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One of main steps in a study of microbial communities is resolving their composition, diversity and function.
In the past, these issues were mostly addressed by the use of amplicon sequencing of a target gene because of
reasonable price and easier computational postprocessing of the bioinformatic data.With the advancement of se-
quencing techniques, themain focus shifted to the wholemetagenome shotgun sequencing, which allowsmuch
moredetailed analysis of themetagenomic data, including reconstruction of novelmicrobial genomes and to gain
knowledge about genetic potential andmetabolic capacities of whole environments. On the other hand, the out-
put ofwholemetagenomic shotgun sequencing ismixture of short DNA fragments belonging to various genomes,
therefore this approach requires more sophisticated computational algorithms for clustering of related se-
quences, commonly referred to as sequence binning. There are currently two types of binning methods: taxono-
my dependent and taxonomy independent. The first type classifies the DNA fragments by performing a standard
homology inference against a reference database, while the latter performs the reference-free binning by
applying clustering techniques on features extracted from the sequences. In this review, we describe the strate-
gies within the second approach. Although these strategies do not require prior knowledge, they have higher
demands on the length of sequences. Besides their basic principle, an overview of particular methods and tools
is provided. Furthermore, the review covers the utilization of themethods in contextwith the length of sequences
and discusses the needs for metagenomic data preprocessing in form of initial assembly prior to binning.
© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.

0/).
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1. Introduction

Direct sequencing of genomic material from an environment, com-
monly referred to as metagenomics, helped to provide a full insight
. on behalf of Research Network of C
into entire microbial communities that could not have been studied be-
fore for a majority of the organisms are uncultivable [1]. Nowadays,
there are thousands of metagenomic projects compared with only few
studies published in early 2000s [2,3]. The aim of these projects is to ex-
plore microbiologically diverse environments such as soil [4], marine
water [5], gut or other niches of human [6] or other higher eukaryotes.
Each of these habitats is characterized by specific taxonomic
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composition of particular genomes and every genome by its specific
composition of genes, forming the resulting metabolism [7].
Metagenomic research can therefore infer medically or industrially im-
portant knowledge by revealing hitherto undescribed genes responsible
for antibiotic resistance or enzyme synthesis [8]. To further underline
the importance of metagenomic research, it was estimated that the mi-
crobial cell population of human genome outnumbers the number of
human own cells by 10 fold [9], leading to conclusion that the influence
of microbiota on human health is far greater than it was expected. One
of the basic problems in metagenomic studies remains in taxonomic
classification of the sequenceswithin the sample. This task is a challeng-
ing one since the volume ofmetagenomic data is rather large and there-
fore imposes high demands on bioinformatic tools for fast and effective
data processing. Furthermore, there is no prior knowledge about the
species richness of the sample which makes the classification process
even more challenging. In metagenomics, the assignment of genomic
fragments to the corresponding taxonomic group, e.g. species, genera
or higher taxonomic groups, is commonly referred to as “binning” as
each of the sequences is placed into an imaginary bin representing
ideally only fragments belonging to this group. The outcome of the
binning process can then be used not only for taxonomic diversity
assessment, but also for facilitation of genome assembly, evaluation
of gene association with different taxonomic groups or as the basis for
following metatranscriptomics or metabolomics analyses leading to
revelation of novel interactions [10–13].

With regards to sequencing strategy, there are twomain approaches
to study microbiomes. The first strategy is based on amplicon se-
quencing of a target gene in themetagenome,while the second strategy
uses the whole metagenome shotgun (WMS) sequencing [14]. Using
specific primers, only phylogenetic marker genes or their parts are se-
quenced in the first approach. 16S rRNA [15] and internal transcribed
spacer (ITS) [16] regions are the most commonly used for prokaryotic
and fungal species respectively. Unfortunately, no additional informa-
tion apart from species richness and abundance can be determined
for all sequences represent the same genomic region. Nevertheless,
thanks to comprehensive databases of marker genes, the binning
process is relatively easy and reliable [17], which makes the amplicon
sequencing data analysis a standard approach for the diversity investi-
gation of metagenomes [18] and new techniques for community detec-
tion and visualization of microbiomes are still being developed [19].
The solution to the loss of information about metagenome is offered
by utilization of the second approach using WMS sequencing. This
strategy provides a deep insight into a metagenome, as every sequence
represents a random part, including unknown genes, of a genome oc-
curring in the metagenome [20]. On the other hand, the preprocessing
of the WMS data can be a challenging task not only for much larger
volume of data being processed, but also due to the lack of the reference
whole genomic sequences within the available databases. These chal-
lenges make the binning process especially difficult. However, a com-
petitive research in bioinformatics strives to solve these issues and
therefore a majority of the newly developed algorithms is focused on
WMS data processing.

