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Membrane fusion requires priming, the disassembly of cis-

SNARE complexes by the ATP-driven chaperones Sec18/

17p. Yeast vacuole priming releases Vam7p, a soluble

SNARE. Vam7p reassociation during docking allows

trans-SNARE pairing and fusion. We now report that

recombinant Vam7p (rVam7p) enters into complex with

other SNAREs in vitro and bypasses the need for Sec17p,

Sec18p, and ATP. Thus, the sole essential function of

vacuole priming in vitro is the release of Vam7p from cis-

SNARE complexes. In ‘bypass fusion’, without ATP but

with added rVam7p, there are sufficient unpaired vacuolar

SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p

and support fusion. However, active SNARE proteins are

not sufficient for bypass fusion. rVam7p does not bypass

requirements for Rho GTPases,Vps33p, Vps39p, Vps41p,

calmodulin, specific lipids, or Vph1p, a subunit of the V-

ATPase. With excess rVam7p, reduced levels of PI(3)P or

functional Ypt7p suffice for bypass fusion. High concen-

trations of rVam7p allow the R-SNARE Ykt6p to substitute

for Nyv1p for fusion; this functional redundancy among

vacuole SNAREs may explain why nyv1D strains lack the

vacuole fragmentation seen with mutants in other fusion

catalysts.
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Introduction

Regulated membrane fusion is catalyzed by proteins and

lipids that are largely conserved among eukaryotes (Jahn

et al, 2003). These include Ypt/Rab and Rho family GTPases

and their effector proteins, the SNARE proteins and their

chaperones of the SM (Sec1/Munc18), Sec18/NSF, and

Sec17/a-SNAP families, phosphoinositides and sterols, cal-

cium and calcium-binding proteins, and actin and actin-

regulatory proteins. The Vo sector of the vacuolar proton

pump has a role in vacuole fusion (Peters et al, 2001; Bayer

et al, 2003), although its role in other intracellular fusion

events is largely untested. Many of these factors are coupled

in their action to ATP hydrolysis.

We study membrane fusion mechanisms through the

homotypic fusion of yeast vacuoles (Wickner, 2002).

Vacuole in vitro fusion occurs in three stages: priming, in

which Sec18p, Sec17p, and ATP drive the disassembly of cis-

SNARE complexes; docking, which includes the Ypt7p-de-

pendent tethering of vacuoles and culminates in the forma-

tion of trans-SNARE complexes; and membrane fusion and

lumenal compartment mixing. During priming, Vam7p, a

soluble SNARE that lacks an apolar membrane anchor, is

released from its association with other vacuolar SNAREs

(Ungermann and Wickner, 1998). Vam7p association with the

vacuole during docking requires Ypt7p (Ungermann et al,

2000) and 3-phosphoinositides (Cheever et al, 2001;

Boeddinghaus et al, 2002) and permits trans-pairing of

SNAREs (Merz and Wickner, 2004). During docking, spatial

subdomains called vertex rings become selectively enriched

with specific docking and fusion proteins and lipids, includ-

ing Vam7p (Wang et al, 2002, 2003; Fratti et al, in prepara-

tion). The HOPS/VPS class C complex, comprising six

subunits, is a Ypt7p effector (Seals et al, 2000), which also

associates with SNARE complexes (Collins and Wickner,

submitted). The HOPS subunit Vps39p is a nucleotide ex-

change factor for Ypt7p (Wurmser et al, 2000). The HOPS

subunit Vps33p is an SM family protein that performs an

essential but largely uncharacterized function during dock-

ing. Trans-association of SNAREs triggers a flux of calcium

from the vacuole lumen (Merz and Wickner, 2004).

Calmodulin (Cmd1p) associates with vacuoles and regulates

fusion (Peters and Mayer, 1998). It has been suggested that

the fusion stage of the reaction requires at least calcium and

calmodulin (Peters and Mayer, 1998), trans-SNARE associa-

tions (Hanson et al, 1997; Nichols et al, 1997; Ungermann

et al, 1998), the Vo sector of the V-ATPase (Peters et al, 2001),

and actin (Eitzen et al, 2002). Several additional factors are

also implicated in the fusion reaction, including the armadillo

repeat protein Vac8p (Wang YX et al, 2001), regulators of

actin assembly (Eitzen et al, 2002), and the Vtc protein

complex (Muller et al, 2002).

We now report that the only essential function of ATP and

ATP-driven vacuole priming in vitro is to release Vam7p, a

soluble SNARE protein that associates peripherally with the

vacuole membrane to permit trans-SNARE pairing.

Recombinant Vam7p (rVam7p), added at physiological con-

centrations, permits fusion in the absence of ATP and Sec17/

18p function. This bypass of priming does not bypass several

other factors that are required for the standard in vitro fusion

reaction, including Rho GTPases, HOPS subunits, and the Vo

subunit Vph1p. Added Vam7p promotes docking and reduces

the levels of Ypt7p, which are needed, and lowers (but may

not eliminate) the requirement for 3-phosphoinositides.

Elevated concentrations of Vam7p allow the R-SNARE
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Ykt6p to substitute for the R-SNARE Nyv1p in fusion, which

may explain the intact vacuole structure seen in nyv1D
mutants (Seeley et al, 2002).

Results

We assay vacuole fusion by isolating vacuoles from strains

that either lack Pho8p (but have normal vacuolar proteases)

or lack vacuolar proteases (and accumulate the catalytically

inactive pro-Pho8p). In vitro fusion allows the proteases to

gain access to pro-Pho8p and convert it to the catalytically

active form, providing a coupled colorimetric assay of fusion

(Haas et al, 1994). The availability of recombinant Vam7p

(Merz and Wickner, 2004) has allowed us to re-evaluate the

basic requirements of in vitro vacuole fusion reactions.

