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Abstract

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows personalized
treatment of complex diseases based on patients’ disease status and treatment history. Conditions
such as AIDS, depression, and cancer usually require several stages of treatment due to the
chronic, multifactorial nature of illness progression and management. Sequential multiple
assignment randomized (SMAR) designs permit simultaneous inference about multiple ATSs,
where patients are sequentially randomized to treatments at different stages depending upon
response status. The purpose of the article is to develop a sample size formula to ensure adequate
power for comparing two or more ATSs. Based on a Wald-type statistic for comparing multiple
ATSs with a continuous endpoint, we develop a sample size formula and test it through simulation
studies. We show via simulation that the proposed sample size formula maintains the nominal
power. The proposed sample size formula is not applicable to designs with time-to-event endpoints
but the formula will be useful for practitioners while designing SMAR trials to compare adaptive
treatment strategies.
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1. Introduction

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows
personalized treatment [1] of complex diseases based on disease status (response,
recurrence, remission, relapse) and intermediate treatment history. Complex diseases such as
AIDS, depression, and cancer usually involve several stages of treatment due to dynamic
disease progression. For instance, a patient with depression may benefit if she initiates
treatment with citalopram (CIT). Depending on response, she may remain on CIT or switch
to or add another medication or psychosocial treatment during the next phase of treatment
[2]. In principle, a clinician monitors a depressed patient and decides on interventions at
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different time points based on the patient’s clinical status. Availability of multiple treatment
options at each stage of treatment, various possibilities for the duration of each stage, and
various responses that can be achieved through different stages of therapy could lead to a
multitude of adaptive treatment strategies. Examples of treatment strategies for a patient
with moderate depression include [2]:

1 Treat with CIT for 6-8 weeks; if response is not achieved with CIT,
augment with cognitive behavioral therapy (CBT) for 8 weeks, otherwise
continue with CIT for another 8 weeks.

2. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, switch
to CBT for 8 weeks, otherwise switch to BUS (buspirone) for another 8
weeks.

3. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, switch

to CBT for 8 weeks, otherwise switch to BUP-SR (bupropion sustained
release) for another 8 weeks.

4. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, switch
to SERT (sertraline) for 8 weeks, otherwise switch to CBT for another 8
weeks.

ATSs are often compared via sequential multiple assignment randomized (SMAR) designs
[3, 4, 5]. Even though SMAR ftrials are useful for comparing ATSs because different ATSs
can be tested from the same experimental design and the procedure for inference about ATSs
from data arising from such trials are well-established, the design issues (e.g. sample size
and power) have not been adequately addressed. This may be due to the challenges posed by
the adaptive and sequential nature of SMAR designs. Nevertheless, a few articles have
alluded to the development of sample size formula for SMAR designs.

Murphy [5] provides a sample size formula to test the equality of two strategies that do not
share same initial sets of treatments, making data from two groups of patients following
these strategies statistically independent. Feng and Wahed [6] also constructed a sample size
formula for survival outcomes. However, their formula was developed for censored survival
times to test equality of point-wise survival probabilities under two ATSs that have the same
initial, but different second stage treatments. They also proposed another formula based on
weighted log-rank test for the equality of survival curves under two strategies that share
different initial treatments [7]. Recently, Li and Murphy [8] presented a sample size formula
for survival data to relax the assumptions set forth by Feng and Wahed [6, 7]. Oetting et al.
[9] establishes four sample size formulas, of which only two are relevant to adaptive
treatment strategies. One of the formulas (referred to as #3 in their chapter) deals with a
hypothesis testing the equality of a pair of strategy means. The other relevant formula
(referred to as #4 in their chapter) is developed with the goal of finding the best strategy (as
opposed to hypothesis testing comparing multiple strategies). Dawson and Lavori [10] also
devised a sample size formula for the nested structure of successive SMAR randomizations
when the outcome is continuous. They extended the sample size for the usual t-test to be
applicable to SMAR trials. Using a semi-parametric approach, their formula includes stage-

specific variance inflation factor (VIF) and marginal outcome variance 03. Due to the
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presence of between-strategy covariance, one cannot make inference for a pair of strategy
means that share the same initial treatments by just pooling the VIF’s and marginal outcome
variances across the stages. As a remedy, Dawson and Lavori [11] proposed a conservative
approach to adjust the sample size formula using the VIF. The caveat with their approach is
its difficulty of application. It involves cumbersome computation of all stage-specific VIFs,

03 and coefficient of determination by regressing the final outcome on previous states. A
more recent simulation work by Ko and Wahed [13] looked into the power for detecting
differences between multiple strategy means for arbitrary sample sizes for a two-stage
SMAR design.

Most of the works related to sample sizes in SMAR trials are either confined to two-strategy
comparison [3, 7] or require assumptions about population parameters that are difficult to
ascertain (e.g. VIF’s and stage-specific variances) in multi-strategy comparison settings. The
goal of this paper is to provide sample size formulas for a variety of SMAR designs in order
to test specific alternative hypotheses related to continuous outcomes. Specifically, we
consider three SMAR designs that are being used in various disease areas. The parameters
needed to be specified in advance correspond to well-defined subgroups in the patient
population and hence are relatively simple to specify. We verify the sample size formulas
through simulation experiments.

We consider three two-stage SMAR designs. Figures 1, 2 and 3 display the three SMAR
designs. In the first design, 77subjects are to be randomized to two initial treatments A;, j= 1,
2. Then second stage treatments, By, k=1, 2, are to be administered randomly if they
responded to initial treatments, or else they are randomized to C, /=1, 2.

