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Impact microindentation is a novel method for measuring the resistance of cortical bone to indentation in pa-
tients. Clinical use of a handheld impact microindentation technique is expanding, highlighting the need to stan-
dardize the measurement technique. Here, we describe a detailed standard operation procedure to improve the
consistency and comparability of the measurements across centers.
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1. Introduction

Microindentation has emerged as a novel technique for the mea-
surement of tissue-level material properties of cortical bone. Unlike tra-
ditional microindentation involving angled tips with sharp corners (e.g.,
Rockwell, Vickers, Berkovich), extensive surface preparation is not nec-
essary with the new microindentation technology for bone assessment
called Reference Point Indentation (RPI). RPI devices currently available
for research utilize different methods of microindentation: 1) cyclic
microindentation; and 2) impact microindentation, whereby the
“micro” denotes the length scale of the indentation. Both approaches in-
dent bone using a stainless steel probe with a spheroconical tip (2.5 pm
or 10 um radius, respectively). The former technique measures the force
vs. displacement response of bone tissue to indentation via cyclic load-
ing and unloading between 0 N and up to 10 N at 2 Hz. Although cyclic
microindentation was used in living humans when the technology was
initially developed (Diez-Perez et al., 2010; Guerri-Fernandez et al.,
2013), currently it is primarily used for laboratory testing of ex vivo
samples or animals (BioDent® Reference Point Indenter, Active Life
Scientific, Santa Barbara, CA, USA). The latter method, impact
microindentation, is now utilized in living humans, and is performed
using a hand-held RPI device (OsteoProbe® RUO Reference Point
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Indenter, Active Life Scientific, Santa Barbara, CA, USA) that imparts a
single impact load to the bone surface. The handheld OsteoProbe is
more amenable for clinical use than the BioDent, which requires a
stand to perform measurements in human patients (Randall et al.,
2013). Both techniques have been recently reviewed (Allen et al., 2015).

These indentation methods have previously been referred to by dif-
ferent names. Here we propose the use of impact microindentation
(IMI) to describe the indentation method for the clinical device
(Osteoprobe RUO) and cyclic reference point microindentation (CMI)
for the laboratory device (BioDent), in order to unify the nomenclature
going forward.

Since the use of both devices is expanding, there is a critical need for
standard measurement procedures in order to optimize consistency
across different centers and thereby permit multicenter comparisons.
For this reason, and since the use of IMI in clinical studies is growing
(Farr et al., 2014; Malgo et al.,, 2015; Duarte Sosa et al., 2015;
Mellibovsky et al., 2015; Rudang et al., 2015; Sundh et al., 2015), a
group of investigators with direct experience in their use proposes a
standardized procedure detailed herein.

2. Materials and methods
2.1. Methodology of the measurement

A detailed step-by-step description of the measurement procedure
is hereby explained. The experience of the different centers of the co-

2352-1872/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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authors is the common basis for the protocol measurement we propose.
Fig. 1 A-C depicts how the procedure is performed in real patient
measurements.

1.

10.

11.

12.

13.

14.

Position the patient in decubitus supine position for better comfort.
The non-dominant tibia is selected for the measurement unless
some local contraindication is present (see below), in which case
the contralateral side can be used.

. Position the leg in external rotation to orient the flat surface of the

medial tibia diaphysis horizontal (i.e., parallel to the exam table).

. Mark the mid distance between the medial border of the tibia pla-

teau and the medial malleolus using a measuring tape.

. Perform a careful disinfection of a wide area of the anterior mid-

tibia region using a chlorhexidine solution or any other local
disinfectant.

. Perform local anesthesia infiltration by inserting a thin syringe nee-

dle both subcutaneously and in the periosteal surface. Lidocaine 2%,
mepivacaine 2% or equivalent, with or without adrenaline, can be
used.

. Place the BMSi-100 reference material cube, clamped within the

standard holder, on a firm surface.

. While local anesthesia is taking over, the operator, ideally assisted

by another person that operates the computer, wears sterile gloves
after hand washing or disinfecting with a topical solution. The oper-
ator, for an optimal procedure, remains blinded to the computer
screen.

. Insert a sterile probe into the Osteoprobe.
. Pierce the skin and periosteum at the marked mid diaphysis point of

the medial tibia, until reaching the bone cortex.

Without losing probe contact with the bone surface, adjust the
angle of the device to become perpendicular to the tibia surface,
with a variation degree inferior to 10°, and slide the outer housing
of the device toward the patient's leg to initiate a measurement
(see below for details).

