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Abstract

Inflammation occurs after disruption of tissue homeostasis by cell stress, injury or infection and 

ultimately involves the recruitment and retention of cells of hematopoietic origin, which arrive at 

the affected sites to resolve damage and initiate repair. Interleukin 1α (IL-1α) and IL-1β are 

equally potent inflammatory cytokines that activate the inflammatory process, and their 

deregulated signaling causes devastating diseases manifested by severe acute or chronic 

inflammation. Although much attention has been given to understanding the biogenesis of IL-1β, 

the biogenesis of IL-1α and its distinctive role in the inflammatory process remain poorly defined. 

In this review we examine key aspects of IL-1α biology and regulation and discuss its emerging 

importance in the initiation and maintenance of inflammation that underlie the pathology of many 

human diseases.

In 1974, Dinarello et al.1 described acidic and neutral human pyrogens, which could be 

purified from monocytes and neutrophils, respectively, and showed that they have similar 

potencies in increasing body temperature in rabbits1. It was another ten years before the 

acidic and neutral pyrogens were identified as proteins that are distinct at the amino acid 

level, and the first described mouse acidic pyrogen and human neutral pyrogen were both 

called interleukine 1 (first reported in 1984)2,3. In 1985, amino acid sequences for both the 

acidic and neutral human pyrogens were reported, and these proteins were called 

interleukins IL-1α and IL-1β, respectively4, a designation that is accepted today. Early 

research into the molecular properties of IL-1α and IL-1β revealed numerous similarities 

between these cytokines that appear to justify naming them as two forms of IL-1, a family of 

cytokines that has grown to 11 members5. Specifically, both IL-1α and IL-1β are 

synthesized as precursor (proform) proteins with molecular weights of about 31 kDa, can be 

cleaved to smaller mature forms of 17 kDa and bind the cell surface receptor IL-1R1, and 

they trigger identical biological responses. Despite these similarities, IL-1α and IL-1β have 
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different amino acid sequences, and the factors that control their functional maturation and 

bioavailability are highly dissimilar. First, whereas only the cleaved mature form of IL-1β is 

a functional pyrogen and a ligand for IL-1R1, both the proform (pro-IL-1α) and the cleaved 

form of IL-1α are biologically active IL-1R1 ligands6. Second, although mature IL-1β is a 

released protein, IL-1α functions both as a secreted and as a membrane-bound cytokine7. 

Third, during the functional maturation process, pro-IL-1β is cleaved by an aspartic protease 

caspase-1 downstream of a multi-protein complex called the inflammasome8–10, whereas 

capsase-1 and the inflammasome have no direct role in cleaving pro-IL-1α. Fourth, although 

IL-1α has higher affinity than IL-1β for IL-1R1, IL-1β has higher affinity for the decoy 

soluble receptor IL-1R2 (ref. 11). And fifth, although IL-1β is absent in cells at homeostasis 

and is expressed upon activation only in cells of hematopoietic origin, IL-1α is present in 

health in a wide variety of cells and expressed in hematopoietic and nonhematopoietic cells 

alike in response to appropriate stimuli12. These differences translate directly into the 

biological contexts in which IL-1α and IL-1β exert their functions. Remarkably, although 

IL-1β expression regulation, cleavage and release are relatively well understood, most 

aspects of IL-1α biogenesis and function and its role in the inflammatory process remain 

areas of active debate. The literature on IL-1β biology is abundant and has been reviewed in 

depth elsewhere13,14; here we will review the current understanding of the roles of IL-1α in 

initiating and sustaining the inflammatory processes that stem from the unique biochemical 

and functional properties of this pleiotropic cytokine and that may point to new 

opportunities for therapies of numerous human diseases and pathologies mechanistically 

linked to IL-1-driven inflammation.