Under our standard reaction conditions, fusion of freshly

purified vacuoles (Figure 1A) requires ATP (bar 2 versus 14)

and incubation at 271C. In some incubations, we employed

an ATP-depleting system of glucose and hexokinase. Despite

the presence of 1 mM ATP and an ATP-regenerating system,

the addition of glucose and hexokinase caused some inhibi-

tion of fusion (Figure 1A, bar 3), demonstrating that this ATP-

depletion system was active. Glucose or hexokinase alone

had no effect on fusion (not shown), indicating that neither

component is intrinsically inhibitory. In the presence of ATP,

recombinant Vam7p (rVam7p), a SNARE that lacks a trans-

membrane anchor, caused a modest and variable increase in

fusion (Figure 1A, bar 2 versus 6; Merz and Wickner, 2004).

Surprisingly, however, fusion occurred when rVam7p was

added in the absence of added ATP (Figure 1A, bar 10), even

when hexokinase and glucose or 2-deoxyglucose were added

as well (bars 11 and 12). The provision of free Vam7p thus

appears to be the only essential function of ATP for vacuole

fusion.

The amount of rVam7p added in vitro was compared to the

amount of endogenous Vam7p on isolated vacuoles by im-

munoblot (Figure 1B). The vacuoles added to a standard 30 ml

fusion reaction bear B18 ng of endogenous Vam7p, resulting

in a final concentration in vitro of B16 nM. Because Vam7p

exists in equilibrium between cytoplasm and membranes

(Cheever et al, 2001; Boeddinghaus et al, 2002), our in vitro

reaction with purified vacuoles will contain a lower concen-

tration of Vam7p than that present in the cell. A recent study

that quantified the per-cell abundance of many yeast proteins

indicated that there are 2360 copies of Vam7p per cell

(Ghaemmaghami et al, 2003). We estimate a cytoplasmic

volume of B40 fl per cell, and thus an in vivo Vam7p

concentration of B100 nM.

In early experiments, several mM rVam7p was required in

the absence of ATP to obtain fusion signals that were com-

parable to those obtained in the standard, ATP-replete con-
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Figure 1 Bypass fusion. (A) Recombinant Vam7 protein stimulates
vacuole fusion in the absence of ATP. Reactions were under
standard conditions (Materials and methods). Where indicated,
ATP and creatine kinase/creatine phosphate were omitted and
reactions had 5 mM MgCl2 instead of 6 mM MgCl2. Recombinant
Vam7p was added to a final concentration of 3.1mM where indi-
cated. (B) The indicated amounts of recombinant Vam7p (by
Bradford assay, with albumin standard) and mixed BJ3505 and
DKY6281 vacuoles were analyzed by SDS–PAGE and immunoblot-
ting with anti-Vam7p antibodies (1:2000 dilution). The immunoblot
was quantified by densitometry. (C) BSA promotes rVam7p-stimu-
lated fusion. BSA and rVam7p were added at the indicated final
concentrations to ‘bypass’ fusion reactions with 10mM coenzyme A
(CoA). (D) SNARE specificity of bypass fusion. Assays contained
the indicated concentrations of either rVam7p or recombinant
soluble domains of Vam3p, Vti1p, or Nyv1p.
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dition. However, this requirement for high concentrations of

rVam7p only reflected a need for carrier protein, such as

bovine serum albumin (BSA) or other proteins (data not

shown), to avoid the loss of Vam7p activity. BSA was there-

fore included in all subsequent bypass fusion reactions. In the

presence of sufficient carrier BSA (Figure 1C), half-maximal

fusion without ATP was supported by B20 nM rVam7p, an

amount comparable to the amount of endogenous Vam7p

(16 nM) in the in vitro reaction. Moreover, maximal fusion

was supported by B100–200 nM rVam7p, the concentration

of endogenous Vam7p present in vivo. The recombinant

soluble domains of the other vacuolar SNAREs did not

support bypass fusion (Figure 1D).

Both bypass fusion (without ATP and with added rVam7p)

and standard fusion, with or without supplementation with

added rVam7p, yield mature Pho8p activity with comparable

kinetics (data not shown). We also assayed the acquisition

of resistance of the reaction to added antibody to Vam3p, a

temporal landmark of docking (Ungermann and Wickner,

1998). Recombinant Vam7p accelerated the completion of

docking in comparison to reactions without rVam7p (data not

shown). The docking step of our standard in vitro fusion

reactions may be slowed by the need for priming and by the

low concentration of released Vam7p.

To survey the mechanistic relationship between standard

and bypass fusion, we evaluated (Figure 2) the effects of
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various inhibitors under three conditions: (a) standard fu-

sion, which contains ATP; (b) standard fusion with added

rVam7p; and (c) bypass fusion, without ATP and with added

Vam7p.

The no-ATP bypass reaction (Figure 2C) is unaffected by

apyrase, which, like glucose/hexokinase, would further de-

plete any ATP, or by antibody to Sec17p or Sec18p, each of

which blocks fusion under the standard reaction condition

(Figure 2A). Bypass fusion therefore eliminates the require-

ment for the normal Sec17/18p- and ATP-dependent priming

subreaction.