The output of whole metagenome sequencing is formed by genomic
fragments, about which there is no taxonomical information available.
These fragments can be analogously associated with puzzle pieces
belonging to different puzzle sets. Moreover, their length can differ de-
pending on the used sequencing technology [21]. Current assembling
technologies are still unable to assemble the short fragments into a
whole genome sequences, and often fail at level of contigs [22]; there-
fore binning process, where fragments are divided into species or
strain-level clusters, is essential for better reconstruction of novel mi-
crobial genomes to gain knowledge about genetic potential of whole
metagenome. There are two different groups of strategies for WMS
data binning. The taxonomy dependent, also referred to as supervised,
methods rely on comparison of sequences against reference databases.
Comparison can be performed (i) on the sequence level using aligning
algorithms like BLAST [23], BLAT [24], Bowtie [25], BWA [26], (ii) on
the model level of a known phylogenetic origin using Hidden Markov
Models (HMM) and specific database such as Pfam [27] or (iii) on a se-
quence composition level using GC content, oligonucleotide patterns
[28], etc. Although there is a wide range of such techniques, they suffer
from two major issues. Firstly, the comparison part of the algorithm
is time consuming; this especially applies to the aligning methods.
Secondly, the reference databases containing whole genome sequences
are far from complete. According to estimations the whole prokaryotes
group consists of almost 108 separate genospecies [8] andwhile there is
more than 3 million of 16S rRNA genes already sequenced, only around
6000 complete genomes are available up to date [29,30]. Therefore,
a great number of sequences can end up either unassigned or as false
positive assignments. The accuracy prediction of the methods then
relies on the required taxonomy level of assignment, where the proba-
bility of assignment to the correct group rises with the increasing taxo-
nomical level. The second group of methods overcomes both of the
mentioned disadvantages by using taxonomy independent also called
unsupervised approach. These techniques are based on extraction of
parameters specific for given taxon out of the raw sequencing reads
or preassembled contigs. The obtained parameters are then directly
compared and binned by use of suitable machine learning algorithms,
without the need for any reference database.

Although an overall summary of all strategies formetagenomic shot-
gun data binning, as well as validation strategies for these techniques
is summarized in review by Mande et al. [31], the list of described
taxonomy independent strategies contains only five techniques. While
in taxonomy dependent strategy research authors mainly work on im-
proving the current techniques, the taxonomy independent strategy,
which became the main focus of interest and has undergone great de-
velopment especially over the last five years, expanded by a lot of new
techniques. In this mini review, we update the list of taxonomy inde-
pendent strategies by recently published techniques and provide their
further division and description. On top of that, the future trends in
the field are briefly discussed at the end of this review.

2. Taxonomy independent binning algorithms

Rapid development of taxonomy independent strategies for
metagenomic data binning brings a wide range of new techniques, uti-
lizing variousmachine learning, clustering and visualization algorithms.
While these techniques usually differ in algorithm they use for binning,
they share the strategy for extraction of features on which the binning
is performed. There are two basic types of features used for classifica-
tion, namely features based on sequence composition, and features
based on contig coverage reflecting abundance of given taxa in a micro-
bial sample. Considering these parameters, the existing techniques
can be divided into three categories, as shown in Fig. 1, specifically:
(i) sequence composition basedmethods, (ii) abundance basedmethods,
and (iii) hybrid methods, which combine both, information regarding
the sequence composition as well as taxa abundance.