Control of IL-1α expression

IL-1α is constitutively expressed in many cell types in healthy tissues at steady state, and its 

expression can be increased in response to growth factors and proinflammatory or stress-

associated stimuli. Absolute amounts of IL-1α protein vary among cell types, but barrier 

cells—such as endothelial and epithelial cells—express substantial amounts of this cytokine 

at steady state5,12,15. The Il1a promoter lacks canonical TATA and CAAT box regulatory 

regions, containing instead a binding site for the Sp1 transcription factor16 that is known to 

mediate expression of housekeeping genes at homeostasis17. The inducible expression of 

IL-1α depends on the presence of binding sites for AP1 and NF-κB transcription 

factors18–20, which can upregulate IL-1α expression in a cell-type-specific manner. It has 

also been shown that the proximal Il1a promoter region contains a transcriptional-repressor-

binding site that reduces its transcriptional activity16, thus dissociation of a transcriptional 

repressor can be an additional mechanism to increase IL-1α expression upon stimulation. In 

human CD4+ T cells, IL-1α expression is monoallelic and regulated via hyper- or 

hypomethylation of CpG nucleotides located in promoter regions proximal to the 

transcription initiation site21. Monocytes have a unique mechanism of inducible Il1a 
expression that involves upregulation of the long noncoding RNA AS-IL-1a, a natural 

antisense transcript that is partially complementary to IL-1α mRNA22. Although constitutive 

IL-1α expression is likely to be regulated by Sp1-family transcription factors in terminally 

differentiated cells, inducible IL-1α expression occurs rapidly in response to a variety of 

physiological stimuli, including oxidative stress15,23,24, lipid overload25,26, hormonal 
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stimulation27, exposure to cytokines (including IL-1β and IL-1α itself)28–30 and canonical 

proinflammatory mediators of microbial origin with Toll-like receptor (TLR) agonistic 

activities29. The responsiveness of the Il1a promoter to such a broad spectrum of stimuli, 

which trigger inducible expression of IL-1α in addition to its constitutive expression in both 

hematopoietic and nonhematopoietic cells, has important implications for IL-1α’s ability to 

drive sterile and pathogen-induced inflammation.

IL-1α biogenesis

IL-1α is translated as pro-IL-1α, and a number of studies have described post-translational 

modifications of this precursor form. Specifically, pro-IL-1α was shown to be 

phosphorylated at Ser90 (refs. 31,32), myristoylated on Lys82 (ref. 33) and acetylated on 

Lys82 (refs. 33,34). The functional significance of these modifications has not been formally 

established. Furthermore, it remains a matter of debate whether proteolytic cleavage of pro-

IL-1α into the N-terminal IL-1α propiece (IL-1α-NTP) and a C-terminal mature IL-1α is a 

genuine functional maturation step that is necessary for efficient IL-1α-dependent biological 

responses. In early studies of human pyrogens it was established that human acidic pyrogen 

(corresponding to pro-IL-1α) is as potent at causing fever as human neutral pyrogen 

(corresponding to mature IL-1β)1. Subsequent analyses of the receptor binding kinetics of 

pro-IL-1α and mature IL-1α showed that the forms have similar receptor dissociation 

constants (Kd = 4.0 nM and 4.5 nM for pro-IL-1α and mature IL-1α, respectively)35. More 

recently, it was confirmed that recombinant pro-IL-1α and mature IL-1α have identical 

biological activities as measured by their ability to trigger secretion of the inflammatory 

cytokines IL-6 and TNF from epithelial and hematopoietic cells6. The mature IL-1α used in 

these studies was comprised of the C-terminal portion of IL-1α starting at Ser115. Cleavage 

of mouse pro-IL-1α at this site and of human pro-IL-1α at Phe118 (ref. 36) is mediated by 

the calcium-dependent neutral protease calpain. Calpain can cleave pro-IL-1α inside the cell 

or under cell-free conditions36–38. However, in the extracellular space, pro-IL-1α can also be 

cleaved at the evolutionary conserved Asp103 by granzyme B39, and the C-terminal mature 

IL-1α generated via granzyme B cleavage is more biologically active than the pro-IL-1α 
form. This same study demonstrated that pro-IL-1α cleavage with elastase or chymase, as 

well as calpain, produces a mature IL-1α C-terminal piece that is more biologically active 

than the pro-IL-1α form39. Although it is plausible that pro-IL-1α cleavage at different sites 

may generate mature IL-1α forms that exhibit different biological activities, the reasons for 

different biological activity of pro-IL-1α form observed in different studies6,35,39,40 require 

further clarification.