Bypass reactions lacking ATP and with rVam7p are sensi-

tive to many of the same inhibitors as the standard ATP-

replete reaction. rVam7p-mediated ‘bypass’ fusion remains

fully sensitive to antibody against the SNAREs Vam3p and

Nyv1p, suggesting that added rVam7p functionally interacts

with active SNAREs that are not paired in cis on the isolated

vacuoles. Bypass fusion is also sensitive to Rdi1p, which

extracts the Rho family GTPases Cdc42p and Rho1p from

membranes (Masuda et al, 1994; Eitzen et al, 2001), to

antibody to Ypt7p or to the HOPS subunits Vps33p, Vps39p,

and Vps41p, and to certain inhibitory lipid ligands such as

MARCKS effector domain (MED), a ligand to phosphoinosi-

tides (Wang J et al, 2001), and C1b domain, a ligand to

diacylglycerol (Johnson et al, 2000). Thus many central

features of standard fusion are still required for the bypass

fusion reaction.

Although the standard and bypass reactions employ many

of the same pathways, there are clear differences. Bypass

fusion shows altered sensitivity to calcium chelators (BAPTA)

or inhibitors of calcium-dependent phospholipase C (U73122

and 3-nitrocoumarin; Thompson et al, 1991; Tisi et al, 2001),

to certain Ypt7p inhibitors, and to phosphoinositide ligands

(Figure 2). Several of these differences are further addressed

below.

Vam7p associations during bypass fusion

The continued sensitivity of bypass fusion to antibodies to

Vam3p or Nyv1p (Figure 2) suggests that rVam7p enters into

SNARE complexes during bypass fusion. To assay this in-

corporation, we employed Vam7p with an N-terminal glu-

tathione S-transferase (GST) ‘tag’. GST-Vam7p supports

bypass fusion (Figure 3A). Vacuoles were isolated from

bypass fusion incubations with GST-Vam7p, solubilized in

detergent, and subjected to immunoprecipitation with immo-

bilized antibody to the Vam3p SNARE. Added GST-Vam7p

entered into complexes with Vam3p without displacing the

endogenous, untagged Vam7p (which is of lower Mr) from

pre-existing SNARE complexes (Figure 3B). Isolation of the

GST-Vam7p from the detergent extracts with glutathione

beads confirmed that it had bound Vam3p (Figure 3C, middle

panel, lane 1). Inhibition of fusion (Figure 3C, top panel) by

antibody to Vps33p (lane 3) inhibited the association of GST-

Vam7p with Vam3p (Figure 3C, middle panel), although these

agents had little effect on the total vacuole-bound GST-Vam7p

(bottom panel). Thus vacuole-bound GST-Vam7p enters a

complex with Vam3p by a HOPS-dependent pathway.

Vacuoles synthesize PI(3)P during standard in vitro fusion

incubations (Mayer et al, 2000), and Vam7p binds to PI(3)P

through the Vam7p PX domain (Cheever et al, 2001;

Boeddinghaus et al, 2002). How does Vam7p associate with

vacuoles during bypass fusion? To determine the effect of ATP

deprivation during bypass fusion on the levels of vacuolar

PI(3)P, we assayed the vacuolar binding of recombinant

FYVE domain, which had been derivatized with the Cy3

fluorophore. Vacuolar capacity for binding Cy3-FYVE, a mea-

sure of PI(3)P on the outer leaflet of the vacuole membrane,

increased during the first 20 min of a standard fusion reaction

(Figure 4A, filled circles), and this increase was blocked by

the PI 3-kinase inhibitor LY294002 (Figure 4B). In the absence

of ATP (Figure 4A, open circles), the level of accessible PI(3)P

remained at its initial low level. This minimal Cy3-FYVE

binding to freshly isolated vacuoles may even overestimate

the levels of exposed PI(3)P, since excess nonfluorescent

recombinant FYVE domain competed for the Cy3-FYVE-bind-

ing sites created during vacuole incubation with ATP but did

not block the low level of Cy3-FYVE binding to freshly

isolated vacuoles (data not shown). It might have been

supposed that reduced levels of exposed PI(3)P would be
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stimulates vacuole fusion and associates with Vam3p under
‘Bypass’ reaction conditions. Fusion reactions (180ml) with indi-
cated amounts of GST-Vam7p were incubated for 70 min at 271C.
Samples (30 ml) were withdrawn and assayed for vacuole fusion by
alkaline phosphatase activity. (B) Vacuoles were reisolated from
5� scale bypass fusion reactions with GST-Vam7p, solubilized, and
Vam3p was immunoprecipitated from detergent extracts as de-
scribed in Materials and methods. Samples representing 10% of
the input (Total) and the a-Vam3p immunoprecipitated material (IP)
were separated by SDS–PAGE and transferred to nitrocellulose
membranes for immunoblot. (C) GST-Vam7p-driven bypass fusion
and Vam7:Vam3 associations are sensitive to a-Vps33p. ‘Bypass’
fusion reactions (180 ml) containing 165 nM GST-Vam7p and the
indicated inhibitors were incubated (271C, 70 min) and mature
alkaline phosphatase activity was assayed. Vacuoles from the
remainder (150ml) were reisolated, solubilized, and GST-Vam7p
was retrieved by glutathione–Sepharose. Samples of the extracts
(Total) and bead-bound material (GSH) were analyzed by SDS–
PAGE and immunoblotting.
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limiting for Vam7p binding and thereby render bypass fusion