2.1. Sequence composition based binning

The core idea of the methods in this section is based on an assump-
tion that the genome composition is unique for each taxon, and there-
fore it is possible to bin the sequences purely by comparing their
content. Since sequence composition is character based, it is essential
to first transform it to a suitable numerical feature vector. The most
commonly used features are so-called genomic signatures, which are
normalized frequencies of k-mers of a particular size [32]. Typically,
k is set to four, which results in high dimensional Euclidean space
with 44 = 256 dimensions formed by frequencies of particular words
four characters in length {AAAA, AAAC,..., TTTT}. Various strategies can
reduce the dimensionality of the vector by differentmethods, for exam-
ple to 136 dimensions, when accounting for reversed complements



Fig. 1. Schematic distribution of current taxonomy independent binning methods into
three categories; the eye symbol highlights the methods that enable visualization of
datasets.
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and palindromes [33]. Another parameter that is possible to use for se-
quence comparison is the guanine-cytosine (GC) content, since studies
confirmed difference of GC content among unrelated populations [34].
The common workflow of binning strategies is shown in Fig. 2.

TETRA [35], a tool for statistical analysis and comparison of se-
quences based on tetranucleotide pattern frequencies, can be consid-
ered as a predecessor of modern binning methods. The computing
capacity of the tool, however, does not meet the needs of current
metagenomics and the tool is no longer available. One example of the
current methods using composition based binning is LikelyBin [36],
which utilizes the Markov Chain Monte Carlo approach for binning se-
quences based on k-mers of lengths between k = 2 and k = 5. Despite
the fact that themethod is fully automatic, its use is limited only on low
complexity metagenomes (2–10 species), where the method reaches
high accuracy given sufficient genomic divergence. Better result in
terms of precision and accuracy were reached by use of the SCIMM
[37] technique, which uses interpolated Markov models (IMM) on
initial clusters for production of higher quality bins. Unfortunately,
initial bins need to be formed before the application of IMM on the
data. This can be done either by k-means clustering, which needs a
predicted number of clusters as an input, or by running another binning
algorithm, e.g. LikelyBin [36] or CompostBin [38]. Although SCIMM can
improve the quality of clusters, the final results are highly dependent
on this initial step. Also use of SCIMM is limited to lower complexity
metagenomes, as both recall, and especially precision values are lower
with increasing number of genomes presented within a sample.

Complex microbial samples can be analyzed by use of different
forms of self-organizing maps (SOMs) [39–43]. A SOM is an artificial
neural network proposed by Kohonen (1990) [44] for data clustering.
Its properties are making it an ideal tool for clustering and visualization
of high-dimensional data like genomic signatures by mapping them on
a two-dimensional map. One form of SOM is batch-learning SOM
(BLSOM) specifically modified for genome informatics to make the
learning process and resulting map independent of the order of data
input [41,42]. In order to lower computational demands of BLSOM,
a novel method Self-Compressing BLSOM (SC-BLSOM) was invented,
which rapidly fastens the clustering process [43]. Although SOM
can be an effective tool for cluster analysis, it also has its drawbacks.
Firstly, the contour definition and therefore the final clustering can be
hard task that significantly affects the results of taxonomic profiling.
Secondly, the kernel transformation suffers from quadratic time
complexity therefore it is time consuming. A solution to the second
addressed problem is offered by VizBin [45] which also reduces the
high-dimensional k-mers into two-dimensional space by use of the
Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) algorithm with
time complexity only O(nlogn) compared to O(n2) of SOM [46,47].
One of themajor advantages of VizBin is that it provides rather distinct-
ly bounded clusters in satisfactory time. On the other hand, the final
binning is not automatic and the results are therefore purely dependent
on human assessment which can be especially problematic with high-
complexity metagenomic data.

