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SUMMARY

Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they 

underlie our stable sensory experiences. Although the nature of this variability is unknown, its 

ubiquity has encouraged the general view that each cell produces random spike patterns that 

noisily represent its response rate. In contrast, here we show that reversibly inactivating distant 

sources of either bottom-up or top-down input to cortical visual areas in the alert primate reduces 

both the spike train irregularity and the trial-to-trial variability of single neurons. A simple model 

in which a fraction of the pre-synaptic input is silenced can reproduce this reduction in variability, 

provided that there exist temporal correlations primarily within, but not between, excitatory and 

inhibitory input pools. A large component of the variability of cortical neurons may therefore arise 

from synchronous input produced by signals arriving from multiple sources.

INTRODUCTION

The seemingly erratic activity of cortical neurons is a deep mystery, since it is unclear how 

spike patterns resembling the random clicks of a Geiger counter can encode sensory 

experience reliably enough to guide behavior (Adrian, 1928). Determining the origin of this 

variability is therefore a key part of deciphering the neural code (Schiller et al., 1976; Reich 

et al., 2001).
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Several lines of evidence are consistent with the idea that variability arises mainly from the 

high degree of cortical connectivity (Markov et al., 2014) rather than from intrinsic 

properties of neurons. Indeed, peripheral sensory neurons can exhibit as little variability as 

theoretically possible given the discrete nature of spikes (de Ruyter van Steveninck et al., 

1997; Berry and Meister, 1998; Kreiman et al., 2000). Even cortical neurons, when 

harvested for in vitro recordings, show reduced variability (Holt et al., 1996; Nawrot et al., 

2008; Stevens and Zador, 1998) and can produce virtually identical responses to repeated 

injections of a fluctuating current pattern (Mainen and Sejnowski, 1995). In contrast to the 

peripheral and in vitro studies, single cell recordings in the alert monkey tend to show high 

variability (Softky and Koch, 1993); see, however, (Bair and Koch, 1996).

We hypothesized that the heterogeneous and variable sources of input to a cortical neuron 

play a significant role in driving spike train changes across trials. To directly test this 

hypothesis, we analyzed the activity of single neurons in visual area MT of alert monkeys 

when a source of bottom-up input was temporarily inactivated (Smolyanskaya et al., 2015). 

Cryoloops were chronically implanted to reversibly inactivate portions of visual areas V2 

and V3 (Lomber et al., 1999), which project to the middle temporal visual area (MT) in 

parallel with direct input from primary visual cortex (V1) (Maunsell and van Essen, 1983). 

The stability and reproducibility of this intervention allowed us to record from well-isolated, 

single MT neurons before, during and after inactivation (Figure 1A; Experimental 

Procedures). We demonstrate that the variability of cortical neurons is significantly reduced 

when a portion of the input is eliminated, and we provide a simple computational model to 

account for the findings.

RESULTS

Random dot fields with varying directions of motion and different binocular disparities were 

used to stimulate the recorded MT cells while monkeys foveated a fixation spot. We found 

that V2/V3 inactivation moderately reduced visually evoked responses in MT (Figures 1B 

and 1C), consistent with previous findings (Ponce et al., 2008). Intriguingly, inactivation also 

led to a robust decrease in the variability of these responses—an effect that was also 

observed while monkeys performed signal detection tasks (Smolyanskaya et al., 2015, see 

their Figure 5). We quantified the trial-to-trial variability by computing the Fano factor, 

defined as the variance-to-mean ratio of the spike counts across repeated stimulus 

presentations (Supplemental Experimental Procedures). Inactivation led to a 34% reduction 

of the Fano factor from 0.70 ± 0.05 to 0.46 ± 0.03 (mean ± SEM, n = 432 neuron-conditions; 

t test, p < 0.001). That is, after a fraction of their bottom-up input was silenced, MT neurons 

became more consistent in their responses across trials. This reduction persisted throughout 

