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TPA (12-O-tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can exper-
imentally induce reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) in certain latently in-
fected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and dem-
onstrated that this inhibition largely decreased lytic KSHYV reactivation by TPA. Translocation of the PKCo
isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCS mutant
supported an essential role for the PKCS isoform in virus reactivation, yet overexpression of PKC®& alone
was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules par-

ticipate in this pathway.

Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV), also
known as human herpesvirus 8, is causally implicated in KS,
primary effusion lymphoma (PEL; also known as body cavity-
based lymphoma), and a subset of multicentric Castleman’s
disease (1, 10, 47, 48). Like all other herpesviruses, primary
infection with KSHV precedes lifelong latent infection, while
virus reactivation may occur and lead to an increased risk for
disease development (21). Only a few viral proteins are ex-
pressed during KSHV latency, whereas extensive KSHV ge-
nome expression and productive viral DNA replication char-
acterize the lytic phase of virus infection (19, 29, 43, 46).
Detection of KSHV in peripheral blood mononuclear cells and
KSHYV seropositivity are strongly predictive of the develop-
ment of KS, whereas active replication of KSHYV in circulating
lymphoid cells is likely responsible for the spread of virus to
the endothelium and the onset of KS (8, 51, 62). Relatively
little is presently known about the host and cellular factors that
can affect and play a role in the intracellular signaling pathways
of virus reactivation.

Major tools for studying KSHV biology are latently infected
B-cell lines, derived from patients with PEL, in which the virus
undergoes spontaneous lytic reactivation in a small steady frac-
tion of the cells (44, 46). Increased, but limited, virus reacti-
vation is observed following exposure of these cell lines to a
variety of stimuli such as interleukin-6 (IL-6) (9, 11, 52) and
gamma interferon (9), hypoxic conditions (16), coinfection by
another viral agent (27, 36, 57), and treatment with chemical
reagents such as n-butyrate (37), ionomycin (9, 67), 5-azacyti-
dine (12), and the potent protein kinase C (PKC) activator
12-O-tetradecanoylphorbol-13-acetate (TPA) (39, 44). In ad-
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dition, ectopic expression of the KSHYV lytic replication and
transcription activator (KSHV/Rta), encoded by viral open
reading frame (ORF) 50, is generally sufficient to disrupt
virus latency and induce lytic virus reactivation (33, 61).
Thus, it is likely that at least part of the effect of agents that
activate the virus lytic cycle is through the transcriptional
and posttranscriptional activation of this gene; yet, the up-
stream signaling cascades that influence the expression of
KSHV/Rta have not been fully elucidated (7, 12, 22, 26, 32, 33,
41, 61).

The PKC family, comprised of 12 structurally related lipid-
regulated serine-threonine kinases, plays a central role in the
transduction of a variety of signals that affect cellular functions
and proliferation (45). Diacylglycerols (DAG) and calcium
ions are the naturally occurring activators of certain mem-
bers of this family. Phorbol esters, such as TPA, compete
with DAG for the same binding site and function as potent
PKC agonists (2, 17, 49). Yet, nonkinase DAG and phorbol
ester receptors, such as the Ras guanyl releasing protein (Ras-
GRP) and chimaerins, have also been described previously (18,
45, 55).

Our study was designed to determine the role of PKC in
KSHYV lytic reactivation by TPA and to identify specific PKC
isoforms that contribute to the disruption of the latency of
KSHYV and to virus reactivation. We demonstrate that the
activity of PKC3 is required, yet not sufficient, for TPA-medi-
ated virus reactivation.

Selective inhibitors of PKC isoforms inhibit KSHV Iytic
reactivation. To establish the role of PKC in KSHV lytic re-
activation, we investigated the effects of selective PKC inhibi-
tors in PEL-derived KSHV-infected BCP-1 (5) and BCBL-1
(44) cell lines. These experiments were crucial, since not all
phorbol ester responses can be attributed to the activities of
PKC isoforms (45). As previously reported, we obtained
KSHYV lytic reactivation after TPA stimulation (39, 44, 46).
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FIG. 1. Effect of TPA and inhibitor of PKC on KSHYV reactivation. Northern blot hybridizations with T1.1 and KSHV/ORF45 probes of total
RNA extracted from BCP-1 (A) and BCBL-1 (B) cells 24 h after treatment. Cells were subcultured at 2 X 10° cells per milliliter, incubated
overnight, and exposed to 20 ng of TPA (Sigma Chemical Co., St Louis, Mo.)/ml or 5 uM GF 109203X (Calbiochem, San Diego, Calif.) for 24 h
or exposed to 5 uM GF 109203X for 30 min before the addition of TPA for 24 h. Untreated cells were used as controls. The GAPDH transcript
was analyzed as a control for equal RNA loading. Protein extracts were prepared from BCP-1 cells, and equal amounts of protein (30 pg) were
loaded per lane. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer of proteins to nitrocellulose, blots were probed