We use the Lei et al. [1] design for alcohol-dependence interventions as an example to
explain the first design (Figure 1). All patients are provided with “NTX+MM?” as their initial
treatment (NTX = naltrexone, MM = medical management). Then patients are randomized
to two groups based on how the intermediate response to “NTX+MM” would be ascertained.
In one group, referred to as A, the response criteria would be stringent (5+ days of heavy
drinking), whereas in the other group, referred here forth as A, the criterion would be
lenient (2+ days of heavy drinking). Following eight weeks of treatment, participants are
randomized to the second line treatments depending on their non-response status. Non-
responders were re-randomized to either “NTX” (By) or “NTX+Phone” (5;), otherwise,
they were re-randomized to two maintenance treatments: “CBl+MM-+Placebo” (C;) or “CBI
+MM+NTX” (&), where CBI = combined behavioral intervention. At the end of the study,
the primary outcome (defined as “percent of heavy drinking days” over the last two months
of the study) was obtained.

The above design allows inference related to eight possible ATSs, namely A;BxC}, J, k, /=1,
2, where A;ByCystands for “Treat with A;followed by By if they respond, or by C;if not”.
For example, one might want to test the equality of all strategy means Hp : l111 = U112 =
HM121 = 122 = 211 = H212 = Mo21 = Ho2o, Where i is the mean response under strategy
AiBkCy, J, k, 1= 1, 2 against the alternative of at least one pair being different. Testing
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equality of any combination of treatment strategies (e.g. pairwise comparisons) may also be
of interest. In the sequel we consider the sample sizes required to test varieties of treatment
strategy comparisons with adequate statistical power.

The second design was used by Pelham et al. [14] for an Attention Deficit Hyperactivity
Disorder (ADHD) clinical trial (Figure 2). This trial involved treating children with ADHD
with behavioral and pharmacological interventions during stage 1. In the first stage
participants were randomized to low intensity “psychostimulant drug (low intensity MED)”
(Aq) or low intensity “behavioral modification (low intensity BMOD)” (A,). Behavioral
modification consists of school-based, weekend and at-home activity sessions. A child’s
response to the first line treatment is assessed using Impairment Rating Scale (IRS) and an
individualized list of target behaviors (ITB). IRS is a comprehensive measure of
improvement in social performance while ITB is a child-specific monitor of social
performance. IRS and ITB are “tailoring” variables that determine response status and
randomization to the second stage treatments. Based on these tailoring variables, participants
who responded to first-stage treatment remained on the same treatment whereas non-
responders were re-randomized. Children who did not respond to low intensity BMOD (A4;)
were re-randomized to either intensified BMOD (C;) or BMOD augmented with MED (&).
Those children who did not respond to low intensity MED (A,) were re-randomized to

either intensified MED () or MED augmented with BMOD (C).

Thus, if a patient responds to A; then she stays on A; but is randomized to C; or G,
otherwise. Similarly, if a patient responds to A, then she stays on A,, otherwise she is

randomized to either Ci or C;. Formally, there are 4 possible treatment strategies for this

design; namely, A, Gy, A1, AQC; or AQC;, where, for example, A1 C; stands for “treat
with Ay, if do not respond to Ay, treat with C;. It might be of interest to test equality of all 4
strategy means, Hp : U11 = K12 = Ho1 = Moo, Where [ig7and Ly are the mean responses for the

population following strategy A; C;and AQC; respectively for /=1, 2.

The third design considered is described in Thall et al. [16] (Figure 3). Patients received one
of three initial treatments A;, A, and Az during the first randomization. If a patient initially
assigned to A responded, she would remain on A; during the second stage; otherwise she
would be randomized to A, or As. Similarly, if a patient responds to initial treatment Ay
then he/she would continue A, in the second stage; otherwise would be randomized to A; or
Ags. Similarly, patients not responding to Az would be re-randomized to A; or Ay in the
second stage. Six possible strategies for Design 3 are A;A,, j, /=1, 2, 3; j# I, where AjA,is
defined as “treat with A;followed by A, if he/she is a non-responder”. The null hypothesis of
equality of strategy means is, Hp : 2 = H13 = Ha1 = H23 = M3y = M3p, wWhere Ly is the mean
response under strategy A:A; /# f f, 1=1, 2, 3.

For all the three designs, we develop a sample size formula to detect meaningful differences
between strategy means. The derivation and discussion of the sample size and variance
formulas in Section 3 is based on Design 1. The formulas apply to Designs 2 and 3 directly
with only slight adjustment as outlined later in Section 4.
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3. Comparing Multiple Treatment Strategies

The goal of this paper is to design a sample size formula for a test that detects differences in
strategy means from SMAR designs with a continuous endpoint. In order to achieve this
goal, let us introduce the following notation. Let /&;be the counterfactual response indicator
for an individual who responded to Aj, =1, 2; Y (A;Bj) is the counterfactual outcome of an
individual had he/she received Aj responded, then took By; similarly, Y'(A;C) is the
counterfactual outcome of an individual had he/she received Aj did not respond, then took
C Based on these three counterfactual outcomes, consider Y (A;B4C)) as the outcome under
strategy A;BxC}, which can be written as

Y(AjBkCI)ZRjY<AjB/g)+(1 — R»Y(A;Cl),], k,l=1,2. (1)

To clarify the distinction between the observed and unobserved quantities, for example, for a
patient who received A1, responded, and received By, {Ry, Y (A15y), Y (A2By), Y (AB0)}
are all unobservable. What is observed here is only Y (A;B;) (see consistency assumption
below). As described in Section 2, we are interested in estimating W= E{ Y (A;B«C)}.
Conditioning on £, [ can be expressed as

/ijkl:ﬂ—jMAjBk+(1 771_,]‘)#’14]‘(],7 (2)

where m;is the response rate for the first stage treatment A;; 14 Bk = E{Y (AiBx} is the sub-
group mean of the population receiving A;followed by By, Wajc;= E{Y (A/C)} is sub-
group mean of the population receiving A;followed by C;. Our development of the sample
size formula is based on Wald-type test statistics. Thus, an estimator of the strategy means
and corresponding variance and covariance expressions is required. We will rely on the
method of normalized inverse probability weighting (IPWN, Ko and Wahed, 2012) to
construct unbiased estimator of strategy means. Although in this paper we focus on sample
size formula for a continuous endpoint, the formulas developed apply equally for designs
with a binary endpoint.