the entire trial and was present even before stimulus onset (Figure 1D). Concomitant with 

the reduction in trial-to-trial variability, we also observed an enhanced degree of regularity in 

the spike trains within a trial (e.g., Figure 1B and Figure S1). We found that changes in Fano 

factor were accompanied by concomitant changes in the squared interspike interval 

coefficient of variation, CV2 (Figures 1E and 1F), reflecting a remarkable increase in spike 

pattern regularity. Finally, all changes in spike rate and variability at both short and long 

timescales were fully reversed upon recovery of the inactivated areas (Figure 1, green 

traces).
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The inactivation-induced changes in neuronal variability could in principle be driven by 

changes in firing rate, such that a reduced rate could lead to lower variability. Several lines 

of evidence rule out this possibility. First, unlike the stimulation epoch, we did not observe a 

significant spike rate change in the pre-stimulus fixation period during inactivation (Figure 

2A; control rate 8.7 ± 1.6 s−1, V2/V3 inactive rate 9.0 ± 1.6 s−1; mean ± SEM, n = 432 

neuron-conditions, t test, p = 0.71). Nevertheless, the Fano factor as well as the CV2 

decreased significantly without V2/V3 input (Figure 1D; Figures 2B and 2C, left-most 

columns). Second, we compared inactivation effects across conditions grouped by stimulus 

preferences; i.e., where spike rates are systematically higher for more ‘preferred’ stimuli 

(Figure 2A). Again, no relationship was found between stimulus preference and the 

inactivation-induced changes of either Fano factor (Figure 2B; ANOVA, F4,172 = 0.39, p = 

0.82) or CV2 (Figure 2C; ANOVA, F4,163 = 0.01, p > 0.99). Furthermore, inactivation did 

not lead to detectable rate changes during ‘null’ motion stimulation (Figure 2A), but the 

corresponding variability statistics decreased nonetheless (Figures 2B and 2C). It is notable 

that the reduction in Fano factor was significantly larger during spontaneous activity (ΔFano 

factor = 0.95 ± 0.2) than during visual stimulation (all stimulus conditions, ΔFano factor = 

0.25 ± 0.06; t test, p = 0.003; Figure 2B). Third, we examined how changes in variability 

relate to changes in rate across individual neurons. We reasoned that if the variability 

changes are governed by the reduction in firing rate, we would observe larger reductions in 

variability for those neurons that experienced larger drops in firing rate. Instead, neurons 

with larger changes in firing rate tended to show smaller changes in Fano factor (Figure 

S2A) or no change in CV (Figure S2B). Finally, we matched firing rates across inactivation 

conditions by randomly deleting spikes in the control condition. We found that the reduction 

in Fano Factor (Figure S2C) and the changes in CV (Figure S2D) were not affected by rate 

matching. Taken together, these analyses demonstrate that both trial-by-trial variability and 

spike train irregularity are largely independent of spike rate and are both significantly 

reduced when sources of long-range input are inactivated.

How might silencing a fraction of the bottom-up input reduce the variability of cortical 

neurons? We investigated this phenomenon with a standard model in which one neuron 

receives input from a group of other neurons and integrates balanced excitatory (E) and 

inhibitory (I) post-synaptic potentials towards a threshold for spiking (Shadlen et al., 1996). 

We simulated a “probe” MT neuron responding to a barrage of balanced input from two 

hypothetical sources (“V1” and “V2”) and observed how the inactivation of V2 affected its 

behavior (Figure 3A; Experimental Procedures). We found that the simplest case, where all 

input units fired independently, failed to reproduce our experimental results (Figure 3B, 

left): input inactivation in this model did not reproduce a decrease in Fano factor. Given the 

prominent role that correlated input have in regulating trial-to-trial variability (Softky and 

