
Phosphate Balance in Continuous Venovenous Hemofiltration

Shilpa Sharma, MD and Sushrut S. Waikar, MD, MPH
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

To the Editor

Continuous renal replacement therapy (CRRT) was introduced to enable dialytic treatment 

of hemodynamically unstable patients for whom intermittent hemodialysis could be difficult 

to administer.1 CRRT has potentially harmful unintended effects, including excessive 

removal of amino acids, trace elements, and electrolytes such as phosphate.2 Phosphate is 

the most abundant intracellular anion and is essential for multiple biological functions. 

Because hypophosphatemia is a complication reported in >10% of patients undergoing 

CRRT,3–5 we investigated phosphate balance during continuous venovenous hemofiltration 

(CVVH), hypothesizing that CRRT leads to a negative phosphate balance despite protocol-

driven phosphate repletion strategies and normalization of serum phosphate levels.

We studied 35 patients with acute kidney injury who underwent CVVH by using a partial 

effluent collection device that diverted ~1% of the total effluent volume to a collection bag. 

CVVH was performed using biocompatible polyethersulfone membranes, bicarbonate or 

citrate (phosphate-free) replacement solution delivered prefilter at rates of 1,600–4,000 

mL/h, and blood flow rates of 200–250 mL/min. We calculated phosphate balance by 

subtracting urinary and CVVH losses from dietary (enteral or parenteral) intake. Baseline 

characteristics are described in Tables 1 and S1. We found a significant correlation between 

total effluent volume and net phosphate removal (Fig 1; r = 0.86; P < 0.001). The lowest 

recorded serum phosphate concentration during the study was 2 mg/dL (median, 2.6 [range, 

2–8.6] mg/dL). According to reference laboratory values (2.5–4.3 mg/dL), 34.2% of patients 

had overt hypophosphatemia. All patients were in negative phosphate balance during CVVH 

despite protocol-driven phosphate repletion strategies (Table S2 and Fig S1). Our estimates 

of negative phosphate balance are slight underestimates because we did not collect stool, 

which may contain ~500 mg/d of phosphate.6 Using univariate regression analyses, the 

predictors of natural log–transformed net phosphate balance were age (β coefficient, −0.02; 

P = 0.05), medical versus surgical intensive care unit (β = −0.60; P = 0.02), pre-CVVH 
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serum phosphate level (β = 0.19; P = 0.004), effluent volume (β = 0.0047 [per 1 L]; P < 

0.001), and days of CVVH (β = 0.26; P < 0.001). We found no association between 

phosphate balance and in-hospital mortality (P = 0.1; OR, 2.26; 95% CI, 0.76–6.70). Of the 

15 patients for whom balance studies were performed for at least 3 days, 87% required 

intravenous phosphate repletion even though they were hyperphosphatemic at CVVH 

initiation. Negative phosphate balance was highest at CVVH initiation, reflecting phosphate 

excess. Although daily phosphate balance became less negative over time as steady state was 

achieved and nutrition was introduced, it remained persistently negative even after a week of 

CVVH (Table S3). In the 6 patients who had serial CVVH effluent collections for 7 

consecutive days, cumulative net phosphate balance ranged between −6.1 and −13.7 

(median, −8.9) g. We found a persistent net negative phosphate balance even on day 7 of 

treatment with CVVH (range, −449 to −1,259 mg). Our calculations of negative phosphate 

balance are underestimates because we did not measure phosphate losses in gastrointestinal 

secretions or surgical drains due to concerns over feasibility.

In maintenance hemodialysis, the initial decrease in serum phosphate level during the first 

phase of dialysis is followed by a stable plateau phase and then a postdialysis rebound as 

phosphate moves from the intracellular to extracellular compartments.7 Continuous 

modalities, by contrast, are able to remove phosphate more efficiently because of the 

extended time of therapy, which allows removal of phosphate as it moves 

transcompartmentally.8 In the VA/NIH Acute Renal Failure Trial Network, which examined 

the intensity of renal support in acute kidney injury, hypophosphatemia was more common 

in patients randomly assigned to higher intensity CRRT and hemodialysis (17.6% vs 

10.9%).9 Negative phosphate balance may be desired early in the course of treatment, but it 

may be detrimental during prolonged courses of CVVH. Because the sieving coefficient of 

small solutes such as phosphate is close to 1.0,3 clearance is nearly the ultrafiltration rate. 

Since phosphate is primarily intracellular and orchestrates several vital enzymatic steps, 

obligate CRRT losses from the intracellular pool may have important clinical consequences, 

perhaps even in the absence of overt serum hypophosphatemia. Whether phosphate is 

mobilized from bone, muscle, or red blood cell stores during CRRT-induced phosphate 

depletion is unknown and may underlie potential complications. Strategies to avoid 

excessive phosphate depletion during prolonged CRRT may be prudent. In addition, the 

potential clinical implications of such depletion in the critically ill—including effects on 

diaphragmatic or cardiac muscle function, red blood cells 2,3-diphosphoglycerate levels, and 

the affinity of hemoglobin for oxygen—deserve further study.
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Figure 1. 
Relationship between effluent volume and net phosphate removal during CVVH. Each point 

represents data from an individual patient; symbol type identifies the day of CVVH: 1, open 

squares; 2–3, open circles; 4–5, closed diamonds; 6–7, closed circles. Y axis, total amount of 

phosphate measured in effluent during the course of CVVH; x axis, total effluent volume 

during CVVH.
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Table 1

Baseline Characteristics of Study Participants and Delivered CRRT

Parameter Value

Demographics

  Age (y) 60 (25–80)

  Male sex (%) 72

  Weight (kg) 92.4 ± 19

Laboratory parameters at CRRT onset

  Serum urea nitrogen (mg/dL) 77 (23–242)

  Creatinine (mg/dL) 3.9 ± 1.5

  Phosphate (mg/dL) 6.2 ± 1.8

Delivered CRRT

  Treatment mode CVVH

  Treatment duration (d) 6 (5–9)

  CRRT dose (mL/kg/h) 23.2 ± 6

  Effluent collections per patient (d) 2 (1–7)

Phosphate kinetics

  Net nutritional supplementation (mg) 143 (0–2,355)

  Net intravenous supplementation (mg) 310 (0–1,550)

  Net phosphate removal (g) 1.4 (0.7–6.5)

  Daily phosphate balance (g) −1.2 (−0.2 to −6.5)

Outcomes

  In-hospital mortality (%) 71

  RRT dependence at discharge (%) 23

  Recovery (%) 6

Note: Values for continuous variables given as mean ± SD or median (range), as appropriate.
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