more sensitive than the PI(3)P-replete standard incubations

to inhibition by recombinant PX or FYVE domain. However,

bypass fusion at these lower levels of PI(3)P was far less

sensitive to the addition of either PI(3)P ligand (Figure 4C,

diamonds) than was the standard fusion reaction (circles). In

accord with these findings, Vam7p binding to vacuoles under

bypass fusion conditions was not inhibited by FYVE domain

(Figure 4D). As noted (Boeddinghaus et al, 2002), the vacuole

association of very low levels of Vam7p is inhibited by

antibody to Sec17p (Figure 4D), but this inhibition is lost at

the higher Vam7p concentrations employed in standard by-

pass fusion reactions. Although FYVE and PX depend on

vacuolar PI(3)P in order to bind and inhibit standard fusion

reactions, this inhibition may not simply reflect a blockade of

Vam7p binding due to the sequestration of PI(3)P. We suggest

that PI(3)P may have additional roles in fusion and that

Vam7p may have additional vacuolar receptors. This is in

accord with the complementation of vam7D phenotypes by

the overexpression of Vam7p lacking its PX domain (Cheever

et al, 2001). Bypass fusion may particularly require these

other affinities for Vam7p binding to vacuoles, providing a

pathway for Vam7p association with the other SNAREs which

does not depend on its capacity to bind PI(3P).

Ypt7p and bypass fusion

Bypass fusion is fully inhibited by affinity-purified antibody

to Ypt7p (Figure 2C). However, it is only partially sensitive to

Gdi1p, which extracts Ypt7:GDP from the vacuole, or to

Gyp1-46p or Gyp7-47p, which activates hydrolysis by

Ypt7:GTP (Figure 2). To further explore the requirement for

this Rab/Ypt GTPase, we mixed vacuoles with Gdi1p, Gyp1-

46p, or Gdi1pþGyp1-46p, to extract Ypt7p more rapidly and

thoroughly (Eitzen et al, 2000). These vacuoles, and control

vacuoles incubated without Gdi1p or Gyp1-46p, were assayed

for bypass fusion with various concentrations of rVam7p.

With addition of only 5 nM rVam7p, the bypass fusion reac-

tion was completely inhibited by inactivation or extraction of

Ypt7p (Figure 5A). Higher levels of rVam7p were needed for
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fusion of Gdi1p- or Gyp1-46p-treated vacuoles. Even after

treatment with both Gdi1p and Gyp1-46p, which function

together to better extract Ypt7p, vacuoles showed some

limited fusion when supplemented with very high levels

(3 mM) of rVam7p. These data are consistent with bypass

fusion requiring less Ypt7p to support docking than that

required for standard fusion reactions. To test this concept,

vacuoles were preincubated with reaction buffer alone or

with Gdi1p for 10 min and then mixed with either ATP or

rVam7p to initiate the standard or bypass fusion reactions. To

monitor docking, aliquots were withdrawn and mixed with

antibody to Vam3p and then allowed to complete a full

90 min incubation. Over 40 min, standard fusion (Figure 5B,

open squares) acquired gradual resistance to anti-Vam3p,

indicative of the completion of docking. The presence of

Gdi1p during the 10 min preincubation (filled squares) com-

pletely prevented docking, and hence fusion. A very different

pattern was seen when aliquots from the same two vacuole

samples, preincubated with buffer or Gdi1p, were used to

initiate bypass fusion. Without Gdi1p pre-extraction, docking

was rapid under bypass fusion conditions (open circles).

Vacuoles that had been pre-extracted with Gdi1p completed

docking more slowly, yet still showed full resistance to anti-

body to Vam3p after 5 min (filled circles). Immunoblot ana-

lysis (Figure 5C) showed substantial (although not complete)

extraction of Ypt7p by Gdi1p during the 10 min preincubation

(lanes 1 and 2 versus 9 and 10), and the little further

extraction that occurred during the subsequent 5 min (lanes

3 and 4) was not dependent on whether the incubation was in

the presence of added Vam7p or ATP. These data indicate that

Vam7p accelerates docking and that a lower level of Ypt7p is

sufficient for bypass fusion than that needed for standard

fusion in the presence of ATP.

ATP and ion fluxes in vacuole fusion

ATP drives Ca2þ uptake into vacuoles through the Pmc1p

and Vcx1p transporters (Cunningham and Fink, 1996). In

either the presence or absence of ATP, rVam7p diminishes

fusion inhibition by BAPTA, a calcium chelator that inhibits

the standard fusion reaction (Figure 2). Added Vam7p pro-

motes a docking-dependent release of intravacuolar Ca2þ

(Merz and Wickner, 2004). Is this docking-dependent calcium

flux (Peters and Mayer, 1998) still activated by rVam7p during

fusion reactions without priming? To allow normal ATP-

dependent formation of the transmembrane Ca2þ gradient,

we blocked priming by adding anti-Sec17p antibody in the

presence of ATP. In the presence of ATP and a-Sec17 antibody

(Figure 6A), fusion required the addition of Vam7p and was

still blocked by antibody to Vam3p. Bypass fusion reactions,

whether in the absence of ATP (Figure 6B, filled circles) or

with ATP but without Sec17p function (open squares),

showed similar requirement for added Vam7p. Fusion reac-

tions with ATP and a-Sec17 antibody were therefore exam-

ined for docking-dependent flux of Ca2þ from the vacuole

lumen (Peters and Mayer, 1998; Merz and Wickner, 2004).

