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Abstract

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows personalized 

treatment of complex diseases based on patients’ disease status and treatment history. Conditions 

such as AIDS, depression, and cancer usually require several stages of treatment due to the 

chronic, multifactorial nature of illness progression and management. Sequential multiple 

assignment randomized (SMAR) designs permit simultaneous inference about multiple ATSs, 

where patients are sequentially randomized to treatments at different stages depending upon 

response status. The purpose of the article is to develop a sample size formula to ensure adequate 

power for comparing two or more ATSs. Based on a Wald-type statistic for comparing multiple 

ATSs with a continuous endpoint, we develop a sample size formula and test it through simulation 

studies. We show via simulation that the proposed sample size formula maintains the nominal 

power. The proposed sample size formula is not applicable to designs with time-to-event endpoints 

but the formula will be useful for practitioners while designing SMAR trials to compare adaptive 

treatment strategies.
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1. Introduction

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows 

personalized treatment [1] of complex diseases based on disease status (response, 

recurrence, remission, relapse) and intermediate treatment history. Complex diseases such as 

AIDS, depression, and cancer usually involve several stages of treatment due to dynamic 

disease progression. For instance, a patient with depression may benefit if she initiates 

treatment with citalopram (CIT). Depending on response, she may remain on CIT or switch 

to or add another medication or psychosocial treatment during the next phase of treatment 

[2]. In principle, a clinician monitors a depressed patient and decides on interventions at 
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different time points based on the patient’s clinical status. Availability of multiple treatment 

options at each stage of treatment, various possibilities for the duration of each stage, and 

various responses that can be achieved through different stages of therapy could lead to a 

multitude of adaptive treatment strategies. Examples of treatment strategies for a patient 

with moderate depression include [2]:

1. Treat with CIT for 6–8 weeks; if response is not achieved with CIT, 

augment with cognitive behavioral therapy (CBT) for 8 weeks, otherwise 

continue with CIT for another 8 weeks.

2. Treat with CIT for 6–8 weeks; if response is not achieved with CIT, switch 

to CBT for 8 weeks, otherwise switch to BUS (buspirone) for another 8 

weeks.

3. Treat with CIT for 6–8 weeks; if response is not achieved with CIT, switch 

to CBT for 8 weeks, otherwise switch to BUP-SR (bupropion sustained 

release) for another 8 weeks.

4. Treat with CIT for 6–8 weeks; if response is not achieved with CIT, switch 

to SERT (sertraline) for 8 weeks, otherwise switch to CBT for another 8 

weeks.

ATSs are often compared via sequential multiple assignment randomized (SMAR) designs 

[3, 4, 5]. Even though SMAR trials are useful for comparing ATSs because different ATSs 

can be tested from the same experimental design and the procedure for inference about ATSs 

from data arising from such trials are well-established, the design issues (e.g. sample size 

and power) have not been adequately addressed. This may be due to the challenges posed by 

the adaptive and sequential nature of SMAR designs. Nevertheless, a few articles have 

alluded to the development of sample size formula for SMAR designs.

Murphy [5] provides a sample size formula to test the equality of two strategies that do not 

share same initial sets of treatments, making data from two groups of patients following 

these strategies statistically independent. Feng and Wahed [6] also constructed a sample size 

formula for survival outcomes. However, their formula was developed for censored survival 

times to test equality of point-wise survival probabilities under two ATSs that have the same 

initial, but different second stage treatments. They also proposed another formula based on 

weighted log-rank test for the equality of survival curves under two strategies that share 

different initial treatments [7]. Recently, Li and Murphy [8] presented a sample size formula 

for survival data to relax the assumptions set forth by Feng and Wahed [6, 7]. Oetting et al. 

[9] establishes four sample size formulas, of which only two are relevant to adaptive 

treatment strategies. One of the formulas (referred to as #3 in their chapter) deals with a 

hypothesis testing the equality of a pair of strategy means. The other relevant formula 

(referred to as #4 in their chapter) is developed with the goal of finding the best strategy (as 

opposed to hypothesis testing comparing multiple strategies). Dawson and Lavori [10] also 

devised a sample size formula for the nested structure of successive SMAR randomizations 

when the outcome is continuous. They extended the sample size for the usual t-test to be 

applicable to SMAR trials. Using a semi-parametric approach, their formula includes stage-

specific variance inflation factor (VIF) and marginal outcome variance . Due to the 
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presence of between-strategy covariance, one cannot make inference for a pair of strategy 

means that share the same initial treatments by just pooling the VIF’s and marginal outcome 

variances across the stages. As a remedy, Dawson and Lavori [11] proposed a conservative 

approach to adjust the sample size formula using the VIF. The caveat with their approach is 

its difficulty of application. It involves cumbersome computation of all stage-specific VIFs, 

 and coefficient of determination by regressing the final outcome on previous states. A 

more recent simulation work by Ko and Wahed [13] looked into the power for detecting 

differences between multiple strategy means for arbitrary sample sizes for a two-stage 

SMAR design.