Pro-IL-1α has a functional nucleus localization signal (NLS) LKKRRL41–43, which is 

retained in the IL-1α-NTP after pro-IL-1α cleavage with calpain or other proteases (Fig. 1). 

Pro-IL-1α and IL-1α-NTP can translocate into the nucleus; however, whether there is a 

single mechanism that regulates nuclear localization of pro-IL-1α and IL-1α-NTP in all cell 

types remain unknown. Genotoxic stress increases nuclear localization of pro-IL-1α, which 

in part depends on acetylation of Lys82 (ref. 34). Whereas macrophage pro-IL-1α is 

localized to the nucleus upon lipopolysaccharide (LPS) stimulation, in keratinocytes and 

fibroblasts, pro-IL-1α is localized to the nucleus at steady state without any cell 

stimulation43. One of the mechanisms that may control nuclear localization of pro-IL-1α is 
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its association with a repressor in the cytosol. In vascular smooth muscle cells, pro-IL-1α is 

bound to an intracellular form of inhibitory IL-1R2 (ref. 40) that may mask the NLS, leading 

to cytosolic retention of pro-IL-1α. Association of pro-IL-1α with IL-1R2 has also been 

shown in fibroblasts from systemic sclerosis patients44; however, in these cells, pro-IL-1α 
exhibits nuclear localization at steady state, which is regulated by HAX1, a ubiquitously 

expressed protein localized in mitochondria, endoplasmic reticulum and at the nuclear 

envelope45. HAX1 is able to bind both pro-IL-1α and IL-1α-NTP44, and suppression of 

HAX1 abolishes nuclear localization of pro-IL-1α. Nuclear localization of pro-IL-1α and 

IL-1α-NTP is functionally important, as they are able to interact directly with histone 

acetyltransferases p300, PCAF and GCN5 (refs. 46,47) and stimulate transcription of genes, 

including those encoding proinflammatory chemokines, independently of IL-1R1 

signaling48,49. Furthermore, pro-IL-1α can bind chromatin50, and IL-1α-NTP localization to 

spliceosomes triggers apoptosis of numerous malignant cell types but not primary 

nontransformed cells51.

IL-1α can function as a membrane-bound cytokine. A study using primary macrophage 

cultures stimulated with heat-killed Listeria monocytogenes found that IL-1 has biological 

activity at the plasma membrane of intact cells as well as in isolated plasma membrane 

preparations7. This finding was confirmed in many subsequent studies52–55, which also 

demonstrated that the plasma membrane-associated IL-1α represents a full-length pro-IL-1α 
form that is fully biologically active. Plasma-membrane-bound IL-1α can be eluted from 

intact cells with D-mannose56. On the basis of this observation, it was proposed that pro-

IL-1α is glycosylated and anchoring onto the membrane is mediated by a lectin-like 

interaction. Upon stimulation of cells with proinflammatory stimuli, the appearance of 

IL-1α on the plasma membrane occurs within hours on both hematopoietic and 

nonhematopoietic cells, such as fibroblasts and endothelial cells57. This implies the 

existence of a specialized molecular machinery that regulates translocation of pro-IL-1α 
from the cytosol to the outer side of the plasma membrane, thus allowing initiation of 

IL-1α– IL-1R1-mediated signaling in a paracrine manner. Over time, plasma-membrane-

bound pro-IL-1α can be released via cleavage with extracellular proteases39,54,57. The 

excess of intracellular pro-IL-1α is subjected to proteosomal degradation through ubiquitin-

dependent mechanisms58.

Biological contexts of IL-1α signaling

Because pro-IL-1α is fully biologically active and because of its constitutive and induced 

expression in a wide variety of cell types, cell death due to injury or infection may result in a 

passive leakage of the cytosolic pro-IL-1α into the surrounding milieu and activation of 

inflammation in an IL-1R1-dependent manner. This assumption has been confirmed 

experimentally in several studies, where administration of necrotic cells to mice triggered 

neutrophilic inflammation that was completely dependent on the presence of IL-1α in 

necrotic cells and IL-1R1 signaling on stromal, nonhematopoietic cells59,60. These and 

subsequent studies50,61 confirming the idea that the cytosolic pro-IL-1α is a principal 

inflammation-triggering moiety in necrotic cells have led to the designation of IL-1α as a 

