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Abstract

Background—In current clinical trials of treating ovarian cancer patients, how to accurately 

predict patients’ response to the chemotherapy at an early stage remains an important and 

unsolved challenge.

Purpose—To investigate feasibility of applying a new quantitative image analysis method for 

predicting early response of ovarian cancer patients to chemotherapy in clinical trials.

Material and Methods—A dataset of 30 patients was retrospectively selected in this study, 

among which 12 were responders with 6-month progression-free survival (PFS) and 18 were non-

responders. A computer-aided detection scheme was developed to segment tumors depicted on two 

sets of CT images acquired pre-treatment and 4–6 weeks post treatment. The scheme computed 

changes of three image features related to the tumor volume, density, and density variance. We 

analyzed performance of using each image feature and applying a decision tree to predict patients’ 

6-month PFS. The prediction accuracy of using quantitative image features was also compared 

with the clinical record based on the Response Evaluation Criteria in Solid Tumors (RECIST) 

guideline.

Results—The areas under receiver operating characteristic curve (AUC) were 0.773 ± 0.086, 

0.680 ± 0.109, and 0.668 ± 0.101, when using each of three features, respectively. AUC value 

increased to 0.831 ± 0.078 when combining these features together. The decision-tree classifier 

achieved a higher predicting accuracy (76.7%) than using RECIST guideline (60.0%).

Conclusion—This study demonstrated the potential of using a quantitative image feature 

analysis method to improve accuracy of predicting early response of ovarian cancer patients to the 

chemotherapy in clinical trials.
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Introduction

In gynecologic oncology, ovarian cancer is the second most prevalent cancer with the 

highest mortality rate (1). Given that there is no effective cancer screening method to detect 

early symptoms of ovarian cancer, the majority of ovarian cancer patients (>70%) are 

diagnosed at advanced stage with tumor metastasis in the abdominal cavity or other distant 

organs (lung and liver). In order to effectively control metastatic tumors, chemotherapy is 

necessary after surgical resection of the primary ovarian tumor (primary cytoreduction). 

Therefore, a large number of clinical trials have been performed to test efficacy of many new 

chemotherapy drugs or procedures. Due to the toxicity, high cost, and side-effects of 

chemotherapy drugs, it is important to predict the response of the patients who participate in 

clinical trials at an early stage. However, how to accurately predict patients’ response to 

chemotherapy at an early stage still remains a major challenge in current clinical practice. 

As a result, there is a strong clinical need to develop more accurate and robust prediction 

tools for rapidly categorizing patients into groups who are likely to benefit from 

participating in clinical trials or not.

In order to improve cancer detection and/or prognostic assessment, the previous studies can 

be divided into two classes: identifying genetic biomarkers (2–4); and performing 

radiographic imaging examinations (5,6). Concerning ovarian cancer, most of the 

metastasized tumors are driven by the mutation of tumor suppressor gene TP53, which is 

responsible for several different forms of cellular stress and anti-proliferative cellular 

functions (7). Given that this kind of mutation is genetically instable (8), no existing serum 

biomarker in ovarian cancer is able to accurately select treatment options, predict clinical 

benefit, and determine drug resistance to date (9–11). Therefore, radiographic imaging 

examinations is critically important in defining response in ovarian cancer treatment. 

Compared to other imaging modalities, perfusion X-ray computed tomography (CT) has 

several advantages including wide availability, high diagnostic performance, quick image 

acquisition, and low operating cost. Thus, perfusion CT is the most popular imaging 

modality used in current clinical practice for ovarian cancer diagnosis and prognostic 

assessment (12).

In order to assess patients’ response to the chemotherapy, radiologists track and compare 

tumor size changes using two sets of perfusion CT images acquired pre-treatment and 4–6 

weeks post treatment. Specifically, the tumor response to the new chemotherapy drug is 

assessed by radiologists using the Response Evaluation Criteria in Solid Tumors (RECIST) 

guideline (13), which classifies the tumor response into four categories namely: (i) complete 

response (CR); (ii) partial response (PR); (iii) stable disease (SD); and (iv) progressive 

disease (PD). The response classification is accomplished by comparing the tumor size 

(diameter) measured from the CT image slices acquired between the pre- and post-treatment 
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CT scans. Although RECIST is the current international standard in clinical practice, the 

subjectively assessed one dimension tumor size change is often unable to accurately 

represent the actual tumor volume change during the treatment (14). Thus, the assessment 

results using RECIST guideline generate low association with the clinical outcome (e.g. 

progression-free survival [PFS]) of the patients who participate in the clinical trials (15).

In order to better address this clinical issue or challenge, the purpose of this study was to 

investigate and test the feasibility of improving efficacy of clinical trials of treating ovarian 

cancer patients by applying a new quantitative image feature analysis concept and scheme to 

more accurately predict tumor response to the testing chemotherapy drugs at an early stage 

using CT images.