Most of the works related to sample sizes in SMAR trials are either confined to two-strategy 

comparison [3, 7] or require assumptions about population parameters that are difficult to 

ascertain (e.g. VIF’s and stage-specific variances) in multi-strategy comparison settings. The 

goal of this paper is to provide sample size formulas for a variety of SMAR designs in order 

to test specific alternative hypotheses related to continuous outcomes. Specifically, we 

consider three SMAR designs that are being used in various disease areas. The parameters 

needed to be specified in advance correspond to well-defined subgroups in the patient 

population and hence are relatively simple to specify. We verify the sample size formulas 

through simulation experiments.

2. Set-up

We consider three two-stage SMAR designs. Figures 1, 2 and 3 display the three SMAR 

designs. In the first design, n subjects are to be randomized to two initial treatments Aj, j = 1, 

2. Then second stage treatments, Bk, k = 1, 2, are to be administered randomly if they 

responded to initial treatments, or else they are randomized to Cl, l = 1, 2.

We use the Lei et al. [1] design for alcohol-dependence interventions as an example to 

explain the first design (Figure 1). All patients are provided with “NTX+MM” as their initial 

treatment (NTX = naltrexone, MM = medical management). Then patients are randomized 

to two groups based on how the intermediate response to “NTX+MM” would be ascertained. 

In one group, referred to as A1, the response criteria would be stringent (5+ days of heavy 

drinking), whereas in the other group, referred here forth as A2, the criterion would be 

lenient (2+ days of heavy drinking). Following eight weeks of treatment, participants are 

randomized to the second line treatments depending on their non-response status. Non-

responders were re-randomized to either “NTX” (B1) or “NTX+Phone” (B2), otherwise, 

they were re-randomized to two maintenance treatments: “CBI+MM+Placebo” (C1) or “CBI

+MM+NTX” (C2), where CBI = combined behavioral intervention. At the end of the study, 

the primary outcome (defined as “percent of heavy drinking days” over the last two months 

of the study) was obtained.

The above design allows inference related to eight possible ATSs, namely AjBkCl, j, k, l = 1, 

2, where AjBkCl stands for “Treat with Aj followed by Bk if they respond, or by Cl if not”. 

For example, one might want to test the equality of all strategy means H0 : μ111 = μ112 = 

μ121 = μ122 = μ211 = μ212 = μ221 = μ222, where μijk is the mean response under strategy 

AjBkCl, j, k, l = 1, 2 against the alternative of at least one pair being different. Testing 
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equality of any combination of treatment strategies (e.g. pairwise comparisons) may also be 

of interest. In the sequel we consider the sample sizes required to test varieties of treatment 

strategy comparisons with adequate statistical power.

The second design was used by Pelham et al. [14] for an Attention Deficit Hyperactivity 

Disorder (ADHD) clinical trial (Figure 2). This trial involved treating children with ADHD 

with behavioral and pharmacological interventions during stage 1. In the first stage 

participants were randomized to low intensity “psychostimulant drug (low intensity MED)” 

(A1) or low intensity “behavioral modification (low intensity BMOD)” (A2). Behavioral 

modification consists of school-based, weekend and at-home activity sessions. A child’s 

response to the first line treatment is assessed using Impairment Rating Scale (IRS) and an 

individualized list of target behaviors (ITB). IRS is a comprehensive measure of 

improvement in social performance while ITB is a child-specific monitor of social 

performance. IRS and ITB are “tailoring” variables that determine response status and 

randomization to the second stage treatments. Based on these tailoring variables, participants 

who responded to first-stage treatment remained on the same treatment whereas non-

responders were re-randomized. Children who did not respond to low intensity BMOD (A1) 

were re-randomized to either intensified BMOD (C1) or BMOD augmented with MED (C2). 

Those children who did not respond to low intensity MED (A2) were re-randomized to 

either intensified MED  or MED augmented with BMOD .

Thus, if a patient responds to A1 then she stays on A1 but is randomized to C1 or C2 

otherwise. Similarly, if a patient responds to A2 then she stays on A2, otherwise she is 

randomized to either  or . Formally, there are 4 possible treatment strategies for this 

design; namely, A1C1, A1C2, , or , where, for example, A1C1 stands for “treat 

with A1, if do not respond to A1, treat with C1. It might be of interest to test equality of all 4 

strategy means, H0 : μ11 = μ12 = μ21 = μ22, where μ1l and μ2l are the mean responses for the 

population following strategy A1Cl and  respectively for l = 1, 2.

