insufficient ability to 

define concentrations and time courses of specific nitroxidative species. Establishing 

differential regulation of distinct nitroxidative species would be useful, as specific oxygen 

or nitrogen species have unique outcomes in the neuroinflammatory responses. A recent 

example demonstrated that specifically targeting peroxynitrite reduced inflammatory 

progression via NLRP3 inflammasome-dependent IL-1β/IL-18 release following ICH 

induced inflammatory injury [199]. Thus, new biosensors are required to improve our 

mechanistic understanding of how nitroxidative species affect the nervous system.

The chemistry of fluorescent probes for specific detection of both ex vivo and in vivo 
production of nitroxidative species has grown rapidly. A range of approaches and hence 

biosensors have been created that exploit platform sensing modalities, such as 

photoinduced electron transfer (PET) and Förster resonance energy transfer (FRET) 

signalling. Additionally, composite biosensors that incorporate a sensor functionalised to 

a nanoparticle (gold particles, UCNP and QDots) are used to detect and/or measure 

ROS/RNS species (detailed in Table 1). Such ROS species probes can quantify 

hypochlorite [200,201], hydroxyl [202,203], superoxide [204], hydrogen peroxide [205] 

and singlet oxygen [206]. Biosensors for nitric oxide [207,208], nitroxyl [209–211], 

peroxynitrite [212] are also being developed.

These probes detect targeted species either in cell-lines, in ex vivo tissue, or in in vivo 
models of inflammation. However, these biosensor tools require further optimization. 

Further refining biosensors will help improve the stability of the probe; the brightness of 

the fluorescing molecule; the specificity to defined species; the sensitivity of detection; 

and the consumption of the probe in the sensing process. Thus real-time continued 

visualisation and/or quantification of nitroxidative species within the CNS of a behaving 

preclinical rodent model of pathological pain remains an elusive goal.

The ultimate nitroxidative species biosensor would have real-time sensing capacity, with 

signal brightness that detected subcellular localisation of the nitroxidative species; 

ideally, this probe would not be consumed/bleached in the sensing process allowing for 

repeated measurements in vivo. Next generation probes will address some of these 

limitations. For instance, a redox sensitive fluorescent protein (rxRFP1), whose 

fluorescence intensity is positively related to the extent of oxidation of the probe, can 

detect varying amounts of oxidative stress within separate cellular compartments [213]. 

Further refining these tools will enable an improved understanding of how certain species 
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contribute to oxidative or nitrosative stress, and will allow researchers to define how 

spatiotemporal regulation of nitroxidative activity contributes to pathological pain.
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Outstanding Questions

• How ubiquitous are nitroxidative signaling mechanisms within the 

neuraxis, beyond the classical sites already tested (peripheral nerve 

injury site, DRG, spinal cord)?

• Are nitroxidative signaling mechanisms common or different between 

different preclinical pain models?

• What is the relationship between the antioxidant and anti-inflammatory 

cytokine systems?

• Do indirect antioxidants have improved translational potential for 

treatment of pathological pain?
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Trends

• Nitroxidative species (reactive nitrogen and oxygen species, and their 

products) contribute to peripheral and central sensitization after tissue 

injury, which leads to pathological pain.

• There is a reciprocal relationship between nitroxidative and 

inflammatory signaling that drives peripheral and central sensitization.

• New approaches to restoring nitroxidative balance may reveal effective 

strategies to treat pathological pain

• The development of new tools may enhance our understanding of the 

critical relationships between real-time local creation of nitroxidative 

species, their concentration at the effect site, and the distribution of 

their direct effects.
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Figure 1. Induction of nitroxidative species after tissue injury
Nitroxidative species can induce posttranslational modifications of proteins and lipids, 

which subsequently drive pathological pain by modulating nociceptive neurotransmission, 

activating TRP channels, inducing mitochondrial dysfunction, and induce inflammatory 

signaling. In healthy cells, endogenous antioxidant systems prevent nitroxidative damage. 