Consider Design 1 described in Section 1 (Figure 1). Contrary to the counterfactual variables
defined above, the observed data for this design consists of i.i.d (independent and identically

distributed) random variables, (X ;;, R; Zy;, (1 — Ri)Z{i., Y;) where Xj;= 1, if the A patient is
randomized to A; 0 otherwise. Y;is the observed outcome for the A individual, R;is the
indicator for initial response, ;= 1 if the 7 patient responded to initial therapy, 0,
otherwise; Z;is the indicator for receiving By, i.e. Zx;= 1 if subject 7is randomized to

receive By after responding to the first-stage treatment, 0, otherwise; similarly, Zl/i is the
indicator for receiving C; We make the usual assumptions of causal inference to construct
consistent estimators for (1, [15]. They are:

Al Consistency: A patient’s counterfactual outcome under the observed
intervention (exposure) and the observed outcome agree. In the SMAR trial
considered here,
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Ri=X1;Rii+(1 — X1i)Rai,  (3)

and

Yi=X1i[ R1:Yi(A1B1)+(1-R1;)Yi(A1C1) ]+ (1= X1i) [ R Yi(A2 B1)+(1— Ra;) Y (A2C2)]

(4)

where R;jand R»;are indicators for counterfactual response to A; and Ay,
respectively. The consistency assumption (CA) allows us to connect
counterfactual and observed data.

A2 Sequential Randomization Assumption: The probability of a particular
treatment allocation at stage a at a treatment time & does not depend on the
counterfactual outcome given observed data up to but not including stage &
randomization. This assumption follows since treatments are assigned
randomly at each stage.

A3 Positivity: There is a non-zero probability of receiving any level of intervention
for every combination of values of interventions.

Under these assumptions, we define the normalized weighted inverse probability estimator
for strategy mean Ly is given by

ﬂ[']ZWN:Z?:lekliYYi
J YiciWiki — (5)

RiZki+(1 ~R)Z,;

where P, Q , Xjiis the assignment indicator for first-stage
treatment A, Prand Q,are probabilities of second treatment assignment for responders and
non-responders, respectively.

Wiki=Xji {

Estimator (5) is similar to that in Ko and Wahed (2012) (Section 3.3) except that it treats the
group sample sizes in Stage 1 as random rather than being treated as fixed. This is more
reasonable because the group sizes in Stage 1 is determined through randomization. The

IPWN estimator, j2}4," ", defined in Equation (5) is consistent and asymptotically normal.
This can be shown as follows. We can write,

. i1 WikiYi 172 21 Wikt (Y — i)
V(N — )= v | SEEEE = | =0T P EE .
I ! Wik 3 Wik
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1<—=n p 1
By the weak law of large numbers, Ezi:Iijh — 1; Where x;is the inverse of the

1
randomization probability to A; (i.e., Rj= P(inzl)). This follows from the fact that Wjg's

are i.i.d random variables with expectation,

E{W;i}
7
o[ [( R
Py,
(1—R)Zy; RiZy (1-R)Zy
+T1}Xﬁ |R;, Xji| =EX;E |{ o + o YR, X}
—E[X;;E{R;
1
+(1— Ri)|Riain}]:E[in]:P(inzl):; . Also,
)
nglcl

d
Wikii(Ys = pjer) = N (0, "2 ), where 02, i given

—1/2"
by the central limit theorem, " Zi:
in Equation (7) below. Therefore, by Slutsky’s theorem, v/n(ije,"" ™ — 1) is
asymptotically equivalent in distribution to 7171/2%]'2?:1‘4/]‘/&»11(1@ — Hjkt) which is

normally distributed as NV (0, afkl). It can also be shown that,

V("N = i) =n"2 Y dkitop(1), ©)
=1

where s = % Wil Yi= Wik is the influence function of the estimator /i;," ™ and g,(1) is
a term that converges to zero in probability. Therefore, the asymptotic variance of

\/ﬁ(ﬂ%w}\f — pjky) is given by,

2 Tj g 2 2 2, 1 =T 9 2 2
Ojki=—Rj Fi{UAJBk+(1 *Wj) (MAjBk *NAjcl) }+TJ{OAjcl+7Tj(MAjBk 7“.4]»01) } )

U]

2 2 . . . .
where 94,5, and 94, ¢, are variances of the outcome in the population of patients who
received the sequence of treatments A;Bxand A;Cy, respectively; pLa Bk and g jc/are defined

as before. Details for derivation of variance of strategy mean (;/5VV) and covariance

between strategy means (;!5" Y and f 5V ) is shown in Appendix B.
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Overall Sample Size

The hypothesis of interest is whether there is a strategy-specific mean difference. The null

hypothesis is Ho : U111=H112=H121=H122=H211=H212=H221=W222, Which is written as a linear
equation Hg : Qu=0, where

1 -1 0 0 0 0 0 0

1 0 -1 0 0 0 0 O

1 0 0 -1 0 0 0 O
C=f1 0 0O O -1 0 0 0 1},

1 0 o0 0 0 -1 0 0

1 0 0 o o0 0 -1 0

1 0 o0 o o0 0 0 -1

and 1 = [Mg11, K112, Ma2n, K122, Hotts K212, Mozt Hozo 7. Under the null hypothesis, the
statistic 1’ C7[cz T qu follows a central chi-square distribution with degree of freedom

equal to 7, the number of rows of the contrast matrix C. Here {1 and 3 denote estimated mean
vector and covariance matrix given by,

AT [~ ~ N ~ ~ ~ ~ ~
& =[f11115 B1125 fla21s B122s flo11s B212, flao1s fa2a)s

|

>
(el Eﬂ
(el

M
Il
—

M
v

where

r .2 N N ~ b
0111 0111,112 O111,121 O0111,122
~ ~92 N ~
0112,111  O112 0112121 0112122
A N ~2 A
0111112 0121112 Ol 0121,122