For every indentation, the body of the device is pulled down slowly
and smoothly for a 2 to 3 s period.

The first measurement should be systematically disregarded since
there is often inadequate penetration of the probe through the
periosteum.

After the measurement, slide the probe to a new location at least
2 mm away from the prior measurement, re-adjust the angulation
of the device, and perform another measurement. Do this until 8-
10 measurements are obtained without pulling the probe out of
the skin.

Remove those results considered as not valid (see below for discus-
sion of invalid results). At least 5 valid measurements must be ob-
tained to consider the procedure acceptable.

15. After the set of measurements in the bone have been completed and

the invalid measurements removed, the normalization phase starts
following the software indications, by indenting eight times in the
BMSi-100 Reference Material, also keeping perpendicularity to the
surface and at the same speed as in the tibia.

16. The screen will then display the result as the bone material strength

index (BMSi).

2.2. Some technical considerations to be taken into account

Every indentation applies a preload force of 10 N at which point a trig-
ger system releases a mechanism that applies an additional 30 N force
at high speed, making a microscopic indent in the cortex of the tibia.
Since perpendicularity to the tibia flat surface is critical, it is advisable
that, ideally, an assistant can help by taking a different angle of view.
The need for taking eight to ten measurements is based on the mini-
mal variability achieved (Fig. 2) taking into account that the bone sur-
face has some intrinsic irregularities.

The measurements can be obtained in two parallel lines of five inden-
tations each, following the longitudinal axis of the tibial diaphysis, al-
though measurements in a circle may also be performed. Usually the
elasticity of the skin permits relocation of the probe without removing
the probe from the initial skin piercing. Close proximity to the borders
of the tibial diaphysis should be avoided.

Once the ten measurements are completed, those considered not
valid should be removed. Currently, there is no automated system in-
corporated to the software to remove invalid measurements. Thus, as
of today, we consider that a measurement can be considered invalid
if: 1) The measurement is flagged by the software because it lies out-
side the limits of the “green zone” provided by the software; or 2)
When the observer notices that the “texture” of the indented bone is
grossly abnormal (e.g., like indenting “cork “).

On occasion, before starting the actual indentation, the device cap-
tures a false signal and a grossly abnormal value is shown in the
screen and should be removed. The decision of removing a measure-
ment should be taken in real time, ideally by a second observer to
minimize potential bias.

BMSi, Bone Material Strength index, is defined as 100 times the har-
monic mean of indentation distance increase from impact (IDI) into
a standard calibration material, H(IDI(BMSi-100)), divided by the IDI
into the bone, IDI (Bone).

When the skin is fragile (i.e. older individual or in patients on gluco-
corticoids) sometimes a second or a third piercing is performed to
avoid a scratch in the skin, to complete the set of ten measurements.
Each time the skin is pierced anew the first measurement should be
discarded. Likewise, in young individuals with tough skin, two to
four points of skin piercing may be necessary to prevent the probe

Fig. 1. A. Infiltration with subcutaneous local anesthesia; B. Piercing with the test probe until reaching the periosteum. Then the probe must be placed perpendicular to the bone surface; C.
Indentation in the BMSi-100 Reference Material, also keeping perpendicularity to the surface and at the same speed as in the tibia. See text for details.
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Fig. 2. By examining the average cumulative variability of increasing number of
indentation sites, we can optimize for the number of indentations needed to converge
toward the minimum variation. Standard error of the mean, a statistic for the standard
deviation of the estimated population mean, is computed for successive indentations,
e.g. SEM of the first two indentations, then SEM of the first 3 indentations, etc. These
SEMs are then averaged over a 30 unique subjects to determine the average variation
for each subject as a function of the number of indentations. As the indentation
numbers increase, the variability is reduced and thus the likelihood of an outlier
measurement skewing the mean is also reduced. The exponential fit of this data
suggests a value BMSi value of 2.23 is unavoidable in this cohort. At 8-10 indentations,
the average SEM value ranges from 3.18 to 2.94 BMSi units, and this should provide
magnitude of the detectable difference in this population.

from suffering lateral tension by the skin itself that might interfere
with the measurement.

For longitudinal measurements the procedure should be repeated
using the same protocol. The same tibia is indented and in order to en-
sure that the measured area is comparable with previous measure-
ments, the location of the mid diaphysis of the tibia should be
carefully targeted.

It is recommended that a new probe be used for every measurement
(i.e., between patients) since otherwise the precision of the technique
can be affected because the interaction conditions between the base of
the tip and the mechanisms of the device may be modified.