Material and Methods

Image dataset

Under an institutional review board (IRB) approved protocol, we retrospectively collected 

fully anonymized image and clinical data of 30 cases from the existing clinical database in 

our medical center. The IRB (#4168) of this study was approved by the Health Science 

Center of University of Oklahoma on 9 April 2014. Each case represented one ovarian 

cancer patient diagnosed with recurrent, high grade (serous, endometrioid, undifferentiated) 

ovarian/peritoneal/tubal carcinoma. The age of these patients was in the range of 50–84 

years (average age, 67.9 ± 8.1 years). These 30 patients had participated in 14 different 

clinical trials using a variety of treatment options or drug agents including the standard 

cytotoxic agents (i.e. weekly paclitaxel, liposomal doxorubicin) and novel therapeutic agents 

(i.e. anti-angiogenic therapy using bevacizumab and/or fosbretabulin, a range of inhibitors 

including Reolysin, Pazopanib, and/or Cabozantinib).

For each patient, a pre-treatment and a post-treatment (4–6 week follow-up) CT examination 

was conducted to assess the treatment response. A pre-established CT image scanning 

protocol in our medical center was applied to acquire the CT images using either a 64-row 

detector CT machine (LightSpeed VCT, GE Healthcare, Milwaukee, WI, USA) or a 16-row 

detector CT machine (Discovery 600, GE Healthcare). The X-ray power was operated at 120 

kVp and 100–600 mAs, depending upon the patient body size. During the CT examination, 

100 cc of a contrast agent (Isovue 370, Bracco Diagnostics Inc., Monroe Township, NJ, 

USA) was first injected to the patient with a rate of 2–3 cc/s, using a standard power injector. 

The CT images were then acquired at two phases, which were performed at approximately 

60 s and 5 min after the contrast injection, respectively. The exposure time was 

approximately 4 s for each phase of the CT scan. The CT images were acquired a pitch of 

1.375 mm, slice thickness 5 mm, reconstructed to 1.25mm to make sagittal and coronal 

reformats at 2.5 mm. Sagittal and coronal reconstructed images were performed at 2.5 mm.

For each set of the pre- and post-treatment CT images, the radiologists marked and tracked a 

number of metastatic tumors spread in the different parts of the patient’s body and measured 

tumor size changes based on the RECIST guidelines. Since all the test cases were 

retrospectively collected, the clinical outcome of each patient was also available. In this 

study, our goal was to apply a new quantitative image feature analysis scheme to predict 6-

Qiu et al. Page 3

Acta Radiol. Author manuscript; available in PMC 2016 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



month PFS, which is a current criterion for assessing efficacy of new cancer drugs in the 

clinical trials (16). In our testing dataset, 12 cases (patients) were classified in the responder 

group (6-month PFS = “Yes”) and 18 were in the non-responder group (6-month PFS = 

“No”).

Image feature analysis

For each case, we segmented the tumors that had been previously tracked and marked by the 

radiologists based on the RECIST guideline. We applied a computer- aided detection (CAD) 

scheme to segment tumor volume depicted on CT images. The tumor segmentation 

algorithm is a hybrid scheme including a multilayer topographic region growing algorithm 

(17) and a Canny edge detection operator (18). Due to the diversity of the tumors tracked 

and marked by the radiologists in different abdominal sections or distant organs (i.e. lung), 

the automated tumor segmentation failed in a small fraction (<10%) of CT image slides. 

Thus, the tumor segmentation results on all involved CT image slides were visually 

inspected and manually corrected (if needed). Fig. 1 shows the tumor segmentation results 

of a few examples.

After tumor segmentation, our CAD scheme computed three image features of each 

segmented tumor, which include: (i) tumor volume, F1 = NVvoxel, where N is the number of 

all segmented tumor pixels on the tested CT images and Vvoxel is the volume of each unit 

voxel; (ii) average tumor CT number (density), , where Ik is the CT number 

of voxel (k) inside the segmented tumor volume; and (iii) the standard deviation of tumor 

CT numbers,

Then, the CAD scheme computed the difference of each feature extracted from the pre- and 

post- treatment CT images:

Based on the RECIST guidelines (13), the radiologists may mark and track up to five tumors 

per case. In this dataset, we found that a total number of 67 tumors were marked in the 30 

cases. The CAD scheme was used to segment all tumors previously tracked by the 

radiologists on each case. The scheme then computed an average feature difference value, 

, where M varies from 1 to 5, to represent the final feature value of each 

case.