Several parameters were combined in 2Tbinning [48], these include
GC content, oligonucleotide frequency derived error gradient (OFDEG)
[49] and tetramer frequency. 2Tbinning stands for 2-tier binning, as in
the first tier sequences are separated into preliminary groups based on
GC content and OFDEG parameter, and in the second tier, these groups
are then separately divided into finer bins utilizing k-mer frequencies.
Also MetaWatt [50] is a tool that bins sequences in two steps, where
sequences are firstly separated into clusters regarding to an empirical
relationship between the mean and standard deviation of tetramer
frequencies. The optimal bins are then selected by an expert and used
for creation of IMMs, which are then used for improvement of the bin-
ning results obtained in thefirst step, similarly to SCIMM.However, com-
pared with SCIMM, which uses fully automatically defined bins for IMM
modeling, MetaWatt requires human input.

2.2. Abundance based binning

One of the problems with the composition based methods is the
binning of species with low abundance, as sequences belonging to
these species form smaller indistinct clusters, which can then be easily
misclassified as part of a larger bin belonging to highly abundant species.
This issue can be solved by use of abundance based binning methods,
which can be further subdivided intomethods forworkingwith one sam-
ple (AbundanceBin [51],MBBC [52]), andmethodsworkingwith series of
metagenomic samples (Canopy [53]). The key idea of the first group is
that the distribution of sequenced reads follows the Lander-Waterman
model, where coverage of each nucleotide can be computed by the appli-
cation of the Poisson distribution [54]. The workflow of these methods is
therefore somewhat similar to the composition based binning tech-
niques, with the main difference in cluster formation being defined by
k-mer abundance (content) instead of their similarity (composition).
The second group of methods is based on the assumption that coverage
profiles of contigs from the same genomes should be highly correlated
across multiple samples. The necessary step lies in de novo assembly of
raw reads into contigs, as shown in the schematic workflow in Fig. 2.

The second problem with composition based methods is that they
usually provide reasonably accurate results onlywhen longer sequences
are used (e.g. 800 bp). AbundanceBin, the one-sample abundance based
method, gives solution to this issue and can work accurately even with
sequence reads that are only 75 bp long. The technique extracts l-tuples
(lwas experimentally estimated to 20) from all reads and then by use of
the Expectation–Maximization (EM) algorithm, finds the parameters
for the Poisson distributions, which reflect the relative abundance levels
of the species. Since AbundanceBin uses a recursive binning approach
for bin number estimation, there is no need for human input, which
makes the method fully automatic. A user can still possibly change the
initial conditions for the EM algorithm for the initial estimation of abun-
dance levels and genome sizes, which are determined empirically for
default mode. A similar pipeline to AbundanceBin is introduced in
MBBC,where the initial binning is also performedbyfindingparameters
for Poisson distributions by the EM algorithm; however, the outcome is
then used for training Markov models, based on which the preliminary
bins are refined. Although both of the methods work well even on very
short sequences (e.g. 75 bp), the setting of initial conditions can be cru-
cial for the outcome. Moreover, in MBBC, the user is required to enter a
large number as an estimation of number of bins. While the number is



Fig. 2.Workflow of taxonomy independent binning strategies.
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then optimized, it is still unclear,what can be considered large for differ-
ent samples, thus testing an optimal setting can be time consuming.

In order to overcome resolution limitations, in form of inability to
separate closely related organisms, abundance can be computed and
compared across many samples. Such resolution enhancement is intro-
duced in Canopy, which clusters sequences based on gene abundance
profiles across many samples. Since the method works only with
gene regions, it requires use of MOCAT software package [55] for gene
prediction. The canopy-based clustering is then performed simply
by searching for genes within a predefined distance from a randomly
picked gene, which has not been clustered yet. Bins are then further
edited based on the gene content. The method therefore does not re-
quire predefined number of clusters or any other human input, making
it fully automatic.

2.3. Hybrid binning

The hybrid binningmethods combine the two aforementioned strat-
egies into a compact technique. It has been previously proven that
by combination of information about the sequence composition and
coverage, which reflects the species abundance, one can extract more
information about metagenomics data, which eventually leads to
more accurate binning results [59].