Standard fusion reactions with ATP showed calcium removal

from the vacuole suspension solution into the vacuole lumen

during the first minutes of incubation and then release from

the interior as docking occurs (Figure 6C, filled circles). This

release, which is due to trans-SNARE interactions (Merz and

Wickner, 2004), was stimulated by rVam7p (filled triangles)

or Sec18p (filled inverted triangles) and was blocked by

antibody to Sec17p (open triangles), as reported (Merz and

Wickner, 2004). In the presence of antibody to Sec17p,

rVam7p still promotes Ca2þ flux (filled diamonds). This
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Ca2þ flux, like that seen without an anti-Sec17p blockade of

priming, is fully sensitive to antibody against Vam3p (in-

verted open triangles), showing that Vam7p must act through

a Vam3p-dependent pathway, presumably driving trans-

SNARE complex formation from unpaired SNAREs. To further

test whether the Ca2þ requirements for fusion were similar in

standard fusion with ATP and in bypass fusion reactions

without ATP, we compared the effects of two Ca2þ chelators,

EGTA and BAPTA. Either chelator showed less inhibition of

ATP-deficient bypass fusion (Figure 6D), in accord with the

need for ATP to clear the extravacuolar calcium (Peters and

Mayer, 1998). The greater inhibitory potency of BAPTA versus

EGTA is largely rationalized by the eight-fold greater affinity

of BAPTA for Ca2þ at the pH of our in vitro fusion reaction

(Harrison and Bers, 1987, 1989).

In addition to Ca2þ gradients, proton gradients across the

vacuole membrane may regulate vacuole fusion (Ungermann

et al, 1999b). The Vo sector of the vacuolar ATPase is needed

for vacuole fusion, in vivo and in vitro (Peters et al, 2001),

and it has been suggested that the principal role of Vo in

fusion is not through V-ATPase-driven proton pumping

(Bayer et al, 2003). Nevertheless, vacuole fusion in these

studies required ATP, which drives proton pumping by the

vacuolar ATPase. We tested whether Vo is still needed for

bypass fusion in the absence of ATP, when ATP-driven proton

pumping cannot occur. Vph1p is a 100 kDa subunit of the Vo

complex. Vph1p is required on both vacuoles for fusion in the

absence of ATP (Figure 7), although Vph1p-deficient vacuoles

have normal levels of all known fusion proteins (data not

shown). There is a small but measurable fusion between

vacuoles from vph1D cells and wild-type vacuoles in the

presence of ATP (Figure 7, gray bars), and this fusion is

blocked by antibody to Vam3p. Although further study will be

required to establish the precise catalytic function of Vo in

vacuole fusion, our studies provide an independent route of

confirming that Vph1p/Vo is not simply needed for ATP-

driven proton pumping.

R-SNARE function

Purified vacuoles have two R-SNAREs, Nyv1p and Ykt6p, and

three Q-SNAREs, Vam3p, Vam7p, and Vti1p (Ungermann

et al, 1999a). The N-terminal region of Ykt6p mediates the
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acylation of Vac8p (Dietrich et al, 2004). Deletion of the R-

SNARE Nyv1p prevents vacuole fusion (Nichols et al, 1997;

Ungermann et al, 1998b). Fusion can be partially restored to

vacuoles from nyv1D cells by the addition of 3.1 mM rVam7p

(Figure 8). Antibody to each of the five vacuolar SNAREs can

inhibit fusion. Although antibodies that inhibit the acylation

function of Ykt6p (Dietrich et al, 2004) inhibit vacuole fusion

(Figure 8, bar 10), other antibody preparations (that may

recognize the Ykt6p C-terminal domain) do not (bar 9). We

employed such antibodies to determine whether elevated

levels of Vam7p might be allowing the Ykt6p R-SNARE to

replace Nyv1p functionally. Fusion of wild-type NYV1 va-

cuoles is not sensitive to these antibodies to Ykt6p (bar 2

versus 9). However, the rVam7p-dependent fusion of nyv1D
vacuoles is blocked by this antibody (bar 14 versus 25),

suggesting that rVam7p permits the recruitment of Ykt6p as

an alternate R-SNARE to form trans-SNARE complexes. The

nonfragmented morphology of vacuoles in nyv1D strains

(Nichols et al, 1997; Seeley et al, 2002) may reflect the

capacity of Ykt6p to not only catalyze Vac8p acylation but

also substitute for Nyv1p as the R-SNARE in the vacuole

fusion reaction in vivo.

Discussion

ATP has been proposed to have several functions in vacuole

fusion. These include driving Sec18p- and Sec17p-mediated

disassembly of cis-SNARE complexes (Sollner et al, 1993;

Ungermann et al, 1998a), phosphorylation of phosphatidyli-

nositol (Mayer et al, 2000), ATP binding and perhaps hydro-

lysis by the Vps33p subunit of HOPS (Gerhardt et al, 1998),

ATP binding and hydrolysis by actin (Pollard, 1986; Pollard

et al, 2000; Eitzen et al, 2002), protein phosphorylation

(Peters et al, 1999; Seeley et al, 2002), and the generation

of proton and Ca2þ gradients across vacuole membranes

(Ungermann et al, 1999b; Bonilla and Cunningham, 2002;

Merz and Wickner, 2004). Although each of these may indeed

promote or regulate vacuole fusion, the addition of exogen-

ous rVam7p allows the in vitro fusion reaction to occur in the

absence of ATP. In other fusion reactions, many of these roles

of ATP may be indispensable. For example, PC12 cell exocy-

tosis requires an ATP-dependent priming step of NSF action,

phosphoinositide synthesis, and protein phosphorylation

(Klenchin and Martin, 2000). However, the vacuole is unique

among studied fusion systems in having a SNARE (Vam7p)

without an apolar membrane anchor and a substantial cyto-

plasmic pool of this SNARE. The only essential role of ATP

and Sec18p for in vitro vacuole fusion is to liberate Vam7p

from cis-associations. This allows Vam7p to participate in

docking, both for assembly of vertex domains, which are

enriched in certain proteins (Wang et al, 2002) and lipids

(Fratti et al, in preparation), and for trans-SNARE pairing

(Ungermann and Wickner, 1998). While most SNAREs on

purified vacuoles reside in cis-complexes, a small proportion

of Vam3p, Nyv1p, and Ykt6p does not (Ungermann et al,

1999a), and we find that these unpaired SNAREs interact

with added rVam7p during docking (Figure 3).