key ‘alarmin’ in the cell5,15,43,62 that alerts the host to injury or damage. Using the same 

experimental approach59, it was also found that pro-IL-1α association with an inhibitory 
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IL-1R2 in the cytosol44 is functionally important, as it can prevent or reduce the magnitude 

of inflammatory response to necrotic cells owing to sequestration of pro-IL-1α into 

cytosolic complexes with IL-1R2 (ref. 40) (Fig. 2). The importance of pro-IL-1α as a 

principal intracellular alarmin is underscored by findings that point to the existence of a 

machinery to sequester cytosolic pro-IL-1α during a physiologically regulated 

noninflammatory cell death routine, such as apoptosis. Upon induction of apoptosis, 

cytosolic pro-IL-1α is sequestered into the nucleus, preventing its inadvertent release and 

inflammation48. However, if not promptly phagocytosed, IL-1α-containing apoptotic bodies 

can trigger inflammation, as has been shown for apoptotic bodies produced by endothelial 

cells63.

To execute its function as an extracellular alarmin, pro-IL-1α requires the loss of plasma 

membrane integrity, which is indicative of necrotic-type cell death64, for passive release and 

activation of the inflammatory cascade. However, during normal responses to physiological 

stimuli, necrotic cell death is an unusual event; therefore, great effort has been put toward 

analyzing the biological contexts and molecular mechanisms that may control IL-1α-

mediated signaling from living non-necrotic cells. These efforts have produced numerous 

findings65–69, but their physiological relevance requires further clarification. Because pro-

IL-1α lacks a signaling peptide to mediate its secretion from the cell, the most debated issue 

is whether caspase-1 and the inflammasome facilitate or are needed for pro-IL-1α 
proteolytic processing and release70. A study using LPS-stimulated monocytes from 

caspase-1-deficient mice showed that cells from these mice release significantly lower 

amounts of IL-1α than cells from wild-type mice71. The conclusion that caspase-1 and the 

inflammasome control release of IL-1α from hematopoietic cells such as macrophages and 

dendritic cells after their stimulation with LPS and ATP65 can be explained by the induction 

of pyroptosis, a form of cell death that leads to plasma-membrane permeabilization72, 

allowing release of intracellular pro-IL-1α and mature IL-1α forms without involvement of 

any specific secretory mechanism. A detailed analysis of IL-1α and IL-1β release from 

dendritic cells showed that LPS-stimulated cells treated with clostridium toxin B or alum, 

urea crystals or silica release mature IL-1α in a capsase-1- and NLRP3 inflammasome–

independent manner, whereas the release of mature IL-1β in response to the same stimuli 

was completely dependent on caspase-1 and NLRP3 inflammasome components73. Because 

pro-IL-1α and pro-IL-1β are expressed in hematopoietic cells in response to the same 

stimuli, and because caspase-1 is targeted by many pathogens to suppress cell death and 

inflammation74–76, release of IL-1α in an inflammasome-independent manner may provide 

an alternative pathway to trigger IL-1R1-dependent defense mechanisms and alert the host 

of an ongoing infection.

The ability of IL-1α to function as a plasma-membrane-bound cytokine is unique within the 

IL-1 family5,77. Indeed, exposure of hematopoietic cells to LPS or heat-killed bacteria such 

as L. monocytogenes7,55 or Mycobacterium tuberculosis78 stimulates intracellular 

expression of IL-1α as well as the rapid appearance of membrane-bound IL-1α that is fully 

biologically active, as shown by stimulation of T cell proliferation and production of 

chemokines. Similarly, exposure of endothelial cells to LPS or TNF also results in 

membrane IL-1α expression52, providing important insight into biological contexts where 

IL-1α–IL-1R1 signaling can be triggered from living cells under stress or during infection 
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without necrotic cell death. The capacity of membrane-bound IL-1α to activate IL-1R1 

signaling in an intracrine and paracrine manner on surrounding cells has important 

implications for the induction and maintenance of local inflammatory responses.