The third design considered is described in Thall et al. [16] (Figure 3). Patients received one 

of three initial treatments A1, A2 and A3 during the first randomization. If a patient initially 

assigned to A1 responded, she would remain on A1 during the second stage; otherwise she 

would be randomized to A2 or A3. Similarly, if a patient responds to initial treatment A2 

then he/she would continue A2 in the second stage; otherwise would be randomized to A1 or 

A3. Similarly, patients not responding to A3 would be re-randomized to A1 or A2 in the 

second stage. Six possible strategies for Design 3 are AjAl, j, l = 1, 2, 3; j ≠ l, where AjAl is 

defined as “treat with Aj followed by Al if he/she is a non-responder”. The null hypothesis of 

equality of strategy means is, H0 : μ12 = μ13 = μ21 = μ23 = μ31 = μ32, where μjl is the mean 

response under strategy AjAl, l ≠ j; j, l = 1, 2, 3.

For all the three designs, we develop a sample size formula to detect meaningful differences 

between strategy means. The derivation and discussion of the sample size and variance 

formulas in Section 3 is based on Design 1. The formulas apply to Designs 2 and 3 directly 

with only slight adjustment as outlined later in Section 4.
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3. Comparing Multiple Treatment Strategies

The goal of this paper is to design a sample size formula for a test that detects differences in 

strategy means from SMAR designs with a continuous endpoint. In order to achieve this 

goal, let us introduce the following notation. Let Rj be the counterfactual response indicator 

for an individual who responded to Aj, j = 1, 2; Y (AjBk) is the counterfactual outcome of an 

individual had he/she received Aj, responded, then took Bk; similarly, Y (AjCl) is the 

counterfactual outcome of an individual had he/she received Aj, did not respond, then took 

Cl. Based on these three counterfactual outcomes, consider Y (AjBkCl) as the outcome under 

strategy AjBkCl, which can be written as

(1)

To clarify the distinction between the observed and unobserved quantities, for example, for a 

patient who received A1, responded, and received B1, {R2, Y (A1B2), Y (A2B1), Y (A2B2)} 

are all unobservable. What is observed here is only Y (A1B1) (see consistency assumption 

below). As described in Section 2, we are interested in estimating μjkl = E{Y (AjBkCl)}. 

Conditioning on Rj, μjkl can be expressed as

(2)

where πj is the response rate for the first stage treatment Aj; μAjBk = E{Y (AjBk)} is the sub-

group mean of the population receiving Aj followed by Bk, μAjCl = E{Y (AjCl)} is sub-

group mean of the population receiving Aj followed by Cl. Our development of the sample 

size formula is based on Wald-type test statistics. Thus, an estimator of the strategy means 

and corresponding variance and covariance expressions is required. We will rely on the 

method of normalized inverse probability weighting (IPWN, Ko and Wahed, 2012) to 

construct unbiased estimator of strategy means. Although in this paper we focus on sample 

size formula for a continuous endpoint, the formulas developed apply equally for designs 

with a binary endpoint.

Consider Design 1 described in Section 1 (Figure 1). Contrary to the counterfactual variables 

defined above, the observed data for this design consists of i.i.d (independent and identically 

distributed) random variables,  where Xji = 1, if the ith patient is 

randomized to Aj; 0 otherwise. Yi is the observed outcome for the ith individual, Ri is the 

indicator for initial response, Ri = 1 if the ith patient responded to initial therapy, 0, 

otherwise; Zki is the indicator for receiving Bk, i.e. Zki = 1 if subject i is randomized to 

receive Bk after responding to the first-stage treatment, 0, otherwise; similarly,  is the 

indicator for receiving Cl. We make the usual assumptions of causal inference to construct 

consistent estimators for μjkl [15]. They are:

A1 Consistency: A patient’s counterfactual outcome under the observed 

intervention (exposure) and the observed outcome agree. In the SMAR trial 

considered here,
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(3)

and

(4)

where R1i and R2i are indicators for counterfactual response to A1 and A2, 

respectively. The consistency assumption (CA) allows us to connect 

counterfactual and observed data.

A2 Sequential Randomization Assumption: The probability of a particular 

treatment allocation at stage a at a treatment time k does not depend on the 

counterfactual outcome given observed data up to but not including stage k 
randomization. This assumption follows since treatments are assigned 

randomly at each stage.

A3 Positivity: There is a non-zero probability of receiving any level of intervention 

for every combination of values of interventions.

Under these assumptions, we define the normalized weighted inverse probability estimator 

for strategy mean μjkl is given by

(5)

where , Xji is the assignment indicator for first-stage 

treatment Aj; Pk and Ql are probabilities of second treatment assignment for responders and 

non-responders, respectively.