Based on these three quantitative image features, two different methods were applied to 

predict the 6-month PFS, and their performance were assessed. The first method is based on 

the linear combination of three features. For this algorithm, the values of these features were 

first linearly normalized to the range from 0 to 1 based on the mean and two standard 
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deviations of the feature values (μ ± 2σ) (19). Next, we used a maximum likelihood based 

receiver operating characteristic (ROC) curve fitting program (ROCKIT, http://

xray.bsd.uchicago.edu/krl/roc_soft.htm,

University of Chicago, IL, USA) to compute the area under ROC curve (AUC) for using 

each image feature as a prediction index. We also compared the statistical significance of the 

difference between the computed AUC values. In the third step, a feature fusion method was 

used to combine these three features to generate a new quantitative prediction score (20),

where . We also used the new scores to compute AUC value of this image 

feature fusion based prediction model.

The second method is to develop a decision-tree based classifier (Fig. 2), which has been 

demonstrated as an effective method in our previous study for the similar classification 

purpose with a small dataset to achieve a satisfactory accuracy with low computational 

complexity (21). In this decision tree, three thresholds were applied to three image feature 

nodes. (i) If tumor volume changed, , the case was assigned to 6-month PFS = 

“No” (non-responsive) group. Otherwise, the case was moved to the next decision node. (ii) 

If tumor density changed, , the case was assigned to the 6-month PFS = “Yes” 

(responsive) group. Otherwise, the case was moved to the third decision node. (iii) If the 

tumor density standard deviation changed, , the case was predicted as 6-month 

PFS = “Yes” (responsive). Finally, the remaining cases were assigned to 6-month PFS = 

“No” group. Based on the prediction results, a confusion matrix was generated to assess the 

prediction accuracy and compute the positive and negative predictive values along with the 

Kappa coefficient.

Results

Table 1 summarizes the computed AUC values when using the change of average tumor 

volume, tumor CT number, and standard deviation to predict patients’ 6-month PFS. All 

three image features showed a discriminatory power (with a significantly higher AUC value 

as compared to a random guess of AUC = 0.5). Among these three image features, the tumor 

volume change yielded the highest AUC value. Table 2 summarizes AUC values of 

predicting 6-month PFS using four fusion methods to combine these three image features 

including: (i) selecting the minimum or maximum feature value; and (ii) using different 

weighting factors (i.e. w1 = w2 = w3 = 1/3, and w1 = 0.5, w2 = w3 = 0.25) to combine these 

three image features. The result shows that selecting the maximum feature value among 

these three normalized image features yielded the highest prediction value of AUC = 0.831 

± 0.078. At 90% and 80% specificity, the sensitivity levels of predicting the responsive cases 

are 50% and 69%, respectively. Fig. 3 shows the corresponding four ROC curves using three 

individual features and the maximum feature values.
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When applying the decision tree (Fig. 2) to predict 6-month PFS of 30 patients, we found 

that: (i) the first decision node (tumor volume difference) assigned 10 cases to 6-month PFS 

“No” group with an accuracy of 90% (9/10) and the rest of 20 cases move to node 2; (ii) the 

second node (tumor CT number difference) assigned eight cases to 6-month PFS “Yes” 

group, among which 75% was correct (6/8) and the remaining 12 cases move to node 3; and 

(iii) the third node (tumor CT number standard deviation difference) assigned 11 cases to 6-

month PFS “No” group with an accuracy of 63.6% (7/11) and one case correctly to 6-month 

PFS “Yes” group. The final prediction result using this decision tree is summarized in Table 

3. The overall prediction accuracy was 76.7% (23/30) with a Kappa coefficient of 0.493. The 

positive predictive value (PPV) was 0.78 (7/9) and the negative predictive value (NPV) was 

0.76 (16/21). Finally, Table 4 shows a confusion matrix when using the original RECIST 

guideline based prediction result. The overall prediction accuracy was 60% (18/30). The 

corresponding positive and negative predictive values were: PPV = 0.5 (2/4) and NPV = 0.62 

(16/26), respectively. The results demonstrated that using quantitative CT image features has 

potential to achieve higher prediction performance than using the conventional RECIST 

guideline based assessment.

Discussion

In this study, we demonstrated that from CT images we can identify and compute a number 

of quantitative image features that may have higher discriminatory power to predict 6-month 

PFS than using the conventional RECIST guideline. Based on testing results of this limited 

dataset, the prediction accuracy of using a simple decision tree involving three image 

features increased by 16% when comparing to assessment result using RECIST guideline 

(from 60% to 76.7% as shown in Tables 2 and 3). The prediction performance improvement 

can be attributed by a number of following factors.