The ‘inflammatory loop’ model of IL-1α-driven inflammation

The diversity of stimuli that activate IL-1α expression in hematopoietic and 

nonhematopoietic cells and its capacity to activate IL-1R1 signaling from both living and 

necrotic cells provide the conceptual framework for understanding the role of IL-1α in 

inflammation and as a principal driver of pathologies that mechanistically depend on 

aberrant IL-1R1 signaling. Because IL-1α and IL-1β are equally potent activators of IL-1R1 

signaling, the availability of mice deficient in either IL-1α or IL-1β provides an opportunity 

to analyze the contribution of each in the development of specific pathologies. Although the 

development of atherosclerotic lesions has an important IL-1R1 signaling component79, 

evidence indicates that macrophage-derived IL-1α is a principal cytokine controlling the 

development of atherosclerotic plaques26. Mechanistically, the expression of IL-1α is 

induced in macrophages by fatty acids that accumulate in atherosclerotic plaques and leads 

to IL-1α-driven vasculitis under conditions where IL-1β activation is blocked via 

mitochondrial uncoupling26. IL-1α-deficient mice are resistant to ischemic injury in models 

of myocardial infarction80 and ischemic brain injury81. Importantly, during ischemic brain 

injury, IL-1α expression in microglia precedes expression of IL-1β, providing conceptual 

insight into the role of IL-1α in the initiation of inflammation. In the model of spontaneous 

foot-pad inflammation in mice deficient in PTPN6 phosphatase, the development of 

neutrophilic inflammation in the foot pad is completely abrogated by the deletion of IL-1α 
in stromal, nonhematopoietic cells82. IL-1α produced by intestinal epithelial cells was found 

to be the principal driver of inflammation in a mouse model of colitis12, where IL-1α-

deficient mice showed improved survival after intestinal epithelial damage.

These findings can be conceptualized into an ‘inflammatory loop’ model, in which 

inflammation is initiated by stressed or damaged cells via IL-1α-dependent activation of 

chemokines that recruit inflammatory hematopoietic cells to the site of damage or stress 

(Fig. 3). These hematopoietic cells respond to the IL-1α-containing milieu, where pro-IL-1α 
can be either released from damaged cells or exposed as membrane-bound IL-1α on the 

surface of cells undergoing oxidative or metabolic stress, and in turn activate their own 

IL-1α and IL-1β production downstream of IL-1R1. The initial IL-1α–IL-1R1 signaling 

therefore initiates a loop of sustained and self-perpetuating inflammation that results in 

extensive tissue damage that occurs until IL-1R1 signaling is either exhausted or suppressed. 

This model is also supported by the role of IL-1α in host defense against viral and bacterial 

pathogens. IL-1α has a nonredundant role in initiating inflammatory responses to Legionella 
pneumophila83 and Yersinia enterocolitica84. Splenic marginal zone macrophages sequester 

adenovirus from the blood and activate IL-1α-dependent chemokine production85 and 

recruitment of polymorphonuclear cells to the spleen86. This IL-1α-dependent inflammation 

is critical for elimination of virus-containing cells from the host.

Because IL-1β is not known to be produced in a biologically active form in 

nonhematopoietic cells, the IL-1α-driven inflammatory loop model addresses the 

Di Paolo and Shayakhmetov Page 6

Nat Immunol. Author manuscript; available in PMC 2017 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conundrum of apparent functional excess and redundancy of IL-1α and IL-1β production at 

sites of inflammation. It is also consistent with abundant clinical data demonstrating the 

efficacy of IL-1β-targeted therapies at controlling autoinflammatory diseases87, as the 

perpetuation of IL-1α-initiated inflammation into a clinically significant pathology is 

accomplished by the exuberant production of both IL-1α and IL-1β, despite their redundant 

functions or when pathology development depends largely on subsequent IL-1β production 

from activated hematopoietic cells.

IL-1α and autoinflammatory disease

IL-1α-mediated signaling initiates processes beyond recruitment of inflammatory 

hematopoietic cells. Although IL-1α–IL-1R1-dependent chemokine production leading to 

hematopoietic cell recruitment is a major component of numerous pathologies, autocrine and 

paracrine IL-1α signaling can also mediate activation of nonhematopoietic cells.