A A A ~2
0122111 0122112 0122121 0129

£1>
I

6311 Gor1212 Gar1221 G211,222
Sy ?212,211 ) 6319 &2}22,221 ?212,222
G211,212 0221212 0391 0221222
6292011 0292212 0292291 g

T
o O O O
OO OO
o O O O
o O O O
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where ﬁ/k/is defined in Equation (7), 5’?161 is obtained by substituting estimates of parameters
on the RHS in Equation (7). For example,

—— Ri |71 .9 . . o0y (1—=71) o . N 2
Var(#zzz)zg B, ‘TA]B]+(N111 —HAIBI) }‘1'7@ {UA1c1+<“111 —'LLAlcl) H
1 1

where

n
==
>oim1 X1

K1

:Z?:1X1iRi
S X

>

1

_ 2 XuRiZyYi
Paves = S0 X\ RiZy

n ~ 2
52 _ i (X ZyYs — iy )
A (3 X0 R Z) (2 X RiZai — 1)

’

Q :Z?leli(l - Ri)Zu
UYL Xu(l-Ry)

and

Y X1 R Zy;

Pi=
! i1 XuR;

Under the alternative hypothesis, the test statistic follows a non-central chi-squared

distribution with the same degrees of freedom and a non-centrality parameter A, where

A=npTCT[02CT]) Op.

Consequently, a straightforward manipulation leads to a sample size formula,

A
n= .
pTCTICECT]™'Cn” (g)
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To use the sample size formula in Equation (8), for a given power, we note that the power of
the Wald test is the probability that we reject the null hypothesis, i.e., the probability that the
test statistic is greater than the critical value. Thus,

power=P(xgr=7(\) 2 Xir=7.0)=1 = P(xiy=7(N) < Xi=7.0)s (9)

where a is the level of significance of the test, and x7;_7 ., is the 100(1 — ) percentile of
central XZ distribution with 7 degrees of freedom. For a given power and a., we can solve
Equation (9) for A. Having obtained A, the sample size needed for achieving a given power
is obtained by plugging in appropriate strategy means under the alternative hypothesis and
their assumed variance-covariance matrix into the sample size expression above.

The knowledge of subgroup means and variances in the population will allow the
computation of covariance terms. Suppose that the investigator wants to compare eight
treatment strategies by testing the null hypothesis Ay : K111 = H112 = H121 = K122 = Mo11 =
U212 = Hoo1 = Ho2o against the alternative that at least one pair is different. From the
knowledge in the research area, the investigator expects that those who receive A; or Ay,
responds and receives B; or does not respond and receives C, will have mean responses
Hai 81 = Hapsy = Maj o = Kap oy = 15 and the group of individuals following any other paths
of treatment will have mean response equal to 20. The variation of responses within these

2 2 2 2 .
groups are expected to be 7 5, =0 and 7% ¢, =%, j k /=1, 2.

Then, assuming 50% expected response in both A; and A, arms (rtq = 0.5, o = 0.5) and

equal probability of randomization (”1:1/%:2’ P1=1/2,Q1=1/2) we obtain g1 =
la g + (1 = m)Ha g = 17.5, 112 = mapa; gy + (1 — mMa o = 15.0, M1t = mala; 5,
+ (1 - myMa = 21.0, P12 = tila gy + (1 = my)lag o = 18.5, Ho11 = mollaypy + (1 -
T)Haycy = 17.5, Ho12 = Tollay gy + (1 — m2)May o = 15.0, Hao1 = molays, + (1 — mo)lay oy
=17.5, Up2p = molay 8, + (1 — o)A, = 15.0; and

[225 72 123 0 0 0 0 0
72 200 0 128 O 0 0 0
123 0 204 79 O 0 0 0
128 79 249 0 0 0 0
0 0 0 225 72 123 0
0 72 200 O 128
0 123 0 204 79
0 0 128 79 249

0
0
0
0
0

Using C from the previous page (Page 9), we obtain

WIoTrose™) T ou=0.206.
Now, if the investigator wants to power the study at 80% with a = 0.05, we solve
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0.80=1 — P(xgr=7(\) < Xi=7.0)

to obtain A = 14.35. Then the sample size required for this case would be

14.350

"="17506 =69.66 ~ 70.

4. Powering Pairwise Comparisons

Above we developed a sample size formula for a global test that provides evidence that there
are differences among at least one pair of strategy means. Next, it is natural to focus on
pairwise comparisons and ask which strategy means are different. A popular two-sample
pairwise test is the t-test. A sample size based on the usual t-test would not apply directly
since the assumption of independence among strategy means does not hold. When strategies
share first stage treatment, a pairwise treatment comparison should consider the between-
strategy covariances in the traditional t-test based sample size formula. Suppose we are
interested in the sample size of a test that truly rejects the null hypotheses at a pre-specified
level of significance (a) and a given power. For instance, there are 8 regimes and 28
pairwise comparisons for Design 1. One possible pairwise comparison would be,

Hy:pi11 — p112=01.

For each test different sample sizes are required to detect a difference between each pairwise
comparison. To control type | error, Bonferroni correction can be used. That is, for a two-
sided test the level of significance for each hypothesis will be a/g, where gis the total
number of pairwise comparisons. The aim is to compute the sample sizes for each pairwise
comparison and then select maximum of the set of sample sizes that powers a test to identify
difference between strategy means. The sample size formula that accounts dependency
among strategy means is,

[ng‘kl+agz’k’l’ - 20.jkl,j’k'l’][Zl—a/ZgJFZl*ﬂ]z .
2 yJs ka lzla 2
[kt = pjrierr] (10)

n=

where afk,, a?,k,l,, and o ¢ r are obtained using Equations (7) and (11); pysand Wy ¢ 7 are
the strategy means under alternative hypothesis. If there is no overlap between strategy
means that do not share the same initial treatments, the between-strategy means covariance
is zero and the sample size formula (10) would mimic the one required for independent two-
sample t-test.