The very first hybrid method was CompostBin [38]. Unlike the ma-
jority of sequence composition based methods requiring prior assem-
bly, which can possibly lead to the formation of defective sequences,
referred to as chimeric contigs; the workflow of CompostBin is de-
signed in such way that the method can be applied directly onto raw
reads. Initial extraction of hexamer frequencies is followed by principle
component analysis (PCA) for dimensionality reduction, which is,
however, weighted by an inverted value of sequence coverage. By ap-
plying the weights, the between species variance is not overwhelmed
by within species variance of the more abundant species. Bins are
then formed by the application of fully automatic recursive division
algorithm on the data in the final lower-dimensional space; thus, no
prior knowledge is required. Another method that uses PCA for dimen-
sionality reduction is CONCOCT [56]. Here, the combined profile is
constructed simply by concatenating the two vectors (k-mer frequency,
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and coverage) together while dimensionality reduction is carried out
by simple unweighted PCA. All efficiency evaluators of CONCOCT were
proven to grow with the number of samples; therefore, the minimal
requirement for number of samples was empirically stated to be 50.
CONCOCT uses a variational Bayesian approach for cluster number esti-
mation in combination with the Gaussian mixture model (GMM) [57],
which makes the binning independent of human input. Similarly to
CONCOCT, COCACOLA [58] works with one feature vector, combining
coverage across many samples with genomic signatures. This technique
uses L1 distance instead of commonly used Euclidian distance to provide
more reliable taxonomic binning results. Furthermore, the binning
method combines advantages of soft, as well as hard clustering which
eventually ensues in more robust results. COCACOLA, in addition to
that, enables the incorporation of extra knowledge in the form of
linkage of contigs provided by pair-end reads, and co-alignment to
reference genomes into the binning method in order to enhance the
binning performance.

MyCC [59] uses k-mer frequency vectors with optional addition
of coverage information, which makes the method either hybrid,
or composition based, in case that the coverage information is not
available. The initial workflow is identical to the one used in VizBin
from composition based binning section, but instead of human-
augmented clustering, the affinity propagation algorithm is used for
the creation of initial clusters, which are then fine-tuned by the identi-
fication of single-copy marker genes within the clusters. The universal
single-copymarker genes are conserved in themajority of all sequenced
bacteria and occur in exactly one copy [60] and can therefore be used as
a measure of genome completeness or in case of MyCC as a useful tool
for binning refinement. Although the binning method in MyCC is auto-
matic, the affinity propagation algorithm has large memory demands
and therefore, with constantly growing amount of metagenomics data,
leaves space for further improvements.

Another technique working simultaneously with many samples
is MetaBAT [61]. In this case, the method does not form a compact
feature vector, but instead calculates probabilistic distances between
pairs of sequences based on k-mer frequencies and abundance, and
merges them into one composite distance. The probabilistic distances
of tetranucleotide frequencies are computed utilizing an empirical
model obtained by comparison of inter- and intraspecies distances of
the known genomes, therefore, the validity of the model is verified
only by the knowledge of already sequenced genomes. Even though
the clustering method is fully automatic, the user is required to select
one of the five predefined options regarding to the desired sensitivity
and specificity. Same asMetaBAT, alsoMaxBin [60]workswith probabi-
listic models.While themodel based on the tetranucleotide frequencies
was determined similarly using inter- and intraspecies Euclidian dis-
tances of 3181 known bacterial genomes, the difference can be found
in the estimation of the model for coverage based probability distances.
For a given pair of sequences, MetaBAT utilizes an area shared under
normal distribution curves for quantification, whereas MaxBin adapts
the Lander-Waterman model with the Poisson distribution. Clustering
in MaxBin is then performed by EM algorithm. The technique uses
universal single-copy marker genes for estimating the number of bins,
parameter initiation and for polishing the binning output after running
the EM algorithm. The original version of MaxBin was designed on
single-sample data usage; however, the upgraded version, MaxBin 2.0
[62], has already allowed usage on multi-sample data, which leads to
better binning results.