How are other potentially ATP-dependent functions by-

passed for vacuole fusion? We have previously shown (Mayer

et al, 1996; Xu et al, 1998) that ATP is only required during

the early steps of the standard fusion reaction. While the

standard fusion reaction requires protein phosphatase 1,
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which is found in association with calmodulin (Peters et al,

1999), the bypass fusion reaction (in the absence of ATP) is

still W7 sensitive, that is, calmodulin-dependent. Calmodulin

may have roles other than the delivery of protein phospha-

tase 1 to the vacuoles. Actin remodeling may also not require

ATP, as ADP-actin can assemble into filaments (Pollard,

1986). ATP may not be essential for isolated vacuoles to

maintain proton and calcium gradients. Vacuoles purified in

the cold may retain lumenal stores of calcium, and efflux of

this lumenal calcium in exchange for protons via Vcx1p

(Cunningham and Fink, 1996) may acidify the vacuole with-

out serious depletion of the vacuolar Ca2þ gradient.

Although ATP is only required for priming, it may none-

theless participate in several other regulatory functions such

as protein phosphorylation. Fusion with ATP and Vam7p may

benefit from an optimal level of all four unpaired SNAREs, yet

this might be balanced by some ATP-driven repression. In

this regard, fusion with ATP and Vam7p still shows some

inhibition by anti-Sec17p (Figures 2B and 6B), which is not

seen during bypass fusion without ATP (Figure 2C).

Our studies are in accord with those of Lang et al (2002).

They found that a substantial portion of the SNAREs on

isolated plasma membrane sheets from PC12 cells were not

complexed with other SNAREs, although their isolated mem-

brane sheets had been preincubated with ATP. With a func-

tional assay of fusion, we have shown that uncomplexed

SNAREs are capable of participating in a bona fide fusion

reaction that depends on complementary SNAREs, an SM-

protein, Rab and Rho GTPases, and other factors as well.

However, this is clearly a bypass reaction, in that SEC18 and

SEC17 are essential genes and the encoded proteins are

required for SNARE complex disruption and for SNAREs to

participate in further cycles of pairing in vivo. We presume

that the reason that there are uncomplexed SNAREs available

for the formation of trans-complexes, in our studies of bypass

fusion and in the studies of Lang et al (2002), is that Sec18p/

NSF had catalyzed their disassembly from SNARE complexes

in vivo, prior to organelle isolation. In addition, unpaired

SNARE proteins may be selectively transported to the va-

cuole, as is the case for v-SNAREs involved in ER-to-Golgi

traffic (Miller et al, 2003).

rVam7p, either with or without ATP, diminishes the inhibi-

tion of fusion by BAPTA or EGTA, Ca2þ chelators that inhibit

the standard fusion reaction. During docking, trans-SNARE

interactions promote the release of Ca2þ from the vacuole

lumen (Merz and Wickner, 2004), and this Ca2þ release is

strongly stimulated by rVam7p (Merz and Wickner, 2004).

The levels of released Ca2þ , elevated by Vam7p stimulation,

may partially reduce chelator inhibition of fusion in the

presence of ATP. However, Ca2þ accumulation in the vacuole

lumen requires ATP, to power the Pmc1p Ca2þ pump and,

through V-ATPase-mediated lumenal acidification, to drive

Ca2þ uptake through the Vcx1p Hþ/Ca2þ antiporter. In the

absence of ATP, there is a shallower Ca2þ gradient across the

vacuole membrane (AJ Merz and W Wickner, unpublished).

At 5 mM, BAPTA is expected to clamp extralumenal free

[Ca2þ ] at o10 nM, far below Ca2þ levels required for fusion

in the standard ATP-replete condition. How, then, can

rVam7p allow partial BAPTA bypass in the absence of ATP?

rVam7p may do this in two ways: it may increase the release

of lumenal Ca2þ and it may reduce the Ca2þ requirement for

fusion. Consistent with this idea, we find that Vam7p associa-

tion with the vacuole is inhibited by BAPTA (RA Fratti and W

Wickner, unpublished). The addition of excess rVam7p may

compensate for this effect, allowing fusion at very low levels

of ambient [Ca2þ ].

Characterization of the bypass fusion reaction illuminates

several aspects of the standard vacuole fusion pathway. For

example, rVam7p addition diminishes the amount of Ypt7p

needed to complete docking. If Ypt7p-dependent tethering is

reversible, then added rVam7p may allow a more efficient

‘capture’ of tethered vacuoles by rapid trans-SNARE associa-

tion. The bypass fusion reaction also shows that Vph1p, a

100 kDa subunit of the V-ATPase Vo sector, is required for

vacuole fusion in either the absence or presence of ATP. Vo

therefore has a role in fusion that is distinct from its role in

ATP-driven proton pumping. Each of these studies of bypass

fusion illuminates the normal roles of ATP, Sec18/17p, Ypt7p,

Vo, and Nyv1p in the physiological fusion pathway.