Koch, 1993; Stevens and Zador, 1998), we next considered an extension to this model that 

included varying degrees of synchronous firing between the input neurons. We considered 

two additional models: a “uniform correlation” model, where correlations existed uniformly 

within and between E and I pools; and a “within-pool correlation” model, possessing 

correlated activity within E and I pools but not between them. In both models, we also 

allowed correlations to exist between V1 and V2 input (see Supplemental Experimental 

Procedures and the next paragraph for details). We found that inactivating half of the input 
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neurons (i.e., those from V2) reproduced the experimentally observed reduction in spike 

rate, CV2 and Fano factor, provided that there were temporal correlations primarily within, 

but not between, excitatory and inhibitory pools (Figure 3B, right). The within-pool 

correlation structure produced a relatively quiescent membrane potential, which was rapidly 

depolarized toward threshold during bouts of correlated excitatory input that were 

unchecked by inhibition. The transition to this depolarized state enabled the rapid succession 

of action potentials until the barrage of correlated excitation ended or was interrupted by 

inhibition (Figure 3C, red trace). Inactivation of the V2 group of neurons, which was 

parametrically identical to the V1 group, weakened the impact of this phenomenon by 

reducing the number of correlated excitatory synapses that were available to sustain 

depolarization. During an excitatory bout under simulated inactivation, the probe neuron was 

therefore more likely to either fail or emit a single spike rather than reach a sustained state of 

rapid spiking (Figure 3C, blue trace). This phenomenon primarily reduced the occurrence of 

the shortest interspike intervals, thus regularizing the spike patterns (Figure 3D) as observed 

in our experiments (Figures 1B and 1E; Figure S1). We tested the robustness of this 

inactivation-induced phenomenon by systematically varying the extent of synchrony within 

the input ensembles. Either very high or low synchrony settings led to relatively low 

variability, and input inactivation of such activity did not lead to detectable changes. 

Inactivation-induced effects, however, were clear for spike-time synchrony between 1 and 

100 ms, with the largest impact occurring around 10 ms (Figure 3E).

The model predicts that excitatory input does not arrive steadily in time but rather arrives in 

clusters that are not always tracked by their inhibitory counterparts. A corollary to this is that 

multiple long-range sources (e.g., V1 and V2) are probably not independently generating 

clusters of excitation in the MT circuit, as they would effectively smooth out the total input 

by filling in each other's gaps. Instead, V1 and V2 input are likely to synchronize excitation 

in the target MT circuit. Indeed, at least some correlation was needed between the V1 and 

V2 input to reproduce the data. When this correlation was eliminated, V2 inactivation did 

not lead to a detectable change in Fano factor (Figure S3A). Subsequent simulations ruled 

out rate-change artefacts (Figure S3B) and demonstrated model robustness to the number of 

input neurons and their degree of irregularity (Figure S3C). We further considered other 

simple alternatives that lacked the within-pool correlation structure but displayed E–I 

imbalance, spike-count correlations between input, or a fluctuating rate during stimulation 

(Supplemental Experimental Procedures); none of these could reproduce the experimental 

data (Figure S4). In summary, the model proposes a parsimonious description of the 

reduction in variability upon input inactivation by coordination of long-range synchronized 

excitation in the recipient area.

Another prediction of the model is that the augmentation of trial-to-trial variability by 

multiple sources of long-range input is a general property of the cortex, independent of the 

stimulus properties and the specifics of the cortical circuitry. The stimulus independence of 

variability reduction was demonstrated in Figure 2. The prediction that the observations 

depend not on the specific nature of the cortical circuitry led us to ask whether neuronal 

variability might also be similarly influenced by other input, such as those projecting from 

higher to lower cortical visual areas. In the primate brain, such corticocortical feedback has 

been shown to accompany virtually all forward projections (Markov et al., 2014). Feedback 
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is generally thought to be computationally distinct from bottom-up drive (Angelucci and 

Bressloff, 2006; Mumford, 1992), for instance, by modulating responses according to 

stimulus size but not contrast (Nassi et al., 2014). We therefore reasoned that examining V1 

responses while inactivating V2/V3 would provide a challenging test for the generality of 

our conclusions.