Software for binning of metagenomics data from several samples,
such as, GroopM [63], uses primarily differential coverage of the sam-
ples accompanied by principal components of genomic signatures and
by contig lengths. In this method, coverage of each sample represents
one dimension in a high-dimensional space, which is then transformed
by the use of unique transformation to 3D space in order to enable visu-
alization. The binning is then performed in several steps, including two
way clustering, followed by Hough partitioning on parameters formed
by all, differential coverage, first principal components obtained from
genomic signatures carrying at least 80% of variability, and by contig
lengths. The preliminary bins are then refined by use of SOM and an
optional user input.

Compared to the aforementioned methods, Differential Coverage
Binning [64] uses dual information of one sample obtained by the
application of two different DNA extraction methods (HP+, HP−). The
doubled information regarding the coverage of each sample allows a
simple visualization in 2D space. The groups in the plot are labeled
according to the occurrence of essential single-copy marker genes,
allowing the user tomanually select a desired cluster, which is then fur-
ther processed by extracting genomic signatures and the performance
of PCA providing useful information in further species segregation.
In the next step, pair-end reads are used for creating a network,
which after visualization in Cytoscape [65], can enhance the binning
results. Although the method enables advanced visualization, binning
is affected purely by a user. The last method introduced in this section:
MetaCluster 5.0 [66] is a tool designed for single-sample binning.
MetaCluster 5.0 is able to work with short reads (75 bp), and compared
to its previous version MetaCluster 4.0 [67], also deals with issue of
problematic separation of low-abundant species by two-round binning.
The method first separates data into three groups based on coverage,
namely (i) high abundance, (ii) low abundance, and (iii) extremely
low abundance sequences. The extremely low abundance sequences
are filtered out and binning is then done on the two remaining groups
separately. In each group, the sequences are first clustered into prelim-
inary bins referred to as virtual contigs based on content of identical long
w-mers, where w is high. The whole virtual contigs are then processed
as single sequences and based on their k-mer frequencies content clus-
tered into the final bins by automatic k-means clustering algorithm
using Spearman distance. The approach from MetaCluster 5.0 has also
been adapted for utilization in an annotation pipeline and is named
MetaCluster-TA [68].

2.4. Input data

Particular groups of different taxonomy independent strategies lay
different requirements on input data; while the sequence composition
based strategies canwork directly with sequencing reads, the classifica-
tion of very short fragments is problematic due to the high variation of
DNA composition patterns within a single genome. Raw sequencing
reads can be therefore processed by certain tools only if their length is
sufficient. In general, the length of 2000 bp is considered to be a mini-
mum, but the longer the sequences are, the better the binning result
becomes. Direct classification of raw sequencing reads is therefore
possible only for third generation sequencing platforms, e.g. PacBio
[69] or Oxford Nanopore [70]. The abundance based methods utilizing
distribution of sequenced reads following the Lander-Waterman
model, on the contrary, can work with reads as short as 75 bp, making
them capable to reliably bin reads from next generation sequencing
platforms, e.g. Illumina, Roche 454 or Ion Torrent [71]. The remaining
abundance based techniques, aswell asmost of hybridmethods usually
require de novo assembly prior to binning, as they work with coverage
profiles of analyzed contigs. Although standard de novo assembly
tools, e.g. SOAPdenovo2 [72], Celera [73], Velvet [74], etc., can provide
satisfactory assembly results, preferably novel specialized assemblers
for metagenomic datasets, e.g. MetaVelvet [75], IDBA-UD [76], Ray
Meta [77], etc., should be used. Contigs assembled from the next gener-
ation sequencing reads can be, of course, also used as an input for com-
position based methods to improve their performance.

The list of all tools including requirements for input data, pro-
gramming language or interface and operating system is provided
in Table 1. Basic knowledge of unix based OS and scripting languages
is usually required as only 3 tools are equipped with graphical interface
of which the single one can be considered as a standalone application.
The rest of tools are rather packages using only command line interface.



Table 1
List of tool for taxonomy independent binning.