Careful training is crucial to ensure reliable measurements. Training
should include indentations on reference materials (BMSi-73 &
BMSi-100) until consistently achieving values of 100 + 1.5 for BMSi-
100 and 73 + 2.0 for BMSi-73, with standard deviations <1.5 for
both. Then, training in cadavers is advisable. All this process should
be done under close supervision of an experienced user.

2.3. Contraindications for the procedure

The contraindications for making impact microindentation include
local or systemic problems that potentially could interfere with the
technique or constitute a risk for the patient (Table 1). Patients on anti-
coagulants can be measured.

To date, based on the experience of the authors of this manuscript,
only two complications from over >1300 procedures have been

Table 1
Contraindications for impact microindentation.

Local edema?®

Local skin infection or cellulitis®

Prior clinical or stress fracture in the tibia diaphysis®

Dermatological lesions in the area of measurement?®

Focal tibial lesions like in primary or metastatic tumor, Paget's disease, Gaucher, etc.?
Osteomyelitis of the tibia®

Systemic infection or fever (unless unrelated to infection)

Severe obesity

Any other condition in the opinion of the operator

Allergy to lidocaine or alternative local anesthetic used

2 In these cases, the contralateral tibia, if free of the problem, can be used.

observed; one case of mild anaphylactic reaction to local anesthetic
that was treated with diphenhydramine and resolved; and one case of
mild skin infection in a kidney transplant recipient that quickly resolved
with antibiotics. No local pain, bone damage or other issue in the in-
dented tibia has been observed.

3. Discussion

We describe a common protocol followed in the authors' centers for
impact microindentation measurements in clinical patients. This way
we aim to improve the reproducibility of the test when performed by
different observers and/or at different centers.

Bone mineral density (BMD) is a strong, independent predictor of
bone propensity to fracture (i.e. resistance to trauma) in the average pa-
tient, most notably in postmenopausal osteoporosis. However, there are
clinical situations where bone resistance to trauma is not well explained
by bone density levels and, also, most of the low-trauma fractures occur
in individuals with BMD levels above the osteoporosis threshold. There-
fore, other components besides density likely play a role in the capabil-
ity of bone to absorb energy and resist a traumatic impact without
fracturing. The recent development of bone microindentation has
opened the possibility of testing the ability of bone to resist the impact
of a tiny probe in creating microscopic cracks in the surface of cortical
bone. Several clinical experiments have shown worse microindentation
properties in groups of patients as type 2 diabetes mellitus (Farr et al.,
2014), fracture in patients with osteopenia (Malgo et al., 2015), HIV-
infected individuals (Guerri-Fernandez et al., 2016), or glucocorticoid-
treated patients (Mellibovsky et al., 2015) in spite of a relatively
preserved or normal BMD. Therefore the technique captures some of
the non-density components of bone strength with the advantage of
potentially being applicable in clinical practice.

4. Possible determinants of BMSi

The impact microindentation measurement is a unique mechanical
assessment of bone because it involves a micron-size tip engaging the
tissue at a very high loading rate (Table 2).

Identification of the characteristics of cortical bone that influence
BMSi is an active area of research, and the clinically important determi-
nants of BMSi have yet to be identified. Given the size of the indenter tip,
and knowledge about the hierarchical organization of bone's constitu-
ents at different length scales (Rho et al., 1998), it is possible to surmise
what bone features may influence the measurement. Thus, BMSi likely
depends on a number of factors that could affect the resistance of the
tissue to IMI including: i) the primary collagen fibril orientation relative
to the indent direction (axial vs. transverse orientation), ii) the cross-
linking profile of collagen I (proportion of immature to mature
crosslinks as well as the amount and type of glycation-mediated, non-
enzymatic crosslinks), iii) the relative amount of mineral to matrix

Table 2
Differences in tips and loading rate among indentation techniques.

Characteristic OsteoProbe (IMI) BioDent (cRPI) Nanoindentation

Indenter shape 90° spheroconical 90° spheroconical Berkovich®

Material of test probe Stainless-steel Stainless-steel Diamond
Radius of indenter tip 10 pm 2.5 um -
Nominal indent size® 350 um 200 um 5 pum
Maximum force 40N 10N 0.03 N
Approximate 150 pm-260 um 30 pm-70 pm 0.1-1 pm
indentation depth
Time interval of loading 0.25 ms 167 ms© 100 ms
Effective loading rate 120,000 N/s 60 N/s 0.3 N/s

2 Berkovich, akin to 3-sided pyramid, is the most widely used tip geometry in the
nanoindentation of bone, but spheroconical tips can be accommodated.

b Diameter of indenter (IMI and cRPI) and edge of tip (nanoindentation) as observed by
SEM.