Estimator (5) is similar to that in Ko and Wahed (2012) (Section 3.3) except that it treats the 

group sample sizes in Stage 1 as random rather than being treated as fixed. This is more 

reasonable because the group sizes in Stage 1 is determined through randomization. The 

IPWN estimator, , defined in Equation (5) is consistent and asymptotically normal. 

This can be shown as follows. We can write,
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By the weak law of large numbers,  where κj is the inverse of the 

randomization probability to Aj (i.e., ). This follows from the fact that Wjkli’s 

are i.i.d random variables with expectation, 

. Also, 

by the central limit theorem, , where  is given 

in Equation (7) below. Therefore, by Slutsky’s theorem,  is 

asymptotically equivalent in distribution to  which is 

normally distributed as . It can also be shown that,

(6)

where ψjkli = κjWjkli(Yi − μjkl) is the influence function of the estimator  and op(1) is 

a term that converges to zero in probability. Therefore, the asymptotic variance of 

 is given by,

(7)

where  and  are variances of the outcome in the population of patients who 

received the sequence of treatments AjBk and AjCl, respectively; μAjBk and μAjCl are defined 

as before. Details for derivation of variance of strategy mean  and covariance 

between strategy means (  and ) is shown in Appendix B.
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Overall Sample Size

The hypothesis of interest is whether there is a strategy-specific mean difference. The null 

hypothesis is H0 : μ111=μ112=μ121=μ122=μ211=μ212=μ221=μ222, which is written as a linear 

equation H0 : Cμ=0, where

and μ = [μ111, μ112, μ121, μ122, μ211, μ212, μ221, μ222]T. Under the null hypothesis, the 

statistic nμ̂TCT[CΣ̂CT]−1Cμ̂ follows a central chi-square distribution with degree of freedom 

equal to 7, the number of rows of the contrast matrix C. Here μ̂ and Σ̂ denote estimated mean 

vector and covariance matrix given by,

where
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where μ̂jkl is defined in Equation (7),  is obtained by substituting estimates of parameters 

on the RHS in Equation (7). For example,

where

and

Under the alternative hypothesis, the test statistic follows a non-central chi-squared 

distribution with the same degrees of freedom and a non-centrality parameter λ, where

Consequently, a straightforward manipulation leads to a sample size formula,

(8)
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To use the sample size formula in Equation (8), for a given power, we note that the power of 

the Wald test is the probability that we reject the null hypothesis, i.e., the probability that the 

test statistic is greater than the critical value. Thus,

(9)

where α is the level of significance of the test, and  is the 100(1 − α)th percentile of 

central χ2 distribution with 7 degrees of freedom. For a given power and α, we can solve 

Equation (9) for λ. Having obtained λ, the sample size needed for achieving a given power 

is obtained by plugging in appropriate strategy means under the alternative hypothesis and 

their assumed variance-covariance matrix into the sample size expression above.

The knowledge of subgroup means and variances in the population will allow the 

computation of covariance terms. Suppose that the investigator wants to compare eight 

treatment strategies by testing the null hypothesis H0 : μ111 = μ112 = μ121 = μ122 = μ211 = 

μ212 = μ221 = μ222 against the alternative that at least one pair is different. From the 

knowledge in the research area, the investigator expects that those who receive A1 or A2, 

responds and receives B1 or does not respond and receives C2 will have mean responses 

μA1B1 = μA2B1 = μA1C2 = μA2C2 = 15 and the group of individuals following any other paths 

of treatment will have mean response equal to 20. The variation of responses within these 

groups are expected to be  and , j, k, l = 1, 2.

Then, assuming 50% expected response in both A1 and A2 arms (π1 = 0.5, π2 = 0.5) and 

equal probability of randomization , we obtain μ111 = 

π1μA1B1 + (1 − π1)μA1C1 = 17.5, μ112 = π1μA1B1 + (1 − π1)μA1C2 = 15.0, μ121 = π1μA1B2 
+ (1 − π1)μA1C1 = 21.0, μ122 = π1μA1B2 + (1 − π1)μA1C2 = 18.5, μ211 = π2μA2B1 + (1 − 

π2)μA2C1 = 17.5, μ212 = π2μA2B1 + (1 − π2)μA2C2 = 15.0, μ221 = π2μA2B2 + (1 − π2)μA2C1 
= 17.5, μ222 = π2μA2B2 + (1 − π2)μA2C2 = 15.0; and

Using C from the previous page (Page 9), we obtain

Now, if the investigator wants to power the study at 80% with α = 0.05, we solve
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to obtain λ = 14.35. Then the sample size required for this case would be