Method Software
type

Input data Programming
languages*

Interface Operating system Available from

SOM např. Package Raw reads or contigs Perl CLI Linux https://github.com/tetramerFreqs/Binning
LikelyBin Package Raw reads Perl, C CLI Linux http://ecotheory.biology.gatech.edu/downloads/likelybin
SCIMM Package Raw reads or contigs Python CLI Linux http://www.cbcb.umd.edu/software/scimm/
2Tbinning − − − − − No longer available
MetaWatt Package Assembled contigs Java CLI, GUI for data

exploration
Linux, Mac OS https://sourceforge.net/projects/metawatt/

VizBin Standalone Contigs Java GUI Linux, Mac OS,
Windows

https://claczny.github.io/VizBin/

AbundanceBin Package Raw reads C++ CLI Linux http://omics.informatics.indiana.edu/AbundanceBin/
Canopy Package Gene abundance profiles C++ CLI Linux, Mac OS https://bitbucket.org/HeyHo/mgs-canopy-algorithm/wiki/Home
MBBC Package Raw reads Java CLI, GUI Linux, Windows http://eecs.ucf.edu/~xiaoman/MBBC/MBBC.html
CompostBin Package Raw reads C, Matlab CLI Linux https://sites.google.com/site/souravc/compostbin
MetaCluster Package Raw reads (only pair-ends) C++ CLI Linux http://i.cs.hku.hk/~alse/MetaCluster/index.html
Dif. Cov. Bin. Pipeline Raw reads R CLI Linux https://github.com/MadsAlbertsen/multi-metagenome
CONCOCT Package Contigs + BAM Python CLI Linux, Mac OS https://github.com/BinPro/CONCOCT
MaxBin Package Contigs + (reads or

abundance file)
Perl CLI Linux, Mac OS https://sourceforge.net/projects/maxbin/

GroopM Package Contigs + BAM Python CLI Linux http://ecogenomics.github.io/GroopM/
MetaBAT Pipeline Contigs + BAM C++ CLI Linux https://bitbucket.org/berkeleylab/metabat
COCACOLA Pipeline Contigs + raw reads Matlab CLI Linux https://github.com/younglululu/COCACOLA
MyCC Package Contigs + BAM*optional Python CLI Linux https://sourceforge.net/projects/sb2nhri/files/MyCC/
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Several methods are only pipelines associating different algorithms
by simple command line interface. Links for downloading the tools are
also included in Table 1, except for 2Tbinning tool which is no longer
available.

3. Visualization

Since taxonomy independent techniques perform clustering in un-
supervised manner, the use of interactive inspection and visualization
tools can be suitable for validity verification of the binning output.
This way the user obtains a comprehensive outcome and, in case of
GroopM, is also able to fine-tune the results of the automatic clustering
methods [63]. The visualization methods use information regarding
sequence composition or coverage to produce coordinates in two- or
three-dimensional space to describe the given sequence. In some
cases, the sequences can be visualized simply by the use of the parame-
ters as coordinates without any further transformation. Such an exam-
ple can be seen in LikelyBin, where each dimension is represented by
loglikelihood of a given generated model, or in the first clustering tier
of 2Tbinning, where one axis represents the GC content, while the
second OFDEG of the sequence. Also the Differential Coverage Binning
method uses simple coverage information of the two samples as se-
quence coordinates in the first visualization step.