€ With cRPJ, there are two cycles of load-dwell-unload in 1 s (2 Hz).



184 A. Diez-Perez et al. / Bone Reports 5 (2016) 181-185

(degree of mineralization), and iv) the number of interlamellar inter-
faces (potential for sliding as dictated by mineral-collagen interactions).

Furthermore, bone is a viscoelastic-viscoplastic material, whose
elastic (e.g., modulus) and post-yield behaviors are dependent on the
rate of loading. The effect of loading rate on IMI or CMI measurements
is not known, but typically in load-to-fracture tests of cortical bone,
the post-yield energy dissipation (Hansen et al., 2008) and resistance
to crack growth (Zimmermann et al., 2014) decrease with increasing
strain rate, while elastic modulus increases. Thus, although BMSi
measured by IMI may correlate with traditional mechanical properties
of bone at the apparent level (independent of macrostructure but
not microstructure), the mode of deformation and the resulting time-
dependent mechanical behavior of the tissue is fundamentally different
between IMI and bending, tensile-compression-torsion, or fracture
toughness tests which are conducted at slow (i.e., quasi-static) loading
rates. Note that tissue-level properties derived from quasi-static
microindentation (1.67 x 103 N/s) do not correlate with mechanical
properties of human cortical bone derived from quasi-static tests at
the apparent level (Mirzaali et al., 2015) likely because apparent-level
properties also reflect microstructural features such as porosity and
osteonal area.

Since the age-related loss of cortical bone typically occurs near the
endosteal surface of long bones (Zebaze et al., 2010; Perilli et al., in
press) distant from the indentation sites at the periosteal surface, the
chance of indenting regions with relatively large pores (>100 pm) is
small. Any resorption spaces or Haversian/Volkmann's canals near the
indentation site would lower BMSi as bone tissue could be pushed
into the void spaces. To minimize the potential influence of these sur-
face cortical pores on BMSi, multiple IMI measurements are made,
thereby reducing the influence of a single measurement that may be
near a pore.

Scanning electron microscopy (SEM) images of indents from CMI
and IMI (Fig. 3) have revealed the presence of microcracks emanating
from the indentation site suggesting BMSi depends on the ability of tis-
sue to resist crack initiation and growth (i.e., fracture toughness). This is
certainly a possibility, but confirming the impact of these toughening
mechanisms on the BMSi measurement itself is rather difficult due to
the challenge of quantifying crack propagation near the probe tip during

cRPI

Fig. 4. High pCT rendering of an indents from IMI on a cadaveric tibia mid-shaft. There is
evidence of bone tissue piling-up above the surface.

IMLI. Pile-up of the tissue at the surface can also occur during IMI of
hydrated cadaveric tibia without surrounding soft tissue (Fig. 4)
suggesting that the tissue undergoes plastic flow as the OsteoProbe tip
indents the bone.

Findings from a recent finite element simulation of an OsteoProbe
indentation of equine cortical bone (Hoffseth et al., 2015) and nanoin-
dentation of ovine cortical bone with smaller 90°. spheroconical tip (ra-
dius = 0.6 um) (Mullins et al., 2009) suggest that yielding of the tissue
below the tip is pressure dependent and plastic deformation involves
frictional mechanisms. Thus, these simulations indicate that asymmet-
ric yield occurs during indentation as well the separation lamellar inter-
faces illustrating the complexities of the indentation modality.

In summary, there is still much to be learned about the age- and dis-
ease-related factors including the specific tissue composition and

IMI

Fig. 3. SEM (top) and pCT (bottom) images of indents from cRPI and IMI. Microcracks are visible in indent region by SEM suggesting damage formation and propagation is involved. The

depth of the indent is higher for IMI than for cRPL
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nanostructural attributes that influence BMSi. Nonetheless, this me-
chanical measurement of indentation resistance is unique and may pro-
vide additional information about bones' mechanical behavior beyond
the better-known mechanical properties of bone such as strength and
toughness. Thus, although considerable work needs to be done to better
understand exactly what properties of bone BMSi represents, defining
this should proceed in parallel with studies to better define the potential
clinical utility of this measurement. While delineating the biomechani-
cal basis of the BMSi measurement is clearly important from a scientific
perspective, the future of this technology rests ultimately with whether
BMSi will provide information beyond current fracture risk assessment
tools (e.g., DXA and FRAX) in terms of better identifying patients at
increased fracture risk.
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