First, since a tumor is typically not an isotropic “ball” in the volume, the change of one-

dimensional size (or diameter) assessed using RECIST guideline is not very accurate to 

represent the tumor volume change or response during the chemotherapy. When using a 

quantitative image analysis approach, our CAD scheme segments tumor volume and 

computes the tumor volume change to replace tumor diameter change. Our results 

demonstrate that detecting tumor volume change yielded a relatively higher discriminatory 

power (e.g. AUC = 0.773 ± 0.090 in this limited dataset). When we tested our decision-tree 

based classifier, the first node (tumor volume change) assigned 10 cases to 6-month PFS 

“No” (or non-responsive) group with an accuracy of 90%.

Second, similar to many serum biomarkers (e.g. CA 125 in ovarian cancer), using a single 

phenotype CT image feature (e.g. tumor size or volume change) can only achieve limited 

sensitivity or specificity. For example, (i) when applying a new immune-stimulatory therapy 

(e.g. CTLA4 agents), some tumors may experience an initial tumor size increase on CT 

images, as the tumor might become infiltrated with T cells before it shrinks (22,23); (ii) in a 

large phase II clinical trial of applying a bevacizumab based therapy to patients with 

recurrent ovarian cancer, 40% of the patients remained 6-month PFS, but the responsive rate 

was only 21% when applying RECIST based measurements (24). Hence, another advantage 

of applying quantitative image feature analysis is that we can extract multiple image features 
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and develop an optimal fusion method or a statistical machine learning classifier to combine 

these features and achieve higher prediction performance. In this study, we also computed 

changes of two tumor CT number or density-related image features. We hypothesized that 

the first tumor density feature computed from the CT images is closely related to the tumor 

stiffness, which has been recognized as one important factor that determines tumor response 

to drug treatment (25). The second tumor density related feature computes the standard 

deviation of the pixel CT values, which is an indicator of the heterogeneity of tumor density. 

Our study results showed that both features provide useful supplementary information or 

discriminatory power to predict tumor response to treatment. Reducing tumor density and/or 

density heterogeneity is also a responsive sign to treatment.

Despite these encouraging results, this is a preliminary study with a number of limitations. 

First, the image testing dataset is very small. The robustness of our quantitative image 

analysis scheme needs to be tested in future studies using new large datasets with diverse 

cases. Second, for each case, we only computed an average feature difference of all the 

tumors tracked and marked by the radiologists, which may not be an optimal approach. It is 

still an open topic on how to optimally quantify the case-based image features. Third, due to 

the limited image dataset, we only computed and tested three image features. More 

quantitative image features can be explored and quantified. The effective image features will 

not only be limited or computed from the segmented tumors, but also from the non-tumor 

regions (i.e. ascites, visceral or subcutaneous fat ratios, and distribution (26)). The machine 

learning based classifiers will be able to predict the 6-month PFS more accurately if the 

image features are optimally selected and combined. Fourth, although it does not affect this 

proof-of-concept study, a more robust automated tumor segmentation scheme still need to be 

developed in future studies to further minimize the requirement of manual correction.

In conclusion, this study initially verifies that quantitative image feature analysis methods 

have potential to assist clinicians (i.e. radiologists and/or oncologists) more effectively 

predicting the clinical benefit of ovarian cancer patients participating in clinical trials. 

Success of this method may have significant impact on improving efficacy of clinical trials, 

which would help accelerate the speed of identifying active drugs for the chemotherapy of 

ovarian cancer patients.
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Fig. 1. 
Examples of four tumor region segmentation results marked by the boundary contours.
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Fig. 2. 
The flow chart of a decision-tree based classifier.
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Fig. 3. 
Four ROC curves generated using three image features and an equal weighted fusion method 

of three features to predict 6-month PFS.
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Table 1

The summary of the performance of using three image features to predict 6-month PFS.

Tumor
volume

Tumor
CT
number

CT
number
STD

Area under ROC curve 0.773 0.680 0.668

Standard deviation 0.086 0.109 0.101

95% confidence interval 0.57–0.90 0.45–0.86 0.46–0.84
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Table 2

The summary of the performance of using fusion method to combine three image features and predicxt 6-

month PFS.

Min
Equal
weight

Un-equal
wi Max

Area under
  ROC curve

0.764 0.795 0.813 0.831

Standard deviation 0.087 0.088 0.080 0.078

95% confidence
  interval

0.57–0.90 0.59–0.92 0.62–0.93 0.64–0.94
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Table 3

A confusion matrix of the prediction results of 6-month PFS when using a decision-tree based classifier 

involving three quantitative image features.

6-month PFS

prediction Yes No

Yes 7 2

No 5 16
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Table 4

A confusion matrix of the prediction results of 6-month PFS when using RECIST-guided tumor diameter 

change measurement.

6-month PFS

assessment Yes No

Partial response (PR) 2 2

No response (SD or PD) 10 16
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