Equation (10) has a more general use than it apparently implies. For example, suppose prior
to designing the trial, researchers focus on gy < g specific pairwise comparisons. Then the

«
sample size for pairwise comparisons can be calculated using a level of significance a to
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ensure a pairwise comparison of gy pairs. Since the variance-covariance formula depends on
the randomization probabilities, the researcher could potentially use randomization
probabilities that allocate more observations to the strategies of interest. Other (g— ¢1)
pairwise comparisons could remain unpowered but essentially provide valuable information
for future studies.

The methods described so far (in Section 3 and above) are explained via Design 1, however,
the formulas can be applied to Designs 2 and 3. For example, in Design 2, there are no
second stage randomization for responders. Therefore, we make the following simple
modifications to make the formula applicable to Design 2. Set Y'(A)) as the counterfactual

outcome for those who received A;and responded, and let L4 jand Uij be the corresponding
mean and variance of Y'(A)), /=1, 2. As mentioned in Section 3, there are only four

treatment strategies here, namely, A1 Cy, A1 G, AQCi, and AQC;. Therefore, the mean vector

i 1= (a1, Ma2, Ha1, Hoo) " where for example, p1g = 1eipay + (1= 1ta)lay ¢ Note that gy o
is used to indicate the mean of the population who receive A; as initial and C; as the second

stage treatments. Similarly, the covariance matrix is

2
0'11 0'11’22 0 0
2
o 012,11 0719 0 0
Y= 2
0 0 021 0'21’22
2
O O 0922 21 0'22

where
- ) 9 2, 1—m1 2 2
o1 =kK1 7T1[UA1+(1 = 1) (B, _”A1Cz) I+ Q (GAlcz Hi (e, _'u‘“cl) ’
2 2 2 o, 1-m, 5 2 2
05 =Ka W2[0A2+(1 — T9) (,UA2 - NAQC/) I+ Q, (UAZC/ +7T2('uf‘2 N MAQC/) ’
I 1 !

2 2
011,12:H1W1[0A1+(1 — ) (/J“Al - ,UAlcl)(lJAl *NAlcz)]a

|-

2
021,22=K2T2 UiQ‘f‘(l — m2) (/JA2 - NA2C/ )(:U‘A2 —H
1 2

AoC,
These formulas are obtained from the variance/covariance formulas for Design 1. For

example, o, is the same as the RHS of Equation (7) with j=1, k=1, P, =1, 03131 =0i1 and
Hay 8 = Ha;- The required sample size for testing the null hypothesis Hy: H11 = M12 = Ho1 =
Hp2 at level a and power 1 — B against an alternative specified by the subgroup means 4,

Wagcp Magop Bag, Hase Fa,el s then given by formula (8) with
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and A, the non-centrality parameter, given by the solution to the equation

P(X?if:S(/\) < X?lf:3,a):ﬂ~

Appropriate modifications can be used for Design 3 in a similar manner.

5. Simulation Study and Results

To evaluate the performance of the overall sample size formula, we conducted a number of
simulations to see if the empirical power for detecting the alternative hypothesis is close to
the nominal power. We presented four scenarios for each of the three designs in Tables 1, 2
and 3 by varying the nominal power, response rates and probabilities of second treatment
assignment for responders (P,) and non-responders (Q,). For each subject in the population,
Y{A;Bx) and Y{A;C) were generated from normal distribution with means L4 /-Bkand Hajcy

and variances Uijsk and Uijcl, respectively for j, k, /=1, 2. Correspondingly, in Designs 2
and 3 for each individual, Y)(A)) was generated from normal distribution, with means Hay
The indicator Xj;was generated from a Bernoulli distribution with probability 0.5. Indicators

Zyand Zl' were generated from a Bernoulli distribution with probability P, and Q,for
responders and non-responders, respectively. The response status /;was generated from a
Bernoulli distribution with probability (response rate) 4 for treatment A; and rt, for
treatment A, and whenever applicable (Design 3), from a Bernoulli(w3) distribution for
treatment As. For Design 1, the outcome variable Y;is then generated using Equation (4).
For Design 2, we used the same equation except that Y{A1By) and Y{A»B) is replaced by
Y{A1) and Y{A)), respectively. Similar modification was made for Design 3. For each
design and for each scenario we generated 10000 Monte-Carlo samples using the three
designs.

Tables 1, 2 and 3 demonstrate sample size computation for different scenarios by assuming
certain values for population parameters. Tables 4 and 5 show the pairwise sample size
computation for Designs 2 and 3. Design 1 assumes subgroup means: HaB = Haje, = 15,

Hajcr = 20, Ha8, = 22; subgroup variances: UijBk =62, Uijc, :82, for j, k, /=1, 2. Subgroup
variances are assumed to be the same for all designs considered. Depending on a specific
design and scenario considered, the following range of response proportions ;s are
assumed: 0.2, 0.3, 0.5, 0.6 and 0.7. Similarly, depending on a specific design the following
P, and @ are assumed. Probability of treatment assignment for responders, A;, is assumed
to be 0.5, 0.7, 0.9 and 1. For non-responders, @i1(=1 - @), is assumed to be 0.5, 0.7, 0.9.
Design 2 assumes the following subgroup means: 4, g; = 15, Ha,5; = 17, Wajc, = 15,
Hajcr = 20, Haycy = 22, for j, k /=1, 2. Design 3 assumes the following subgroup means:
Ha18 = 15, Wagsy = 17, Bagsy = 19, Majc, = 15, Mag oy = 20, Bapcy = 22, Bagc, = 24, for

Stat Med. Author manuscript; available in PMC 2017 March 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ogbagaber et al.