Fibroblasts purified from lesional skin of patients with systemic sclerosis (SSc) express 

abundant amounts of IL-1α, which is localized on the plasma membrane, in the cytosol and 

in the nucleus88. Compared to fibroblasts from normal skin, SSc fibroblasts express high 

amounts of IL-6, the growth factor PDGF-α89, IL-1R1 (ref. 90) and collagen. Suppression 

of IL-1α expression in SSc fibroblasts reduces amounts of secreted IL-6 and pro-collagen, 

and overexpression of pro-IL-1α in normal fibroblasts increases IL-6 and pro-collagen 

production88. It has been demonstrated that IL-1-dependent PDGF-α production has direct 

mitogenic effects on fibroblasts and smooth muscle cells91, mechanistically linking 

excessive IL-1α expression and signaling with a pathological tissue response that manifests 

in excessive deposition of collagen and fibrosis.

IL-1α and cancer

Aging cells are known to acquire a ‘senescence-associated secretory phenotype’ 

characterized by production of IL-6 and other proinflammatory mediators that sustain the 

low-grade chronic inflammation underlying many age-related pathologies and cancer92. 

Normal human fibroblasts triggered to senesce by ionizing radiation show an increase in NF-

κB activity, which stimulates production of proinflammatory mediators such as IL-6 and 

IL-8 (ref. 93). This NF-κB activity is due to an increase in IL-1α translation, leading to 

production of membrane-bound IL-1α that stimulates cells in an autocrine manner. 

Rapamycin treatment was found to repress IL-1α translation, resulting in suppression of 

production of senescence-associated factors. Senescent fibroblasts have also been shown to 

be pro-tumorigenic, as they promote growth of malignant epithelial cells and tumor 

formation in mice93. Therefore, this study92 implicates IL-1α as a principal component in a 

feed-forward signaling amplification loop that leads to production of pro-tumorigenic factors 

by aged or senesced cells. There are many examples implicating an IL-1α-driven feed-

forward amplification loop and even IL-1α itself in malignant transformation, tumor 

formation and support of tumor growth through stimulation of cell growth and production of 

vasculogenic factors94–100. Confirmation of the critical contribution of IL-1α to tumor 

development in humans comes from the field of clinical oncology. In patients with head and 

neck squamous cell carcinoma, IL-1α expression has been evaluated as a prognostic marker 
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of distant metastases101. IL-1α mRNA and protein expression were found to be higher in 

tumor samples from patients who later developed distant metastases than in tumors from 

patients who did not. Patients who had high IL-1α expression in tumors had significantly 

lower 5-year survival rates than patients with low IL-1α expression101. Analysis of genetic 

risk factors for the development of ovarian cancer in a large patient cohort (15,604 cases) 

showed a significant association between the Il1a single nucleotide polymorphism (SNP) 

rs17561 and reduced susceptibility to clear cell ovarian cancer type. rs17561 is a missense 

SNP that results in an alanine-to-serine substitution at residue 114 (A114S)102. The A114S 

substitution produces a pro-IL-1α form that is more readily cleaved by calpain103. Because 

the plasma-membrane-bound IL-1α form represents a full-length pro-IL-1α protein, 

enhanced cleavage by calpain may lead to reduced expression of membrane-bound IL-1α 
and, thus, tempering of IL-1α-driven autocrine pro-tumorigenic IL-1R1 signaling. Clinical 

trials with an IL-1α-blocking monoclonal antibody targeting this IL-1α-driven feed-forward 

signaling amplification loop as a cancer therapeutic have shown promising outcomes104,105.

IL-1α and granulomatous diseases

Chronic granulomatous diseases manifest through the formation of focal inflammatory 

lesions, or granulomas, that consist of both hematopoietic and nonhematopoietic cells. 