We analyzed single V1 neuron responses to stationary gratings of sinusoidal luminance 

before and during V2/V3 inactivation in a separate group of alert monkeys from an earlier 

study (Nassi et al., 2013) (Figure 4A; Experimental Procedures). In contrast to the findings 

in MT, most V1 neurons showed modest increases in their spike rates during V2/V3 

inactivation that were most pronounced for large stimuli activating the suppressive surrounds 

of V1 receptive fields (Nassi et al., 2013), though this was less apparent when spike rates 

were averaged across the entire response period and all stimuli (Figure 4B; control rate 8.4 

± 0.2 s−1, V2/V3 inactive rate 9.1 ± 0.3 s−1; mean ± SEM, n = 588 neuron-conditions, t test, 

p = 0.09). Despite this different effect on spike rate, the Fano factor of the V1 responses 

decreased in the same manner described in MT, albeit to a lesser degree (17%, from 1.44 

± 0.10 to 1.20 ± 0.08; Figures 4C and 4D; mean ± SEM, n = 588 neuron-conditions, t test, p 

< 0.001). These results suggest that top-down input also contributes to the variability of 

cortical neurons. The within-pool correlation model used to describe the MT data (Figure 3) 

was also capable of explaining the effect of top-down input inactivation, when 

corticocortical feedback was made to promote more inhibition than excitation (Figure 4E). 

During simulated inactivation, this E–I imbalance led to a spike rate increase, even though 

CV2 and Fano factor both declined (Figure 4F). We found that the degree of imbalance 

caused by input inactivation influenced spike rate changes linearly but had little impact on 

inactivation-induced reductions in variability (Figure 4G), demonstrating that rate and 

variability can, at least in principle, be independently affected by correlated input.

It is also possible that V2/V3 inactivation could produce indirect effects on visual areas. For 

instance, because some neurons in V1 project to MT (Maunsell and van Essen, 1983), the 

effects of eliminating V2/V3 feedback onto these V1 neurons might indirectly affect MT 

activity. Although the model does not implement indirect input, the simulations suggest that 

second order effects of inactivation—i.e., rate or variability changes of an otherwise intact 

input—are playing a much smaller role than the complete inactivation of a direct input 

source. We found that reducing spike rates without inactivation had a negligible effect on 

output variability (Figure S3B), and inactivation-induced changes in mean input rate alone 

also failed to account for the data (Figure 3B, left column). Rather, to reproduce the 

variability decrease observed, changes in input correlations were required and could be 

achieved by the inactivation of one of various correlated input sources. Even under these 

conditions, the precise quantity of input variability used in those simulations was not critical, 

since doubling input variability only slightly influenced the effect of inactivation (Figure 

S3C, middle column). Altogether, the neuronal variability within a given area seems to 

depend mostly on the correlation structure imposed by its direct input.

Gómez-Laberge et al. Page 5

Neuron. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

Deciphering the neural code is a central challenge in neuroscience, and, because of its 

relevance to this issue, the nature of neuronal variability has been intensely studied. We 

show that reversible inactivation of corticocortical input reduces the variability of neurons in 

the recipient area, independently of changes in spike rate. To investigate plausible 

mechanisms, we implemented a simple integrate-and-fire model driven by either correlated 

or uncorrelated input. We found that a non-trivial arrangement of excitatory and inhibitory 

pre-synaptic potentials was needed to account for our experimental observations. During 

inactivation, the model could match the experimentally measured reduction in variability 

only when its long-range input engendered synchrony primarily within, not between, 

excitatory and inhibitory ensembles in the recipient area.