Page 14

k /=1, 2, 3. The parameter values were chosen following those from Ko and Wahed [13].
The strategy means differ for each scenario in each table. In each scenario, having obtained
the appropriate sample size using our formula, we evaluate the power of the Wald tests in
rejecting the null hypothesis of no difference in treatment means when the strategies have
different means. Effect sizes are common measures in psychology and other disciplines
where they are useful in calculating and interpreting power. The magnitude of effect sizes
would capture experimental effects by protecting guaranteed significance due to large
sample size [12]. The effect size is computed using the Mahalanobis distance (MD). One
useful property of the MD is that it takes into account the correlation in the data.

The first row of Scenario 1 in Table 1 assumes strategy means 17 = 17.5 112 = 15, lg01 =
21, W22 = 18.5, Uo1q = 17.5, Ho12 = 15, Uop1 = 21, Hoop = 18.5 when response rates 1y, 1)
were taken to be both 0.5; A, and @, are assumed to be 0.5. Seventy subjects would be
required to detect the resulting effect size of 0.21 with power 80% at a. = 0.05. The
empirical power is 85% which is slightly inflated compared to the nominal power of 80%
used to compute the sample size. Row 3 of the same scenario shows that the empirical power
of 92% is close to the nominal value of 90%. Similar patterns follow for all the rows in
Scenarios 2, 3 and 4. If we observe across all scenarios (from 4 to 1), we note a small degree
of increase in empirical power when A, increases.

The first row of Scenario 1 in Design 2 (Table 2) assumes strategy means i1 = 17.5, Yjo =
15, Y1 = 19.5, pp» = 16 when response rates mq, 1ty were taken to be both 0.5; ©;=0.5. In
this case 142 subjects would be required to detect the resulting effect size of 0.08 with power
80% at a = 0.05. The empirical power is 81% which is very close to the nominal power of
80% used to compute the sample size. Row 4 of scenario 3 shows that the empirical power
of 93% is slightly inflated compared to the nominal value of 90%. For various response
rates, the empirical power for each case in scenarios 1 to 3 nearly attain the nominal power.
This attests that the sample sizes calculated for Design 2 ensure enough power to detect
differences among the four strategy means.

The first row of Scenario 1 in Design 3 (Table 3) assumes strategy means o = 17.5, Yy3 =
15, U1 = 19.5, Up3 = 16, pg1 = 21.5, U3p = 17 when response rates 1y, 1o, 1tz Were taken to
be all 0.5. 108 subjects would be required to detect the resulting effect size of 0.12 with
power 80% at a. = 0.05. The empirical power is 83% which is slightly larger than the
nominal power of 80% used to compute the sample size. We note that for small changes in
response rates, sometimes the sample sizes do not change or change only slightly. For
example, row 4 of scenarios 2 and 3 have the same sample size (149). The sample size did
not change as 14 changed slightly from 0.2 to 0.3.

In many clinical trials testing of overall hypothesis may not be of primary interest, rather
some or all of the pairwise comparisons are. To show how the sample size for a SMAR trial
is determined in such cases, we present the sample sizes required for Design 2 when all six
pairwise comparisons are powered simultaneously in the second column of Table 4. The
third column provides the sample sizes when only individual tests are powered. For
example, under the setting described in Table 4, Design 2 requires 4008 patients to power all
pairwise comparisons. However, if the interest, for example, is in powering the single
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hypothesis Hy : H111 = M112 leaving other pairs as exploratory, the trial could be conducted
using a sample as small as 345. Similarly, Table 5 provides sample sizes for Design 3 when
fifteen pairwise comparisons are powered simultaneously (Column 2) and when only three
pairwise comparisons are considered (Column 3). From Column 2, Design 3 requires 30,704
patients (maximum of the sample sizes) to power all pairwise comparisons. However, if the
interest is in powering only three pairwise hypotheses such as Ay : l12 = W13, Ho : t12 = K21,
and Hp : 12 = M3, the trial would require a sample size of 2,441. On the other hand, if the
interest is only in comparing the three pairs, Hy, Hg, and Hg then the sample size required
will be n=359.

Outcomes in the above simulation scenarios were generated from a normal distribution. We
wanted to conduct the sensitivity of our formula to non-normal responses. To do this, we
further generated data from Logistic (symmetric) and Gamma (skewed) distributions and
calculated the empirical power based on the sample size calculated using Equation(8).
Basically, we selected one row from each scenario of Tables 1 to 3 to perform sensitivity
analysis of our formula using data from Logistic and Gamma distributions ensuring the same
means and variances for the subpopulations and keeping all other parameters the same. From
each table, we selected the first row for Scenarios 1 and 3 while we chose the fourth row for
Scenarios 2 and 4. Therefore, the results presented in Table 6 have twelve rows in total. In
general, the nominal power is maintained and is consistent across the three distributions.
This shows that our sample size formula is robust to the misspecification of outcome
distribution.

6. Discussion

Complex multi-stage diseases require decision-based multi-stage treatments depending on
the response to prior-stage treatments. SMAR designs provide efficient and unbiased
inference to compare staged strategies for complex conditions. We presented a sample size
formula that is applicable for various SMAR designs to ensure adequately powered
comparisons of these treatment strategies. The usual design is to randomize responders (or
non-responders) to available treatments. A slight variation to that is a design where
responders (or non-responders) would not be randomized any further in the second stage.
Designs 2 and 3 are such examples. In Design 2, only the non-responders are randomized to

Gy or & and ci or c; respectively depending on whether they received A; or A in the first
stage. Responders would stay on the same first stage treatment. Equivalently, responders will
be randomized with probability 1 to whatever treatment they received in the first stage.
There are four strategies resulting from this design and the sample size required to detect
differences among the four strategies is computed. In Design 3 each patient is randomized to
a set of treatments (A1, Ay, Az) in the first stage and these treatments are continued until
they fail due to disease worsening. The patient is then re-randomized among a set of the
same first stage treatments with the exception of the treatment s/he received initially. There
are six strategies of interest in this design. We showed in the simulation how to compute
sample size formula for this design and showed that the formula ensures nominal power
under various scenarios involving many outcome distributions.
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In contrast to our formula, Murphy’s [5] formula is not applicable to designs powering
multi-strategy comparison or to designs comparing strategies that share the same initial
treatments commonly referred to as shared-path strategies [17] or overlapping strategies
[10]. Moreover, their formula requires specifying the variance of the response under the
strategies being compared, although the effect sizes can be specified per standard deviations
of mean difference assuming equal variance across strategies.