4. Powering Pairwise Comparisons

Above we developed a sample size formula for a global test that provides evidence that there 

are differences among at least one pair of strategy means. Next, it is natural to focus on 

pairwise comparisons and ask which strategy means are different. A popular two-sample 

pairwise test is the t-test. A sample size based on the usual t-test would not apply directly 

since the assumption of independence among strategy means does not hold. When strategies 

share first stage treatment, a pairwise treatment comparison should consider the between-

strategy covariances in the traditional t-test based sample size formula. Suppose we are 

interested in the sample size of a test that truly rejects the null hypotheses at a pre-specified 

level of significance (α) and a given power. For instance, there are 8 regimes and 28 

pairwise comparisons for Design 1. One possible pairwise comparison would be,

For each test different sample sizes are required to detect a difference between each pairwise 

comparison. To control type I error, Bonferroni correction can be used. That is, for a two-

sided test the level of significance for each hypothesis will be α/g, where g is the total 

number of pairwise comparisons. The aim is to compute the sample sizes for each pairwise 

comparison and then select maximum of the set of sample sizes that powers a test to identify 

difference between strategy means. The sample size formula that accounts dependency 

among strategy means is,

(10)

where , and σjkl,j′k′l′ are obtained using Equations (7) and (11); μjkl and μj′k′l′ are 

the strategy means under alternative hypothesis. If there is no overlap between strategy 

means that do not share the same initial treatments, the between-strategy means covariance 

is zero and the sample size formula (10) would mimic the one required for independent two-

sample t-test.

Equation (10) has a more general use than it apparently implies. For example, suppose prior 

to designing the trial, researchers focus on g1 ≤ g specific pairwise comparisons. Then the 

sample size for pairwise comparisons can be calculated using a level of significance  to 
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ensure a pairwise comparison of g1 pairs. Since the variance-covariance formula depends on 

the randomization probabilities, the researcher could potentially use randomization 

probabilities that allocate more observations to the strategies of interest. Other (g − g1) 

pairwise comparisons could remain unpowered but essentially provide valuable information 

for future studies.

The methods described so far (in Section 3 and above) are explained via Design 1, however, 

the formulas can be applied to Designs 2 and 3. For example, in Design 2, there are no 

second stage randomization for responders. Therefore, we make the following simple 

modifications to make the formula applicable to Design 2. Set Y (Aj) as the counterfactual 

outcome for those who received Aj and responded, and let μAj and  be the corresponding 

mean and variance of Y (Aj), j = 1, 2. As mentioned in Section 3, there are only four 

treatment strategies here, namely, A1C1, A1C2, , and . Therefore, the mean vector 

is μ = (μ11, μ12, μ21, μ22)T where for example, μ11 = π1μA1 + (1 − π1)μA1C1. Note that μA1C1 
is used to indicate the mean of the population who receive A1 as initial and C1 as the second 

stage treatments. Similarly, the covariance matrix is

where

These formulas are obtained from the variance/covariance formulas for Design 1. For 

example,  is the same as the RHS of Equation (7) with j = 1, k = 1, P1 = 1,  and 

μA1B1 = μA1. The required sample size for testing the null hypothesis H0: μ11 = μ12 = μ21 = 

μ22 at level α and power 1 − β against an alternative specified by the subgroup means μA1, 

μA1C1, μA1C2, μA1,  is then given by formula (8) with
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and λ, the non-centrality parameter, given by the solution to the equation

Appropriate modifications can be used for Design 3 in a similar manner.

5. Simulation Study and Results

To evaluate the performance of the overall sample size formula, we conducted a number of 

simulations to see if the empirical power for detecting the alternative hypothesis is close to 

the nominal power. We presented four scenarios for each of the three designs in Tables 1, 2 

and 3 by varying the nominal power, response rates and probabilities of second treatment 

assignment for responders (Pk) and non-responders (Ql). For each subject in the population, 

Yi(AjBk) and Yi(AjCl) were generated from normal distribution with means μAjBk and μAjCl, 

and variances  and , respectively for j, k, l = 1, 2. Correspondingly, in Designs 2 

and 3 for each individual, Yi(Aj) was generated from normal distribution, with means μAj. 

The indicator Xji was generated from a Bernoulli distribution with probability 0.5. Indicators 

Zk and  were generated from a Bernoulli distribution with probability Pk and Ql for 

responders and non-responders, respectively. The response status Ri was generated from a 

Bernoulli distribution with probability (response rate) π1 for treatment A1 and π2 for 

treatment A2 and whenever applicable (Design 3), from a Bernoulli(π3) distribution for 

treatment A3. For Design 1, the outcome variable Yi is then generated using Equation (4). 

For Design 2, we used the same equation except that Yi(A1B1) and Yi(A2B1) is replaced by 

Yi(A1) and Yi(A2), respectively. Similar modification was made for Design 3. For each 

design and for each scenario we generated 10000 Monte-Carlo samples using the three 

designs.