Granulomas arise in response to poorly degradable particulate matter or can be induced by 

microbial, viral, fungal, protozoan or helminthic infections. Because granulomas are 

fundamentally a local inflammatory response, it is not surprising that IL-1α, with its 

capacity to produce proinflammatory signaling from the plasma membrane, is involved in 

granuloma formation. In a mouse model of pulmonary M. tuberculosis infection, IL-1α-

deficient mice failed to establish protective granuloma structures and succumbed to infection 

sooner than did wild-type mice, even in the presence of functional M. tuberculosis–specific 

adaptive immunity78. Exposure of macrophages to heat-killed M. tuberculosis resulted in 

rapid expression of biologically active plasma-membrane-bound IL-1α, and lung epithelial 

cells treated with heat-killed M. tuberculosis and TNF upregulated IL-1α expression. Bone 

marrow transplantation studies further showed that an absence of IL-1R1 and TNF receptor 

TNF-R1 on stromal or hematopoietic cells compromised host resistance to M. tuberculosis, 

suggesting that TNF- and IL-1-driven cross-talk between monocytes and stromal cells is 

necessary for optimal control of this pathogen78. Cryptococcus neoformans infection causes 

severe meningoencephalitis in susceptible BALB/c mice. Cytokine profiling in the brain 

after systemic C. neoformans infection showed constitutive and induced IL-1α expression 

that preceded detectible expression of IL-1β by 7 d106. Although there is no consensus on 

whether granulomas arise as a host-protective response or are induced by pathogens to evade 

immunity, the potential pro-pathogenic role of IL-1α expression in response to pathogens 

that induce granuloma formation has also been noted. Specifically, IL-1α was found to 

promote pathogenesis during Leishmania major infection in susceptible BALB/c mice, and 

IL-1α-deficient mice are more resistant than wild-type mice to L. major infection107. 

Similarly, given that histologically confined granulomas do not form in the lungs of IL-1α-

deficient mice after M. tuberculosis infection78 and that granulomas are necessary for M. 
tuberculosis survival and spread, it is plausible that IL-1α induction in the context of 

tuberculosis may serve a pro-pathogenic function.
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Conceptual perspective and remaining questions

IL-1α has a number of unique features, including its transcription in response to a wide 

range of stimuli, its widespread expression and its ability to activate IL-1R1 signaling from 

the plasma membrane or as an alarmin. Given these features, IL-1α emerges as a molecular 

decision-making nexus of the cell that gauges the magnitude of stress or damage or severity 

of infection to launch either the tissue or the whole body into action through initiation of 

inflammation or reparative fibrosis. Aberration of these sequelae can produce devastating 

disruption of tissue homeostasis and underlies the pathology of numerous human diseases. 

Because pro-IL-1α is present in healthy cells, it is likely that a number of specific 

mechanisms exist to tightly control and suppress aberrant IL-1α activity.

Even after more than 30 years of research, many critical questions related to IL-1α biology 

remain unanswered. Specifically, it is unclear what factors control pro-IL-1α translocation 

from the cytosol to the outer surface of the plasma membrane to allow it to signal as a 

membrane-bound cytokine. The functional significance of calpain-dependent cleavage of 

pro-IL-1α in the cell also remains unclear. Does calpain cleavage facilitate release of pro-

IL-1α and mature IL-1 from living cells, or is it necessary only to induce IL-1α-NTP 

translocation into the nucleus? Which factors control the sequestration of IL-1α in the 

nucleus during apoptosis? The identity of factors that allow for IL-1α expression in aged 

and senescent cells also requires further investigation. As methodologies for quantitative 

genomics, proteomics and metabolomics continue to advance, it is likely that IL-1α will be 

implicated as a key driver in many human pathologies and diseases. The numerous 

unresolved questions related to this powerful yet understudied cytokine certainly warrant 

further investigation.
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Figure 1. 
Molecular modifications of IL-1α that regulate its intracellular distribution and 

bioavailability. Constitutive or inducible expression of IL-1α produces full-length pro-

IL-1α. After synthesis, pro-IL-1α is localized into the nucleus, cytosol or lysosomal 

compartment or is displayed on the outer leaflet of the plasma membrane. Intracellular 

localization of pro-IL-1α can change in response to specific stimuli and pro-IL-1α can also 

be cleaved by calpain to generate IL-1α-NTP and a mature C-terminal IL-1α form. Both 

IL-1α-NTP and pro-IL-1α possess a functional NLS signal and bind HAX1 to allow 

translocation into the nucleus. In the nucleus, IL-1α-NTP binds transcription regulation 

factors and activates expression of proinflammatory cytokines and chemokines 

independently of IL-1R1 signaling. Pro-IL-1α can bind chromatin, which allows 
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sequestration of pro-IL-1α from the cytosol into the nucleus, thereby limiting aberrant 