The model led to multiple predictions that were evaluated on the experimental data. First, 

variability in the model depends on the relative degree of heterogeneous synchronous input 

and does not depend on the tuning properties of each neuron or the stimulus. This is 

confirmed by the experimental findings (Figure 2). Second, the stimulus-independence in the 

model suggests that the changes in variability should also be present during fixation, prior to 

stimulus presentation, as demonstrated in Figures 1 and 2. Third, the model predicts that 

inactivating any source of correlated corticocortical input should reduce variability of the 

neurons in its target area. This prediction led us to evaluate the effects on variability in V1 

after inactivating V2/V3 (Figure 4).

The model posits that correlated input within a relatively narrow temporal interval (~10 ms) 

plays an important role in driving variability and that there is stronger correlation within 

excitatory or inhibitory pools rather than between these pools. To our knowledge, this 

assumption has not been tested directly; however, some experimental evidence supports it. 

Extracellular spike trains from nearby visual cortical neurons have revealed cross-

correlogram widths between 10–100 ms (Bair et al., 2001; Reich et al., 2001), which are in 

the upper range of our predictions. Also consistent with our interpretation, intracellular 

recordings have revealed a substantial lag between excitatory and inhibitory fluctuations 

(Haider et al., 2010; Ozeki et al., 2009). Indeed, to reproduce the high irregularity observed 

in vivo, this within more than between correlation structure was crucial for our model and 

for an earlier study using direct current injection in cortical slices (Stevens and Zador, 1998). 

Moreover, the predicted membrane potential dynamics arising from input of this nature—

quiescent resting periods interrupted by bouts of depolarization—have been confirmed by 

intracellular recordings of cortical neurons in the alert rodent (Poulet and Petersen, 2008) 

and the alert nonhuman primate (Tan et al., 2014).

The model also leads to several new predictions. First, the reduction in variability in MT was 

larger than the corresponding variability change in V1, and, therefore, the magnitude of the 

variability changes seems to be proportional to the strength of the inactivated input (V2/V3 

provides strong input to MT and weaker modulatory input to V1). We therefore expect that 

the contribution of each cortical area to variability in the target area will be proportional to 

the strength of its correlated input, other things being equal. Second, stimulation of a cortical 

area would also decrease target variability, assuming that input homogeneity effectively 
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increases when any one of multiple input sources is driven synchronously. This is consistent 

with earlier work examining response variability after chemical stimulation (Noudoost and 

Moore, 2011). Third, sensory stimulation or behavioral conditions that increase the input 

homogeneity to a given area should also reduce neuronal variability. This is consistent with 

reports demonstrating trial-to-trial variability reductions by stimulus onset (Churchland et 

al., 2010), spatial cueing (Cohen and Maunsell, 2009) and saccade planning (Zénon and 

Krauzlis, 2012). Finally, situations that, on the contrary, increase input heterogeneity should 

increase the variability of the target cells. One example of this has been shown in the MT 

neurons of amblyopic monkeys (El-Shamayleh et al., 2010). Taken together, these results 

impose strong constraints on theories of neuronal variability by causally linking the presence 

of corticocortical input to the spiking statistics of neuronal activity.

In summary, the observations reported here, combined with an integrative model that can 

account for observations across multiple studies, argue that a large fraction of the spiking 

irregularity of cortical neurons can be accounted for by the convergence of input from 

different sources. While a significant degree of variability still remains under the conditions 

examined here, it is not yet clear to what extent it reflects the numerous other sources of 

input that remained intact versus intrinsic neuronal noise. As newer methods allow us to 

manipulate the input to cortical neurons both more selectively and comprehensively, it just 

might turn out that neurons do not play dice after all.