In the majority of cases, the sequences are described by more than
three parameters, disabling them from being projected into a humanly
comprehensible space. Denouement is then brought by use of dimen-
sionality reduction techniques, such as PCA, SOM, or t-distributed
Stochastic Neighbor Embedding (t-SNE). Simple PCA is used on geno-
mic signatures in the second visualization round in 2Tbinning, or in
Differential Coverage Binning, in order to improve the species resolution
in a selected group obtained by different visualization technique in
the first round. Another method that uses simple PCA, this time on
coverage-composition vectors, is CONCOCT. In CONCOCT the clusters
are visualized in a 2D space by use of the first two principal compo-
nents and highlighted by specific ellipses, which carry the information
about the Gaussian mixtures used for the clustering. A modified ver-
sion of PCA is used in CompostBin, where principle components are
weighted based on sequence abundance within a sample. Such trans-
formation allows the formation of more distinct clusters and therefore
improved visualization. Another widely used dimensionality reduction
technique in metagenomics is SOM. This technique has been used on
both sequence composition based [32] and on abundance based data
[78]. Although the technique can provide accurate results, contour
definition can be a cumbersome task; moreover, the transformation
lacks from quadratic time complexity, making SOM an unpleasantly
time-consuming approach. Gisbrecht et al. [79] conducted a study on
dimensionality reduction techniques in metagenomics. The research
compared PCA with generative topographic mapping (GTM) [80], which
is a probabilistic counterpart of SOM, and with t-SNE [81]. The study
pointed out t-SNE as the most suitable dimensionality reduction
method, but also mentioned its drawback in the form of quadratic
time complexity. This issue has been solved by Laczny et al. [47], who
used a modified version of t-SNE, called BH-SNE [46], reducing the
time complexity to O(n log n). The suitability of the method for visual-
ization reflects its broad use. Apart from the original visualization ap-
plication VizBin, it has been incorporated into MyCC binning software
and into IMP: a pipeline for reproducible integrated metagenomic and
transcriptomic analyses [82].

Compared to previously mentioned techniques, GroopMuses an en-
tirely unique transformation method for dimensionality reduction. The
high-dimensional data in the form of differential coverage acrossmulti-
ple samples, where each sample forms one of N dimensions, is projected
through the origin of the hyperplane X+Y+…+N=1 into a human
friendly 3D space. Similarly to the BH-SNE application on genomic sig-
natures, this projectionmethod also forms rather distinguished clusters.
Another possibility to visualize metagenomic data is introduced as the
third visualization step in Differential Coverage Binnig (after the visual-
ization based on differential coverage and PCA of k-mer frequency of
selected cluster) in the form of network based information obtained
frompaired-end reads. Such a network can further facilitate the binning
process and interpretation of the metagenomic data.

4. Summary and outlook

Both of two main groups of taxonomy independent binning ap-
proaches, composition as well as abundance based strategies, have
their own advantages and limitations. While composition based tech-
niques usually provide clear visualization of analyzed microbiomes,
they require relatively long sequences and are not reliable for complex
microbial populations with low abundant communities. The second
group of strategies, on the contrary, offers complementary properties.
Abundance based techniques are capable to classify short reads of com-
plex populations with many low abundant communities, without the
ability to provide clear visual result. The third group of hybrid

https://github.com/tetramerFreqs/Binning
http://ecotheory.biology.gatech.edu/downloads/likelybin
http://www.cbcb.umd.edu/software/scimm/
https://sourceforge.net/projects/metawatt/
https://claczny.github.io/VizBin/
http://omics.informatics.indiana.edu/AbundanceBin/
https://bitbucket.org/HeyHo/mgs-canopy-algorithm/wiki/Home
http://eecs.ucf.edu/~xiaoman/MBBC/MBBC.html
https://sites.google.com/site/souravc/compostbin
http://i.cs.hku.hk/~alse/MetaCluster/index.html
https://github.com/MadsAlbertsen/multi-metagenome
https://github.com/BinPro/CONCOCT
https://sourceforge.net/projects/maxbin/
http://ecogenomics.github.io/GroopM/
https://bitbucket.org/berkeleylab/metabat
https://github.com/younglululu/COCACOLA
https://sourceforge.net/projects/sb2nhri/files/MyCC/
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techniques combines both strategies to overcome particular drawbacks
and combines some useful properties.

An important step in the classification of metagenomic datasets is a
metagenome de novo assembly. This step precedes the actual binning
and is not incorporated into the presented tools. However, the informa-
tion acquired during classification can be used, not only to infer biolog-
ical knowledge, but for additional reassembly of the datasets. Therefore,
it can be expected that novel tools for taxonomy independent binning
will be combined with specialized metagenomic assemblers into com-
plex pipelines for metagenomic, metatranscriptomic and metabolomic
analyses. One of the first efforts of such pipelines can be already found
in the abovementioned IMP pipeline.
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