IL-1α-dependent inflammation during apoptosis. In the cytosol, glycosylation of pro-IL-1α 
may allow pro-IL-1α translocation onto the outer surface of the cell. Plasma-membrane-

bound pro-IL-1α can be released by mannose, suggesting a lectin-like mechanism of 

anchorage of pro-IL-1α to the outer leaflet of the plasma membrane. In the cytosol, pro-

IL-1α can form a complex with inhibitory IL-1R2. Cytosolic pro-IL-1α can be 

polyubiquitinated, leading to its proteosomal degradation. Although several post-

translational modifications of IL-1α-NTP and pro-IL-1α have been reported, formal 

confirmation of their functional importance is currently lacking.
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Figure 2. 
Biological contexts of IL-1α-mediated signaling. (a) If a cell experiences supra-

physiological stress that leads to necrosis, cytosolic pro-IL-1α is passively released through 

the ruptured plasma membrane and triggers the ‘alarm’ call, a functional IL-1R1-dependent 

proinflammatory response. Pro-IL-1α association with inhibitory IL-1R2 in the cytosol 

interferes with pro-IL-1 alarmin function. Inhibitory IL-1R2 association with pro-IL-1α can 

be relieved by capsase-1-dependent proteolysis of IL-1R2. In stimulated cells, pro-IL-1α is 

displayed on the cell surface. Plasma-membrane-bound pro-IL-1α is fully biologically active 

and can trigger local inflammatory responses from living cells. Membrane-bound pro-IL-1α 
can be cleaved extracellularly by granzyme B, chymase or elastase to produce a C-terminal 

mature IL-1α fragment that is also biologically active. (b) In hematopoietic cells, the 

proinflammatory stimuli that induce pro-IL-1β expression also activate expression of pro-

IL-1α. However, pro-IL-1β is not biologically active and requires cleavage by capsase-1 in 

an inflammasome-dependent manner. This cleavage produces mature IL-1β and stimulates 

its secretion from the cell. Many pathogens express virulence factors that block caspase-1 
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activation and, therefore, maturation of pro-IL-1β and pyroptotic cell death. In these 

settings, pro-IL-1α can still be displayed at the cell surface and activate local IL-1R1-

dependent inflammatory responses, thus bypassing blockade of IL-1β processing and 

release. Under the conditions of pyroptotic cell death, both pro-IL-1α and mature IL-1β are 

released to activate local and systemic inflammation.
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Figure 3. 
IL-1α-driven inflammatory loop model. (a) IL-1α expression is induced in response to 

oxidative, genotoxic and metabolic stressors; hormonal stimulation; proinflammatory 

mediators that activate TNF-R1, IL-1R1 or TLR signaling; or infection. Without cell death, 

these stimuli trigger translocation of pro-IL-1α onto a plasma membrane and the appearance 

of membrane-bound pro-IL-1α, which activates IL-1R1-dependent chemokine and cytokine 

production from neighboring nonhematopoietic cells or tissue-resident macrophages. This 

initial IL-1α-dependent chemokine production leads to a recruitment of myeloid cells to the 

site of stress. Upon arrival, myeloid cells receive IL-1α-dependent IL-1R1 stimulation, 
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which leads to the expression of pro-IL-1α and pro-IL-1β. Therefore, in the context of alive 

nonhematopoietic or residential hematopoietic cells under stress, IL-1α-initiated signaling 

triggers the recruitment of cells from hematopoietic compartment, which can amplify and 

sustain IL-1R1-dependent inflammation through the new round of IL-1α and IL-1β 
production, thus closing an inflammatory loop of IL-1-IL-1RI-signaling-dependent 

chemokine production and recruitment of inflammatory cells to the site of stress that now 

can be sustained only by cells of hematopoietic origin. (b) Upon necrotic cell death due to 

damage, stress or infection, the IL-1α-driven induction of the inflammatory loop is triggered 

by the passive release of pro-IL-1α into the surrounding milieu, where IL-1α functions as an 

alarmin. The pro-IL-1α released from necrotic cells activates IL-1R1 signaling on 

neighboring cells, leading to the recruitment of hematopoietic cells that can further sustain 

inflammation as in a.
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