EXPERIMENTAL PROCEDURES

Neuronal recordings and cortical inactivation

We report data from 75 well-isolated visual cortical neurons from 4 adult male rhesus 

monkeys (Macaca mulatta, 7–12 kg) while they fixated a marker centered on a computer 

monitor. These subjects were used in earlier studies of area MT (Smolyanskaya et al., 2015) 

and area V1 (Nassi et al., 2013); however, the analyses presented here are new. Using 

extracellular tungsten micro-electrodes, each cell was held for approximately three hours, 

while long range input from other visual cortical areas was acutely inactivated and 

subsequently recovered. Reversible inactivation of the cortex was accomplished by using 

three cryoloops (Lomber et al., 1998) implanted along the dorsal aspect of the lunate sulcus 

in the right hemisphere, which corresponds to the left perifoveal representation of areas V2 

and V3 (Gattass et al., 1981; Gattass et al., 1988). The territory of cortex inactivated by the 

cryoloops was directly measured with hybrid electrode/thermal probes (Nassi et al., 2013), 

and the resulting V2/V3 scotoma was mapped by psychophysical and electrophysiological 

methods (Ponce et al., 2008; Smolyanskaya et al., 2015). All animal procedures complied 

with the National Institutes of Health Guide for Care and Use of Laboratory Animals and 

were approved by the Harvard Medical Area Standing Committee on Animals.

Integrate-and-fire neuron model

All simulations implemented a standard leaky integrate-and-fire membrane (Softky and 

Koch, 1993), driven by NE excitatory and NI inhibitory neurons generating presynaptic 

currents JE(t) and JI(t) for each input neuron k:

Gómez-Laberge et al. Page 7

Neuron. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[4]

where JE(t) takes the value 0 or a constant Δ depending on the spiking status of unit k and 

similarly JI(t) takes the value 0 or −Δ. The resting potential V0, membrane resistance R, time 

constant τ and current amplitudes were set such that the action potential threshold could be 

achieved in √NE steps from rest, thus, Vth = V0 + Δ√NE (van Vreeswijk and Sompolinsky, 

1996). We limited membrane hyperpolarization to −70 mV, set the voltage decay constant to 

τ = 20 ms, and imposed a 1 ms absolute refractory period. Such constraints led to reasonable 

values for a wide range of input ensemble sizes. We used parameters V0 = −65 mV, Vth = 

−55 mV and R = 80 MΩ, which led to synaptic currents between 1 ≤ Δ ≤ 20 pA for 

ensemble sizes spanning two orders of magnitude (102–104). All simulated trials ran for 200 

ms with 0.1 ms steps.

We explored how synchronized input affects the spiking irregularity of an integrate-and-fire 

neuron driven by a balanced E–I regime. Synchronization among the ensembles was 

implemented using the following algorithm applied:

1. Generate a template spike train μ from a gamma distribution with 

parameters k and θ from equation [3]. All ensemble neurons are weakly 

synchronized to the template μ.

2. For each ensemble neuron, generate a synchronized spike train s with 

spike times that deviate from each spike time μ[t] by drawing i.i.d. jitter 

times from a Laplace probability distribution with mean μ[t] and shape 

parameter b ≥ 0 corresponding to temporal jitter with standard deviation 

b√2.

3. For each ensemble neuron, generate an independent spike train x from the 

same gamma distribution as in step 1.

4. If μ has more spikes than x, then randomly delete spikes from s until it has 

the same number of spikes as x. Otherwise, if μ has fewer spikes than x, 

then randomly copy spikes from x to s until it has the same number of 

spikes as x. This step de-correlates trial-to-trial spike counts.

5. Ensure that the refractory period ε is not violated by adequately delaying 

s[t + 1] when s[t + 1] – s[t] ≤ ε.

The correlation structures for the “uniform correlation” and “within-pool correlation” 

models in the main text used the synchrony parameter b = 1. Correlation between V1 and V2 

was implemented by embedding a fraction (0 ≤ ρ ≤ 1) of common spikes in both input 

(before jitter). The simulations used ρ = 0.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bottom-up Input Inactivation Reduces Neuronal Variability
(A) Single MT neurons in the alert macaque were recorded with bottom-up sources V2 and 