Tables 1, 2 and 3 demonstrate sample size computation for different scenarios by assuming 

certain values for population parameters. Tables 4 and 5 show the pairwise sample size 

computation for Designs 2 and 3. Design 1 assumes subgroup means: μAjB1 = μAjC2 = 15, 

μAjC1 = 20, μAjB2 = 22; subgroup variances: , for j, k, l = 1, 2. Subgroup 

variances are assumed to be the same for all designs considered. Depending on a specific 

design and scenario considered, the following range of response proportions πj’s are 

assumed: 0.2, 0.3, 0.5, 0.6 and 0.7. Similarly, depending on a specific design the following 

P1 and Q1 are assumed. Probability of treatment assignment for responders, P1, is assumed 

to be 0.5, 0.7, 0.9 and 1. For non-responders, Q1(= 1 − Q2), is assumed to be 0.5, 0.7, 0.9. 

Design 2 assumes the following subgroup means: μA1B1 = 15, μA2B1 = 17, μAjC2 = 15, 

μA1C1 = 20, μA2C1 = 22, for j, k, l = 1, 2. Design 3 assumes the following subgroup means: 

μA1B1 = 15, μA2B1 = 17, μA3B1 = 19, μAjC2 = 15, μA1C1 = 20, μA2C1 = 22, μA3C2 = 24, for j, 
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k, l = 1, 2, 3. The parameter values were chosen following those from Ko and Wahed [13]. 

The strategy means differ for each scenario in each table. In each scenario, having obtained 

the appropriate sample size using our formula, we evaluate the power of the Wald tests in 

rejecting the null hypothesis of no difference in treatment means when the strategies have 

different means. Effect sizes are common measures in psychology and other disciplines 

where they are useful in calculating and interpreting power. The magnitude of effect sizes 

would capture experimental effects by protecting guaranteed significance due to large 

sample size [12]. The effect size is computed using the Mahalanobis distance (MD). One 

useful property of the MD is that it takes into account the correlation in the data.

The first row of Scenario 1 in Table 1 assumes strategy means μ111 = 17.5 μ112 = 15, μ121 = 

21, μ122 = 18.5, μ211 = 17.5, μ212 = 15, μ221 = 21, μ222 = 18.5 when response rates π1, π2 

were taken to be both 0.5; P1 and Q1 are assumed to be 0.5. Seventy subjects would be 

required to detect the resulting effect size of 0.21 with power 80% at α = 0.05. The 

empirical power is 85% which is slightly inflated compared to the nominal power of 80% 

used to compute the sample size. Row 3 of the same scenario shows that the empirical power 

of 92% is close to the nominal value of 90%. Similar patterns follow for all the rows in 

Scenarios 2, 3 and 4. If we observe across all scenarios (from 4 to 1), we note a small degree 

of increase in empirical power when P1 increases.

The first row of Scenario 1 in Design 2 (Table 2) assumes strategy means μ11 = 17.5, μ12 = 

15, μ21 = 19.5, μ22 = 16 when response rates π1, π2 were taken to be both 0.5; Q1=0.5. In 

this case 142 subjects would be required to detect the resulting effect size of 0.08 with power 

80% at α = 0.05. The empirical power is 81% which is very close to the nominal power of 

80% used to compute the sample size. Row 4 of scenario 3 shows that the empirical power 

of 93% is slightly inflated compared to the nominal value of 90%. For various response 

rates, the empirical power for each case in scenarios 1 to 3 nearly attain the nominal power. 

This attests that the sample sizes calculated for Design 2 ensure enough power to detect 

differences among the four strategy means.

The first row of Scenario 1 in Design 3 (Table 3) assumes strategy means μ12 = 17.5, μ13 = 

15, μ21 = 19.5, μ23 = 16, μ31 = 21.5, μ32 = 17 when response rates π1, π2, π3 were taken to 

be all 0.5. 108 subjects would be required to detect the resulting effect size of 0.12 with 

power 80% at α = 0.05. The empirical power is 83% which is slightly larger than the 

nominal power of 80% used to compute the sample size. We note that for small changes in 

response rates, sometimes the sample sizes do not change or change only slightly. For 

example, row 4 of scenarios 2 and 3 have the same sample size (149). The sample size did 

not change as π1 changed slightly from 0.2 to 0.3.

In many clinical trials testing of overall hypothesis may not be of primary interest, rather 

some or all of the pairwise comparisons are. To show how the sample size for a SMAR trial 

is determined in such cases, we present the sample sizes required for Design 2 when all six 

pairwise comparisons are powered simultaneously in the second column of Table 4. The 

third column provides the sample sizes when only individual tests are powered. For 

example, under the setting described in Table 4, Design 2 requires 4008 patients to power all 

pairwise comparisons. However, if the interest, for example, is in powering the single 
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hypothesis H0 : μ111 = μ112 leaving other pairs as exploratory, the trial could be conducted 

using a sample as small as 345. Similarly, Table 5 provides sample sizes for Design 3 when 

fifteen pairwise comparisons are powered simultaneously (Column 2) and when only three 

pairwise comparisons are considered (Column 3). From Column 2, Design 3 requires 30,704 

patients (maximum of the sample sizes) to power all pairwise comparisons. However, if the 

interest is in powering only three pairwise hypotheses such as H0 : μ12 = μ13, H0 : μ12 = μ21, 

and H0 : μ12 = μ23, the trial would require a sample size of 2,441. On the other hand, if the 

interest is only in comparing the three pairs, H4, H6, and H8 then the sample size required 

will be n = 359.