Dawson and Lavori [10, 11] provides a sample size formula for comparing pairs of
overlapping or non-overlapping/treatment strategies based on semiparametric efficient
variances. The formula requires one to specify the variance of the response under each
strategy and the variance inflation factor, the latter depending on the coefficient of
determinations based on the regression of counterfactual strategy response on stage-specific
states. Correct specification of such quantities is difficult, if not impossible, in the absence of
a similar SMAR trial. However, when correctly specified, Dawson and Lavori’s formula
provide smaller sample sizes than those proposed in Murphy [5] or the ones provided here.
One advantage of both Murphy [5] and Dawson and Lavori’s [10, 11] formula over our
method is that they can be applied to compare strategies from SMAR trial with more than
two stages. However, like Murphy’s formula, Dawson and Lavori’s formula also focuses on
comparing pairs of treatment strategies.

The simplicity of our procedure compared to Dawson and Lavori [10] (even in the two-stage
SMAR trial settings) relies on the specification of the parameters. Our formula requires one
to specify sub-group-specific means and variances. Our sample size formula requires
specification of subgroup means and variances for patients following different treatment
paths. These parameters are usually available from observational studies or stage-specific
individual non-SMAR trials. For example, there are many cancer clinical trials that compare
frontline treatments (e.g. Estey et al. [18]). Even though such trials are terminated once the
recruitment is over and the primary endpoint is observed or the trial period ends, patients are
often followed and medication information (salvage treatments used) is collected for patients
who become resistant to frontline therapy or for patients with disease progression. The
collection of salvage treatment information is often done only for the purpose of safety,
however, such information allows the researchers to obtain meaningful information on
subgroup means and variances based on the salvage therapies received within each frontline
treatments. Mental health research by its very nature, investigates sequences of treatments
and hence the means and variances of responses under a particular treatment sequence are
most likely to be available from observational studies or from electronic medical records.
Fortunately, there are already existing SMAR trials in mental health (STAR*D [2], CATIE
[19]) that can provide useful information on subgroups to be used in future trial design.

The Murphy [5] and Dawson and Lavori [10] methods require fewer unknown quantities to
be specified compared to what is required by our formula, our parameters are basically
means and variances of response among subpopulations. Generally, these parameters can be
obtained from pilot studies, non-SMAR trials or observational studies. Therefore, these
parameters are less likely to be mis-specified as compared to the parameters in Murphy’s [5]
and Dawson and Lavori’s [10] methods. Moreover, our focus is to compare multiple
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treatment strategies for which specification of effect size does not necessarily reduce the
number of unknown parameters.

Oetting et al. [9] sample size for comparing two strategies is derived under the assumption
that response rates are the same across the two first stage treatments. While a sensitivity
analysis was carried out in the simulation, this assumption may not be reasonable in
practice. Finally, our formula does not address the issue of finding an optimal treatment
strategy, which is a separate issue that is dealt with in Oetting et al. [9].

Use of Mahlanobis distance as an effect size measure in our analysis is to verify that the
sample size increases with the increase in distance among the strategy means. Note that
unlike standard effect size measures, Mahlanobis distance has no benchmark values to
indicate large, small or moderate effect sizes. It should just be treated as a distance among
multiple strategy means standardized for the variability.

Future research could investigate sample size formulas for various k-stage designs with
emphasis on specific and meaningful number of strategies. Issues of missing data is another
design concern in SMAR trials that needs to be addressed.
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Appendix A: Influence function for gjk

Equation (6) can be expanded as follows u/k/satlsfles 9(Hjk1)= Zn Wikii(Yi — f1j3)=0.
Expanding with respect to

n

1 R 1&
_Zijli(Yi — Hjkt) — (fjm — ,Ujkl)_Zijli:O
izt )

1
—ZW]M Y — i) = (g — pma)( ZWaklz = (Bjkr = Hjkt) —=0.
' J

This implies,

R 11 . 1 &
(Mjkz—ujkl):EZ;ij(E—ujkz)—Hj(ﬂjkz—Mjkz EE szZ—f
i=1""J = Kj

and
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1

kg

n n
Vi — k) =n""""> Wi — k5 (g — gm0 (Wikas —
=1 =1

).

n 1
~ o —1/2 I A
Now ¢ % 1510, and hence g~ Wigis 01) and™ 2y (Wikti = =) is bounded in
probability (O,(1)) because of its convergence in distribution to normal distribution by
central limit theorem. Therefore, the second term on the right is 0,(1).