for vIL-6 by Western blot analysis. Actin antibody was used to control for equal loading (C). The results shown are representative of those from
three similar experiments.
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FIG. 2. Effect of the PKC3 inhibitor rottlerin on TPA-dependent virus lytic induction. Cells were pretreated with 5 wM rottlerin (Calbiochem)
for 30 min followed by 24 h of treatment with 20 ng of TPA/ml. RNA extracts from BCP-1 (A) and BCBL-1 (B) cells were then analyzed for the
T1.1 early transcript by Northern blot hybridization, and protein extracts from BCP-1 cells were assayed for the expression of KSHV/Rta and vIL-6
by Western blot analysis (C). As shown, TPA induced virus reactivation, whereas pretreatment with rottlerin inhibited the TPA-induced virus
reactivation. The results shown are representative of those from three similar experiments.
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FIG. 3. Expression and translocation of PKC8 in BCP-1 and
BCBL-1 cells that were treated with TPA. The expression of the PKC3
isoform was examined by using anti-human PKC3 (nPKC3 C-20; Santa
Cruz) rabbit polyclonal immunoglobulin G in protein extracts from
BCP-1 (A) and BCBL-1 (B) cells growing under standard growth
conditions and from cells that were treated with TPA for 30 min, 60
min, and 24 h. The membrane was then probed with antiactin antibody.
Fixed BCP-1 (C) and BCBL-1 (D) cells were incubated with rabbit
anti-PKC38 antibody followed by an anti-rabbit antibody conjugated to
fluorescein isothiocyanate. Propidium iodide (PI) staining was used to
mark nuclei. Cells were visualized by confocal microscopy (Bio-Rad
MRC 1024 confocal scan head mounted on a Nikon microscope). The
results are from one of three similar experiments.
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FIG. 4. Dominant-negative PKC3 expressed by an adenovirus vec-
tor inhibits TPA-mediated KSHV reactivation. Cells were infected
with a recombinant adenovirus vector that expresses dominant-nega-
tive PKC8 (Adeno-DN-PKC38). Twenty-four hours after the adenoviral
transduction, cells were either treated with TPA or left untouched.
RNA extracts from BCP-1 (A) and BCBL-1 (B) cells were then ana-
lyzed for the T1.1 early transcript. Expression of the ectopically ex-
pressed mouse dominant-negative PKC8 and vIL-6 was monitored in
BCP-1 cells by Western blot analysis 24 h after the addition of TPA
(C). Infection with empty adenovirus vector (Adeno-CV) was used as
a control. Actin antibody was used to control for equal loading. The
results shown are representative of those from three similar experi-
ments.

This was evident by the induction of the expression of the
immediate-early KSHV/ORF45 transcript (66), the T1.1 early
transcript (65), and the early lytic protein viral IL-6 (VIL-6)
(38) 24 h after stimulation (Fig. 1). Inhibition of the TPA-
mediated virus reactivation was evident when 5 pM GF
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109203X (bisindolylmaleimide I) (56), which inhibits the PKC
a, B, 7, 8, and € isoforms (31), was added 30 min prior to the
addition of TPA.

To further evaluate the role of PKC in TPA stimulation of
KSHYV reactivation, we treated the cells with 5 WM rottlerin,
a selective inhibitor of PKC3 (24). Results shown in Fig. 2
demonstrate that rottlerin largely reduced the TPA-depen-
dent induction of KSHV in BCP-1 and BCBL-1 cells, sug-
gesting an essential role for PKCS activity in virus reactivation.
Of note, we monitored possible toxic effects of the pharma-
cological treatments by cell cycle analysis with a fluores-
cence-activated cell sorter and found that treatment with
rottlerin alone induced high levels of cell death in BCBL-1
but not in BCP-1 cells, whereas combined treatment with
rottlerin and TPA avoided this response (data not shown).
This effect probably reflects the nonspecific activity of rot-
tlerin.

Expression and translocation of PKCS prior to and after the
addition of TPA. To further study the possible involvement of
the PKC3 isoform in TPA-induced lytic reactivation of KSHV,
we examined the effect of TPA stimulation on the expression
and translocation of PKC38. These experiments were necessary
since prolonged exposure to TPA is known to induce down-
regulation of the classical and novel PKC isoforms (45) and
translocation of PKC is characteristic of PKC activation (6,
45). We detected expression of PKCS3 in both cell lines (Fig. 3A
and B) while an elevated level of expression was noted in
BCP-1 cells 1 h after TPA stimulation. The cellular localization
varied between cell lines, yet transient translocation of PKC3
was evident upon TPA stimulation both in BCP-1 and BCBL-1
cells (Fig. 3C and D).