Outcomes in the above simulation scenarios were generated from a normal distribution. We 

wanted to conduct the sensitivity of our formula to non-normal responses. To do this, we 

further generated data from Logistic (symmetric) and Gamma (skewed) distributions and 

calculated the empirical power based on the sample size calculated using Equation(8). 

Basically, we selected one row from each scenario of Tables 1 to 3 to perform sensitivity 

analysis of our formula using data from Logistic and Gamma distributions ensuring the same 

means and variances for the subpopulations and keeping all other parameters the same. From 

each table, we selected the first row for Scenarios 1 and 3 while we chose the fourth row for 

Scenarios 2 and 4. Therefore, the results presented in Table 6 have twelve rows in total. In 

general, the nominal power is maintained and is consistent across the three distributions. 

This shows that our sample size formula is robust to the misspecification of outcome 

distribution.

6. Discussion

Complex multi-stage diseases require decision-based multi-stage treatments depending on 

the response to prior-stage treatments. SMAR designs provide efficient and unbiased 

inference to compare staged strategies for complex conditions. We presented a sample size 

formula that is applicable for various SMAR designs to ensure adequately powered 

comparisons of these treatment strategies. The usual design is to randomize responders (or 

non-responders) to available treatments. A slight variation to that is a design where 

responders (or non-responders) would not be randomized any further in the second stage. 

Designs 2 and 3 are such examples. In Design 2, only the non-responders are randomized to 

C1 or C2 and  or  respectively depending on whether they received A1 or A2 in the first 

stage. Responders would stay on the same first stage treatment. Equivalently, responders will 

be randomized with probability 1 to whatever treatment they received in the first stage. 

There are four strategies resulting from this design and the sample size required to detect 

differences among the four strategies is computed. In Design 3 each patient is randomized to 

a set of treatments (A1, A2, A3) in the first stage and these treatments are continued until 

they fail due to disease worsening. The patient is then re-randomized among a set of the 

same first stage treatments with the exception of the treatment s/he received initially. There 

are six strategies of interest in this design. We showed in the simulation how to compute 

sample size formula for this design and showed that the formula ensures nominal power 

under various scenarios involving many outcome distributions.
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In contrast to our formula, Murphy’s [5] formula is not applicable to designs powering 

multi-strategy comparison or to designs comparing strategies that share the same initial 

treatments commonly referred to as shared-path strategies [17] or overlapping strategies 

[10]. Moreover, their formula requires specifying the variance of the response under the 

strategies being compared, although the effect sizes can be specified per standard deviations 

of mean difference assuming equal variance across strategies.

Dawson and Lavori [10, 11] provides a sample size formula for comparing pairs of 

overlapping or non-overlapping/treatment strategies based on semiparametric efficient 

variances. The formula requires one to specify the variance of the response under each 

strategy and the variance inflation factor, the latter depending on the coefficient of 

determinations based on the regression of counterfactual strategy response on stage-specific 

states. Correct specification of such quantities is difficult, if not impossible, in the absence of 

a similar SMAR trial. However, when correctly specified, Dawson and Lavori’s formula 

provide smaller sample sizes than those proposed in Murphy [5] or the ones provided here. 

One advantage of both Murphy [5] and Dawson and Lavori’s [10, 11] formula over our 

method is that they can be applied to compare strategies from SMAR trial with more than 

two stages. However, like Murphy’s formula, Dawson and Lavori’s formula also focuses on 

comparing pairs of treatment strategies.

The simplicity of our procedure compared to Dawson and Lavori [10] (even in the two-stage 

SMAR trial settings) relies on the specification of the parameters. Our formula requires one 

to specify sub-group-specific means and variances. Our sample size formula requires 

specification of subgroup means and variances for patients following different treatment 

paths. These parameters are usually available from observational studies or stage-specific 

individual non-SMAR trials. For example, there are many cancer clinical trials that compare 

frontline treatments (e.g. Estey et al. [18]). Even though such trials are terminated once the 

recruitment is over and the primary endpoint is observed or the trial period ends, patients are 

often followed and medication information (salvage treatments used) is collected for patients 

who become resistant to frontline therapy or for patients with disease progression. The 

collection of salvage treatment information is often done only for the purpose of safety, 

however, such information allows the researchers to obtain meaningful information on 

subgroup means and variances based on the salvage therapies received within each frontline 

treatments. Mental health research by its very nature, investigates sequences of treatments 

and hence the means and variances of responses under a particular treatment sequence are 

most likely to be available from observational studies or from electronic medical records. 