Cell damage/pathology can perturb this balance, driving accumulation of potentially 

damaging nitroxidative species. O2: oxygen; NO: nitric oxide; O2
•−: superoxide; ONOO−: 

peroxynitrite; H2O2: hydrogen peroxide; •OH: hydroxyl radical; H2O: water; NOX: NADPH 

oxidase; NOS: nitric oxide synathse; mETC: mitochondrial electron transport chain; SOD: 

superoxide dismutase; CAT: catalase; GPx: glutathione; HO: heme oxygenase.
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Figure 2. Sources of nitroxidative species after tissue injury
Principal sources of nitroxidative species include NADPH oxidase (NOX), nitric oxide 

synthase (NOS), and electron leakage from the mitochondrial electron transport chain 

(mETC). The NOX1, 2, and 4 isoforms are differentially expressed across cell types and 

tissues after injury. NOX1-derived reactive oxygen species induce enhance Transient 

Receptor Potential (TRP) V1 activity in dorsal root ganglia (DRG) neurons. NOX2 activity 

in macrophages and microglia drives mRNA expression of proinflammatory cytokines (PIC) 

in DRG the spinal dorsal horn. NOX4 expression at the site of peripheral nerve injury 

decreases expression of myelin proteins (MP). The three NOS isoforms—NOS1 (neuronal), 

2 (inducible), and 3 (endothelial)—are also differentially expressed by cell type. In abnormal 

pain states, N-methyl-D-aspartate receptors (NMDARs) are activated, resulting in calcium 
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influx and activation of NOS1. Transcription of NOS2 is initiated by Toll like receptors 

(TLRs). These enzymes and processes have a well-established role in pathological pain.
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Figure 3. Nitroxidative mechanisms of neuroexcitability after tissue injury
Reactive nitroxidative species, such as hydrogen peroxide and peroxynitrite, and modified 

proteins and lipids, like carbonylated proteins, peroxidated and nitrated lipids, and reactive 

aldehydes, all contribute to peripheral and central sensitization after tissue injury. These 

processes drive pathological pain. Several of the Transient Receptor Potential (TRP) family 

of nonselective cation channels are activated by nitroxidative species and modified proteins 

and lipids (see Nitroxidative species activate TRP channels). TRPA1 is expressed by 

peptidergic C-fibers, and is activated by modified proteins and lipids. TRPM2, which is 
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expressed by neurons, monocytes/macrophages, microglia, and T cells, is directly activated 

by nitroxidative species. TRPM2 also activates intracellular signaling pathways, including 

mitogen activated protein kinase (MAPK) and nuclear translocation of nuclear factor κ-

light-chain-enhancer of activated B cells (NFκB) pathways. TRPV1 is found on C-fibers and 

is directly activated by some modified proteins and lipids, as well as being a target of 

oxidation and nitration events by nitroxidative species that increase responsiveness of the 

channel. Reactive nitroxidative species can directly modulate neuroexcitibility in central 

synapses by promoting glutamate release from primary afferent terminals, by activating 

calcium calmodulin-dependent protein kinase II (CamKII) in glutamatergic spinal neurons, 

and by inhibiting GABAergic interneurons (see Nitroxidative species as neuromodulators in 
pain pathways). Nitroxidative species also disrupt glutamate homeostasis by nitration and 

phosphorylation of NMDA receptor (NMDAR) subunits, as well as inhibiting glutamine 

synthetase (GS) and the glutamate transporter GLT-1. Mitochondrial DNA is a target of 

oxidation and nitration, while some nitroxidative species can form adducts with many 

mitochondrial proteins, which together impairs the structural integrity and function of 

mitochondria (see Nitroxidative species induce mitochondrial dysfunction). Nitroxidative 

species can also trigger release of pro-apoptotic factors from mitochondria by disrupting 

organelle dynamics. Nitroxidative species induce production of proinflammatory mediators, 

and can activate NFκB and MAPK intracellular signaling pathways (see Nitroxidative 
species induce neuroinflammatory signaling). Toll like receptors (TLRs) bind a variety of 

endogenous danger signals, including those released from nitroxidative-damaged 

mitochondria, to activate NFκB and MAPKs. NOX-derived ROS are second messengers for 

NFκB- and p38 MAPK-dependent TLR signaling, and TLR expression. The TLR2-NOX1 

interaction also upregulates adhesion molecules via CCL3, which facilitates transendothelial 

cell migration into the CNS. Mitochondria-derived ROS also activate NLRP3 

inflammasomes, which are protein complexes responsible for the proteolytic activation of 

IL-1β.
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