Deletion of genes required for vacuole fusion generally

results in the fragmentation of vacuoles in vivo. In contrast,

Nyv1p is needed for fusion under our normal in vitro condi-

tions, but nyv1D mutant cells do not exhibit a vacuolar

fragmentation phenotype and are free of vacuolar transport

defects. We find that in vitro fusion can proceed in the total

absence of the vacuolar R-SNARE Nyv1p when rVam7p is

added. rVam7p-mediated fusion in the absence of Nyv1p may

employ Ykt6p as the R-SNARE, explaining the apparent

discrepancy between earlier in vivo and in vitro observations.

These findings are in accord with those of Fukuda et al

(2000), who report that recombinant Ykt6p and Nyv1p

compete for association with Vam3p, Vti1p, and Vam7p. A

similar situation exists in ER-to-Golgi transport, where Ykt6p

can substitute for the R-SNARE Sec22p (Liu and Barlowe,

2002). In addition, overexpression of either vacuolar Vam3p

or the endosomal Q-SNARE Pep12p can substitute for the loss

of the other (Darsow et al, 1997), and this rescue depends on

Vam7p (Gerrard et al, 2000). However, rVam7p addition to

vacuoles lacking the Q-SNARE Vam3p does not rescue either

Ca2þ release or fusion under any condition so far tested (AJ

Merz and W Wickner, unpublished results). Taken together,

these results demonstrate that there is significant plasticity in

SNARE specificity at multiple transport steps. This plasticity

may in part explain the need for the additional layers of

specificity imposed by Rab GTPases, Rab effectors, and other

docking factors.

Even in bypass fusion, SNAREs are not the only essential

proteins. The sensitivity of the bypass fusion reaction to Rho

GDI (Rdi1p) and to antibodies to HOPS subunits, as well as to

lipid ligands, suggests that the underlying mechanisms are

complex. Fusion has been proposed to consist of first bring-

ing membranes into close apposition and then straining

the bilayer to catalyze fusion. While SNAREs (Weber et al,

1998), Ca2þ (Wilschut et al, 1980), and NSF(Sec18p)/

SNAP(Sec17p) (Otter-Nilsson et al, 1999; Brugger et al,

2000) are each capable of fusing model membranes, recent

studies have provided convincing evidence that SNAREs, in

conjunction with Ca2þ and Ca2þ -binding proteins such as

synaptotagmin, form the core machinery for membrane

fusion (McNew et al, 2000; Tucker et al, 2004). Several

additional proteins, including Vo (Peters et al, 2001; Bayer

et al, 2003) and actin (Eitzen et al, 2002), may also partici-

pate in fusion at docking junctions enriched in specific lipids

and proteins.
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Materials and methods

Yeast strains
BJ3505 (Mata ura3-52 trp1-D101 his3-D200 lys2-801 gal2 (gal3) can1
prb1-D1.6R pep4HHIS3) (Jones, 2002) and DKY6281 (Mata ura3-52
leu2-3,112 trp1-D901 his3-D200 lys2-801 suc2-D9 pho8HTRP1) (Haas
et al, 1994) were used throughout the study. Their nyv1D or vph1D
derivatives (Nichols et al, 1997; Bayer et al, 2003) were employed
where indicated; the latter were a kind gift of Professor Andreas
Mayer.

Reagents
All biochemicals were equilibrated in PS buffer (20 mM Pipes–KOH,
pH 6.8, 200 mM sorbitol) unless otherwise indicated. Protein
concentrations were assayed (Bradford, 1976) with BSA standards.
Antibody inhibitors were added at the following final concentra-
tions: aSec18p IgG (378 nM), aSec17p IgG (378 nM), aVam3p IgG
(353 nM), affinity-purified aVti1p IgG (447 nM), affinity-purified
aNyv1p IgG (267 nM), affinity-purified aVps33p IgG (32 nM),
aVps39p IgG (21 mM), aVps41p IgG (2.8mM), and affinity-purified
aYpt7p IgG (133 nM). Protein inhibitors were added at the following
final concentrations: Gdi1p (2.8mM), His6-Gyp7-47p (681 nM), His6-
Gyp1-46p (11.4mM), GST-Rdi1p (24mM), C1b domain from PKC
(Johnson et al, 2000) (41mM), ENTH domain (29 mM), Marks
effector domain (MED; Wang J et al, 2001) synthesized by WM Keck
Biotechnology Resource Center (New Haven) (10 mM), and His6-
Sec17p (299 nM). Chemical inhibitors were added at the following
concentrations: U73122 (Calbiochem) dissolved in DMSO (80 mM),
3-nitrocoumarin (a kind gift of E Martegani, Milano, Italy) dissolved
in DMSO (524mM), Filipin III (Sigma) dissolved in DMSO (30 nM),
BAPTA (Sigma) (5 mM), W7 (Calbiochem) dissolved in DMSO
(833mM), and apyrase (Sigma) (33.3 U/ml).