Ectopic expression of dominant-negative PKCS inhibits
TPA-mediated KSHYV reactivation. Though rottlerin has been
widely used to study the role of PKC3 (14, 34, 64), some
questions about the use of this compound have been raised
recently (15, 30, 35, 54). Therefore, we further explored the
role of PKCS3 in virus lytic reactivation by employing recombi-
nant adenoviral vectors (28) to transiently overexpress a mouse
kinase-defective K376R PKC3 mutant (4). Overexpression of
the transduced gene was confirmed by Western blot analysis
with antibodies to the PKC3 that barely recognize the human
isoform (nPKC3 rabbit polyclonal immunoglobulin G; Santa
Cruz Biotechnology, Inc.). In accord with the findings obtained
with rottlerin, expression of the dominant-negative PKC8 mu-
tant largely inhibited KSHV lytic reactivation (Fig. 4). This
result is consistent with the hypothesis that KSHV lytic reac-
tivation by TPA depends to a large extent on the activity of
PKCa.

Ectopic expression of PKCd does not affect KSHV lytic
reactivation. Based on the findings that inhibition of PKC3
activity by rottlerin or by ectopic expression of the kinase-
inactive PKC3 inhibited TPA-mediated KSHV lytic reactiva-
tion, we further investigated the role of PKC3 activation in
KSHYV lytic reactivation. We transduced the PKC3 with a re-
combinant adenovirus and assayed its effect on virus reactiva-
tion in the absence of and following the addition of TPA.
Ectopic expression of PKCS did not induce virus reactivation
nor synergize with TPA in the induction of lytic KSHV reac-
tivation. Similar results were obtained with bistratene A, a
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cyclic polyether toxin that activates PKC? (23, 58-60) (data not
shown).

Taken together, our data suggest the following: (i) PKC is an
important mediator in regulating KSHV lytic reactivation after
TPA stimulation, (ii) activation of PKC3 is essential for TPA-
mediated KSHV lytic reactivation, and (iii) stimulation of
PKC3 is not sufficient to induce KSHV lytic reactivation. Our
experiments suggest that non-PKC phorbol ester receptors,
such as RasGRP and chimaerins, probably do not play a pri-
mary role in TPA-mediated virus reactivation; however, this
pathway could have a secondary role that has not been ex-
plored. Notably, we observed translocation of PKC3 in the
majority of cells that were treated with TPA, though virus
activation occurs only in a small fraction of the cells (63). This
implies that additional cellular molecules may act as rate-
limiting factors for virus reactivation. It is also reasonable to
assume that methylations, deletions, or rearrangements of key
genes on the KSHV genome prevent KSHV reactivation in a
subset of cells regardless of the cellular condition. Downstream
effectors of PKC in this pathway have yet to be identified. Since
PKC activation frequently leads to activation of members of
the mitogen-activated protein kinases that can also be acti-
vated in response to a variety of extracellular stimuli and
stress, one may envision a number of alternative signal
transducing pathways that could induce lytic KSHV reacti-
vation. In addition, isoforms of PKC may posttranslationally
modulate the DNA-binding and transcriptional activity of
KSHV/Rta.

Emerging evidence points to central roles for PKC isoforms
during various phases of infection with different viruses. Acti-
vation of PKC{ during primary de novo infection has been
recently reported to play an essential role during the initial
stages of KSHV infection (42). Similarly, the entry of several
other enveloped viruses, including rhabdoviruses, alphaviruses,
poxviruses, adenoviruses, and influenza virus, has been pro-
posed to require the activity of PKC (13, 50). Enhancer acti-
vation of the human immunodeficiency virus provirus is af-
fected by PKC (20), and the use of synthetic analogues of DAG
in conjunction with highly active antiretroviral therapy has
been recently proposed (25). Infection with murine cytomeg-
alovirus has been shown to recruit cellular PKC for phosphor-
ylation and dissolution of the nuclear lamina (40). Alterna-
tively, during infection, viruses may target PKC isoforms,
which may in turn alter the natural functions of the infected
cells (3, 53, 68). Thus, the variable effects of PKC on a range of
signal transduction pathways may alter the outcomes of virus
exposure and infection both in vitro and in vivo. This may also
provide, in the future, a potential therapeutic means to inter-
fere with the consequence of virus infection. As the distinct
characteristics attributed to the various PKC isoforms suggest
that the composition of PKC isoforms in a particular cell type
should determine its cellular response, extensive exploration of
the involvement of PKC in KSHYV lytic reactivation in a variety
of cell types is necessary.
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