V3 intact (control, red), inactivated (blue) and later recovered (green). Data are presented 

according to this color scheme hereafter. (B) Spike raster from one neuron during a 350 ms 

random dot stimulus for three directions of motion. During inactivation, trial-to-trial 

variability and spike train irregularity decrease. (C) Spike rate and (D) Fano factor averaged 

over 39 neurons (shading represents SEM; gray bar indicates estimation window for next 

panels). The spike rate and the trial-to-trial variability decrease upon input inactivation. (E) 

Interspike interval histogram averaged over the population. Inset shows mean and 95% 

confidence interval of fitted gamma distribution parameters (excluding 2 ms refractory 

period). The increase in the shape parameter indicates that the intervals become more regular 

during inactivation due to a disproportionate reduction of short intervals. (F) Population 

mean ± SEM of interval CV2 versus spike count Fano factor.
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Figure 2. Inactivation-induced Variability Reduction is Ubiquitous
(A) Spike rate of MT neurons for separate stimulus conditions with V2/V3 input intact 

(control; red), inactivated (blue), and recovered (green; n = 39 cells; 250 ms estimation 

window shown in Figure 1D). (B) Trial-to-trial variability, quantified by the Fano factor, 

reduced consistently for each stimulus condition during inactivation. The effect size was 

comparable across the five stimulus conditions (ANOVA, p = 0.82) but was significantly 

larger during spontaneous activity (t test, p = 0.003). (C) Same as (B) except for CV2. Spike 

pattern irregularity appeared to decline uniformly across all stimulus conditions during 
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inactivation, including pre-stimulus fixation (ANOVA, p > 0.99). Data represented as mean 

± SEM.
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Figure 3. Within-pool Correlation Model Reproduces Inactivation Results
(A) Model schematic showing probe MT neuron that responds to excitatory input 

counterbalanced by inhibition from sources V1 and V2. (B) Spike rate, CV2 and Fano factor 

for control (red) and V2 inactivated (blue) conditions under three balanced E–I input 

regimes: independent, uniform correlation, and within-pool correlation. Only within-pool 

correlation model input inactivation reproduced the experimentally observed reductions in 

all three quantities. (C) Integrate-and-fire membrane potential (Vm) of the MT neuron during 

a single trial. The raster represents the within-pool correlation model input ensembles in V1 

and V2. One neuron per row: excitatory cells in black; inhibitory cells in green. (D) Trial-

by-trial raster of MT neuron activity. Inactivation decreased the interspike interval 

irregularity and spike count variability across trials. (E) Fano factor as a function of 

synchrony within E and I ensembles. Synchrony was controlled by jittering spike times 

within each ensemble using a Laplace distribution of varying width (determined by the 

shape parameter b ≥ 0 plotted along the abscissa). Simulations shown in previous panels had 
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b = 1, which led to probe output that most closely resembled the experimental data. 

Simulations represented as mean ± SEM in (B) and (E).

Gómez-Laberge et al. Page 15

Neuron. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Top-down Input Inactivation Reduces Neuronal Variability
(A) Single V1 neurons in the alert macaque were recorded with top-down sources V2 and 

V3 intact (control, red) and inactivated (blue). (B) Spike rate and (C) Fano factor averaged 

over 36 neurons. Top-down input inactivation decreased the Fano factor throughout the trial, 

despite an increasing trend in spike rate (shading represents SEM). (D) Population mean ± 

SEM of interval CV2 versus spike count Fano factor. Top-down input inactivation reduces 

neuronal variability in the same manner as was observed for bottom-up input inactivation. 

(E) Within-pool correlation model responding to a bottom-up source (LGN) and a top-down 

source (V2). (F) Changes in spike rate, CV2 and Fano factor match the experimental data 

when V2 inactivation produces an E > I imbalance. (G) Inactivation-induced changes in 

spike rate, CV2 and Fano factor as a function of the imbalance index, quantifying the 

discrepancy in the remaining excitatory (NE) and inhibitory (NI) synaptic input. Imbalance 

primarily affected rate change and preserved the inactivation-induced variability reduction. 

Simulations represented as mean ± SEM in (F) and (G).
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