Protein and antibody purification
IgG fractions were prepared from several antisera (aSec17p,
aSec18p, aVam3p, aVps39p, and aVps41p) by ammonium sulfate
precipitation, desalting, and passage through a column of DE52
(Harlow and Lane, 1999). Antibodies were affinity purified on
peptide Sulfolink affinity columns using the cognate peptide for
aYpt7p (Eitzen et al, 2001) and aVps33p (N-terminal peptide) (Seals
et al, 2000). Rabbit aVti1p was raised against GST-Vti1 and purified
using this protein bound to Sulfolink resin (Pierce). aNyv1p was
raised against His6-Nyv1 (Ungermann et al, 1999a) and purified
using GST-Nyv1p bound to Sulfolink resin. rVam7p (Merz and
Wickner, 2004), Gdi1p (Garrett, 1995), His6-Gyp7-47p (Eitzen et al,
2000), GST-Rdi1p (Eitzen et al, 2001), His6-Gyp1-46p (Wang et al,
2003), and His6-Sec17p (Haas and Wickner, 1996) were purified as
described. His6-Sec18p was purified according to Haas and Wickner
(1996) with an additional purification step of gel filtration on an
S300 HR column (Pharmacia) in 20 mM Pipes–KOH, pH 6.8,
200 mM sorbitol, 125 mM KCl, 5 mM MgCl2, 2 mM ATP, 2 mM
DTT, and 10% glycerol. Recombinant LMA1 was purified by a
modified method of Xu et al (1998). Calmodulin was purified
according to Brockerhoff et al (1992). IB2 was purified according to
Slusarewicz et al (1997).

Fusion assay
Vacuoles were isolated as described (Haas, 1995). Standard fusion
assays (þATP) in 30 ml contained 125 mM KCl, 6 mM MgCl2, 1 mM
ATP (Pharmacia), 1 mg/ml creatine kinase (Roche), 29 mM creatine
phosphate (Roche), 10mM coenzyme A (Sigma), 20 mM Pipes–KOH,
pH 6.8, 200 mM sorbitol, and 3mg each of pep4D and pho8D
vacuoles, premixed in equal concentrations, from BJ3505 and
DKY6281. Bypass fusion assays (�ATP) contained 125 mM KCl,
5 mM MgCl2, 10 mg/ml defatted BSA (Sigma), 20 mM glucose,

33.3 U/ml hexokinase (Sigma), 170 nM recombinant Vam7 protein
(Merz and Wickner, 2004) in PS buffer, and vacuoles (as above).
Components for each fusion reaction were mixed on ice, with
premixed vacuoles added last unless otherwise noted. Reactions
were incubated at 271C for 90 min and then assayed for alkaline
phosphatase activity (Haas, 1995) at 301C for 5 min.

Immunoprecipitations and glutathione pulldowns
Sedimented vacuoles (11000 g, 10 min, 41C) were suspended in
solubilization buffer (20 mM HEPES/KOH, pH 7.4, 100 mM NaCl,
2 mM EDTA, 0.5% Triton X-100 (Anatrace), 20% glycerol, 1� PIC
(0.46mg/ml leupeptin, 3.5 mg/ml pepstatin, and 2.4mg/ml pefabloc-
SC), and 1 mM PMSF). Extracts were incubated on ice (20 min), and
insoluble material was removed by ultracentrifugation (100 000 g,
11 min, 41C). Clarified detergent extracts were incubated (3.5 h, 41C)
with affinity-purified anti-Vam3p antibodies covalently coupled
as described (Harlow and Lane, 1999) to protein A–Sepharose
(100 mg antibody per ml packed bed of CL-4B beads, Amersham
Biosciences) or to glutathione–Sepharose (CL-4B beads, Amersham
Biosciences). Beads were reisolated by centrifugation (3000 g,
2 min, 41C). Bound complexes were washed 4–5 times with
solubilization buffer and eluted by boiling in reducing SDS sample
buffer.

Recombinant SNARE protein production
The cytoplasmic domains of Vam3p and Vti1p fused to GST have
been described previously (von Mollard et al, 1997; Dulubova et al,
2001). Cytoplasmic domain sequences of NYV1 (residues 2–231)
and YKT6 (residues 2–195) were amplified by PCR from yeast
genomic DNA using oligonucleotide primers containing flanking
BamHI or XhoI sequences (NYV1-FWD: CCG GAT CCG AAA CGC
TTT AAT GTA AGT TAT GTG GAA GTT ATA AAA; NYV1-REV: CGG
CCT CGA GGC TTA ATT TTT GAC CTT CTG CCA CCA; YKT6-FWD:
CCG GAT CCG AGA ATC TAC ATC GGT GTA TTT CGC; YKT6-REV:
CGG CCT CGA GGC TTA CGA ATT GGA TTT TTT AGC TTG C).
Digested PCR products were ligated into parallel vectors (Sheffield
et al, 1999) for fusion to GST (GST-Nyv1) or MBP (MBP-Ykt6) and
expression in Escherichia coli. Expression was induced with 1 mM
IPTG (4 h, 371C). The cells were harvested, resuspended in PBS
(Harlow and Lane, 1999), and frozen dropwise in liquid nitrogen.
Frozen cells were thawed and broken in a French pressure cell.
Lysates were cleared by centrifugation (23 000 g, 25 min, 41C), and
soluble extracts were incubated with PBS-equilibrated affinity resin
(4 h, 41C). GST-Vam3p, -Vti1p, and -Nyv1p were eluted from
glutathione–Sepharose (50 mM Tris, pH 8.0, 10 mM reduced
glutathione, and 1 mM DTT). Eluted protein was either dialyzed
into PS buffer for vacuole fusion analysis or immobilized on beads
for the isolation of affinity-purified antibodies. These GST-SNARE
proteins (E10 mg each) were coupled to Sulfolink resin (Pierce)
following the instructions from the manufacturer. MBP-Ykt6p was
eluted from amylose resin with PBS containing 10 mM maltose, and
this protein (E30 mg) was coupled to Affigel-15 (Bio-Rad).
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