Appendix B: Variance and covariance of strategy means

Following Ko and Wahed (2012), the variance formula in Equation (7) is derived as follows,

o d=var (V) =var (r; Wii(Ys — pjw))=r7 E[ Wi (Y — )] . This variance can be
expressed in terms of subgroup-specific population parameters. For example, consider

RiZy (1-Ry)Z")
+ , and

Wllli:Xli{ P, 0,

AW N I this case, the weight is defined as

W2 X Rz‘le‘+(1 — R)Z,,
therefore, " 111~ 1 P? Q3 since the indicator variables Xi;, R; Z;;and

) RiZyi(1— R)Zy; . .
7,,; take values 0 or 1; the term 2 PO, disappears since a patient can only be a

responder or a non-responder. Then,

, , RiZy (1—Ry)Zy, ‘

2 2 1 1i 2
E[Wi;(Yi — pan)*|=E [Xu{ ;312 -+ Q%Z 7}(Yi = pa) ] Under assumptions
(A1)—(A3), using a series of conditional expectations, we can show that,
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RiZy (1—R)Zy,

E[Wi (Y - #111)2]:’1%5] X1i 21 +( 2) LS (v — u111)2
Py Q1

R Zy;

1

=r{EE {Xu { }{R Yi(A1B1)+(1 — R)Y;(A1Ch) — N111}2|Ri;X1i,Y;(AlBl)yifi(Alcl)} +

1 — R)Zy;
K EE |:X1i {%} {R;Yi(A1B1)+(1 — Ry)Yi(A1C1) — M111}2|Ri,X1i,Yi(AlBl),Yz‘(Alcl)]
1
R;
=KkiE {Xu {ﬁ} {R;Yi(A1B1) — N111}2E[Zli|RiaX1i7Yi(AlBl)]} +
i

) [Xli {%} {(1 = R)Yi(A1C1) — pan }°E [Zii|Ri7X1z‘7Y}(A1C1)H

=k2PE ﬁil E[R;Y2(A1By) — 2u111{R; Y(AlBl)}+u111|Rl,Xh]]

KB |G = RIYEALC) = 2l (L= BRIV C) b+ | X
=R E ﬁ_({l [R (UAIB tilBl) = 2pn Rty g, ‘HL%n‘Ri’XliH +
KiQ1E {22 E [(1 Ri) (0% o 45 o)) = 20an1 (1 = Ri)py o, +,U%11|Ri7X1i]:|

Ri 2 2 2 (1 - Rl) 2 2 2
=KiE {X B [E {UAlBl Tl s, 2uA131#111+M111} +T {GA]C] Tl o) — 2Mac, /~L111+#111} |X1i”

2 T1 [ o o, (I=m1) ¢ o 2
=kiE {XU {Fl {UA1B1+(,LL111 — ,LLAlBl) }+T {UA1C1+(ﬂ111 - :L’LAICI) }

N S oy, (I=m)y 5 2
=K1 [?1 {UAlBl—i—(mll —Hayn,) }+T {UA101+('“111 — Haye,) } :

Consequently, the asymptotic variance of [1111 is given by,

K1 [m1, oy (1 —m1), 2 o
var(ify )= . {Pz 0% i =1y p,) }+T{U§101+(“1” iy 0,)0}| =L

Estimators that share the same first-stage treatment would be correlated as they use a

common group of observations. Consider /W N and pIEWV N,

To derive the covariance between strategy means /!5~ and p/PW N, we note that similar
to /(5N — i), Ve(pd VN — u14) is distributionally equivalent to

n~ mZi:qugi(Yi — p112). Therefore, the asymptotic covariance of

V(i = ) and a(afy" — piz) s given by,

or1,112=CcovV (Y111, Y112:)=cov(k 1 Wiz (Yi—per11)s k1 Wirei(Yi—f112)) =Bk Wi Witai(Yi—p11)(Yi—pi112)]-

R;Z1; Xq;

Wi11iWhizi= Pz, wecan further simplify the above as,

Since
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R; Z4;
om2=FE {K%},—ZMXM(E — i )(Y; — ﬂuz)}
i

R; Zy;
P}

=FE {E K3

X1:(Yi(A1By) — p111)(Yi(A1By) — u112)|Ri,X1i,Yi(AlBl)} } ,by consistency assumption,

oy
=kiE XliP_;(Yi(AlBl> — p111)(Yi(A1B1) — pu2) E{ Zi|Ri, X1i, Yi(AlBl>}]
i i

. [ R
=kiE XuFll(Yi(AlBl) — pin)(Yi(A1By) — mu)}

R;
=k1EE {XliFl(Yi(AlBl) — pin)(Yi(A1By) — N112)|X1iaYi(AlBl)}
. [ I
=k1E Xuﬁ(Yi(A1B1) — p111) (Yi(A1Br) — u112)|X1i,Yi(A1B1)]

:K%%E[Xli(Yi(AlBﬁ — p111)(Yi(A1B1) — p112)]

:/ilﬂ[a2

P, aB +'ui131 = B g, — 1120, g TR L]

T 2

:K1FI[UA131+(MAIBI — 1111) (K, p, — p112)]-

Since, from Equation (2), (La; 8 — M111) = Ha;8 — Tiba;s — (L —m)la o = (L - my)
(a1 ~ Barcy) and (Maysy ~ Haa2) = (1 - ma)(Bay 8y ~ Bay o), it follows that asymptotic
covariance of 111 and 112 is given by

~IPWN AIPWN)_“_IW_I[ 2
n P1

2
cov(firr  »A11s UAIL,I‘*‘(]—WJ) (a,m,—Ha e ) (B, 5, —Ha, o)) (1)

A similar derivation could be employed to compute other covariances. Let = = var(y)),
where  is the vector of eight influence functions v j; /, &, /=1, 2, denote the variance-
covariance matrix where Equation (7) and similar entities are used to form the diagonal
elements and Equation (11) is used to form the off-diagonal entries, respectively.
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Design 1. At entry, patients are randomized to initial treatments A; and A,. If a patient
responds to the initial treatment she is randomized to either B; or B,, otherwise the patient is

randomized to either C; or G..
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Design 2. At entry, patients are randomized to initial treatments A; and A,. If a patient
responds to the initial treatment she stays on the same initial treatment, otherwise the patient

is re-randomized to subsequent treatments: C; or G, if she does not respond to Ay; C{ or Cé

if she does not respond to A,.
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Design 3. At entry, patients are randomized to initial treatments A;, A, and As. If a patient
responds to the initial treatment she stays on the same initial treatment, otherwise the patient
is re-randomized to subsequent treatments: A, or Az if she does not respond to Aq; Aj or Az
if she does not respond to A; A; or A; if she does not respond to As.
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