Fortunately, there are already existing SMAR trials in mental health (STAR*D [2], CATIE 

[19]) that can provide useful information on subgroups to be used in future trial design.

The Murphy [5] and Dawson and Lavori [10] methods require fewer unknown quantities to 

be specified compared to what is required by our formula, our parameters are basically 

means and variances of response among subpopulations. Generally, these parameters can be 

obtained from pilot studies, non-SMAR trials or observational studies. Therefore, these 

parameters are less likely to be mis-specified as compared to the parameters in Murphy’s [5] 

and Dawson and Lavori’s [10] methods. Moreover, our focus is to compare multiple 
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treatment strategies for which specification of effect size does not necessarily reduce the 

number of unknown parameters.

Oetting et al. [9] sample size for comparing two strategies is derived under the assumption 

that response rates are the same across the two first stage treatments. While a sensitivity 

analysis was carried out in the simulation, this assumption may not be reasonable in 

practice. Finally, our formula does not address the issue of finding an optimal treatment 

strategy, which is a separate issue that is dealt with in Oetting et al. [9].

Use of Mahlanobis distance as an effect size measure in our analysis is to verify that the 

sample size increases with the increase in distance among the strategy means. Note that 

unlike standard effect size measures, Mahlanobis distance has no benchmark values to 

indicate large, small or moderate effect sizes. It should just be treated as a distance among 

multiple strategy means standardized for the variability.

Future research could investigate sample size formulas for various k-stage designs with 

emphasis on specific and meaningful number of strategies. Issues of missing data is another 

design concern in SMAR trials that needs to be addressed.
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Appendix A: Influence function for μ̂jkl

Equation (6) can be expanded as follows μ̂jkl satisfies . 

Expanding with respect to μjkl,

This implies,

and
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Now , and hence μ̂jkl − μjkl is op(1) and  is bounded in 

probability (Op(1)) because of its convergence in distribution to normal distribution by 

central limit theorem. Therefore, the second term on the right is op(1).

Appendix B: Variance and covariance of strategy means

Following Ko and Wahed (2012), the variance formula in Equation (7) is derived as follows, 

. This variance can be 

expressed in terms of subgroup-specific population parameters. For example, consider 

. In this case, the weight is defined as , and 

therefore,  since the indicator variables X1i, Ri, Z1i and 

 take values 0 or 1; the term  disappears since a patient can only be a 

responder or a non-responder. Then, 

. Under assumptions 

(A1)–(A3), using a series of conditional expectations, we can show that,
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Consequently, the asymptotic variance of μ ̂111 is given by,

Estimators that share the same first-stage treatment would be correlated as they use a 

common group of observations. Consider  and .

To derive the covariance between strategy means  and , we note that similar 

to  is distributionally equivalent to 

. Therefore, the asymptotic covariance of 

 and  is given by,

Since , we can further simplify the above as,
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Since, from Equation (2), (μA1B1 − μ111) = μA1B1 − π1μA1B1 − (1 − π1)μA1C1 = (1 − π1)

(μA1B1 − μA1C1) and (μA1B1 − μ112) = (1 − π1)(μA1B1 − μA1C2), it follows that asymptotic 

covariance of μ̂111 and μ̂112 is given by

(11)

A similar derivation could be employed to compute other covariances. Let Σ = var(ψi), 

where ψi is the vector of eight influence functions ψjkli, j, k, l = 1, 2, denote the variance-

covariance matrix where Equation (7) and similar entities are used to form the diagonal 

elements and Equation (11) is used to form the off-diagonal entries, respectively.
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Figure 1. 
Design 1. At entry, patients are randomized to initial treatments A1 and A2. If a patient 

responds to the initial treatment she is randomized to either B1 or B2, otherwise the patient is 

randomized to either C1 or C2.
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Figure 2. 
Design 2. At entry, patients are randomized to initial treatments A1 and A2. If a patient 

responds to the initial treatment she stays on the same initial treatment, otherwise the patient 

is re-randomized to subsequent treatments: C1 or C2 if she does not respond to A1;  or 

if she does not respond to A2.
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Figure 3. 
Design 3. At entry, patients are randomized to initial treatments A1, A2 and A3. If a patient 

responds to the initial treatment she stays on the same initial treatment, otherwise the patient 

is re-randomized to subsequent treatments: A2 or A3 if she does not respond to A1; A1 or A3 

if she does not respond to A2; A1 or A2 if she does not respond to A3.
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