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Electronic health records (EHRs) are an increasingly utilized resource for clinical research. While their size al-
lows for many analytical opportunities, as with most observational data there is also the potential for bias. One of
the key sources of bias in EHRs is what we term informed presence—the notion that inclusion in an EHR is not
random but rather indicates that the subject is ill, making people in EHRs systematically different from those not in
EHRs. In this article, we use simulated and empirical data to illustrate the conditions under which such bias can
arise and how conditioning on the number of health-care encounters can be one way to remove this bias. In doing
so, we also show when such an approach can impart M bias, or bias from conditioning on a collider. Finally, we
explore the conditions under which number of medical encounters can serve as a proxy for general health. We
apply these methods to an EHR data set from a university medical center covering the years 2007–2013.

Berkson’s bias; bias (epidemiology); confounding factors (epidemiology); electronic health records;
epidemiologic methods

Abbreviations: CCI, Charlson Comorbidity Index; CI, confidence interval; DUHS, Duke University Health System; EHR,
electronic health record; Sn, sensitivity.

Electronic health records (EHRs) are becoming an in-
creasingly common resource for clinical research. They
present the opportunity to analyze hundreds of thousands,
if not millions, of patients across a variety of health condi-
tions. This affords tremendous analytical flexibility that is
typically not possible with even large epidemiologic co-
horts. While these high-dimensional data present many op-
portunities, one of the primary challenges of EHR data is
that they are fundamentally observational. While the ana-
lytical biases in observational studies have been well noted
(1), there are unique challenges that arise in the analysis of
EHR data (2, 3). The primary concern, one that we address
here, is the possibility of “informed presence.”

We define informed presence as the notion that inclusion
in an EHR is not random but rather indicates that the sub-
ject is ill, making people in EHRs systematically different
from those not in EHRs. As other authors have noted, per-
sons contained within an EHR data set tend to be sicker
than the population to whom results are meant to be

generalized (4). Since people within the EHRs are observed
not randomly but only when they have a medical encoun-
ter, there is the potential for bias in the collected data. One
way this can manifest is that patients with more medical en-
counters have more opportunity to be diagnosed with various
conditions. We consider this to be analogous to Berkson’s
bias (5), a form of ascertainment bias in hospital-based stud-
ies that is particular to EHRs and administrative data. As has
been illustrated with Berkson’s bias, this can lead to spurious
associations between different diagnoses (6). Our goal in this
paper is to illustrate the conditions under which this problem
manifests in the analysis of EHR data and how it can be
controlled.

Motivating example

In our motivating analysis, we wanted to use data from
the EHRs of our university medical center (described
below) to understand the co-occurrence of 2 chronic
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diseases: diabetes mellitus and depression (7). To assess
the relationship, we extracted data from the EHRs and per-
formed a simple logistic regression analysis, regressing the
presence of depression onto diabetes. If we minimally
adjusted for age, sex, and race/ethnicity, people with diabe-
tes had 2.15 (95% confidence interval (CI): 2.05, 2.24) times
higher odds of being diagnosed with depression than persons
without diabetes. However, as described above, we consid-
ered that people who were more frequent visitors to the
medical center would have a greater opportunity to be diag-
nosed with each condition. Therefore, we conducted a sec-
ond analysis adjusting for number of health-care encounters.
This time we estimated an odds ratio of 1.36 (95% CI: 1.29,
1.42)—a meaningfully different effect estimate. We further
considered that perhaps people who are diabetic and/or
depressed are just sicker in general and have other comor-
bidity that may be confounding the relationship. Therefore,
we adjusted for a range of comorbid conditions and esti-
mated an odds ratio of 1.29 (95% CI: 1.23, 1.35). Finally,
we assessed what would happen if we adjusted for both the
number of medical encounters and comorbidity, and we ob-
tained an estimate of 1.11 (95% CI: 1.06, 1.17).

Partially due to other analytical concerns, we ultimately
decided that the model adjusting for only the number of en-
counters was best (7). However, we wanted to further
understand the role of confounding in this situation. Below
we describe the theoretical basis for confounding in EHR
studies, as well as the opportunity for additional biases if
we inappropriately adjust for the number of encounters.
Next we describe a simulation study created to explore this
issue and present the results. We then return to our EHR
data, illustrating these issues using real data. We finish
with some concluding thoughts.

The opportunity for confounding and M bias

We first consider the opportunity for bias due to con-
founding. Consider that a person with diabetes regularly
frequents a medical center. That person may be visiting the
medical center to receive treatment for diabetes, in which
case diabetes will likely be noted in the patient’s medical
record. This may be in the form of a billing code, laboratory
test, or medication prescription. However, it is possible that the
patient is seeing a physician not for diabetes but for another
reason (related or unrelated to diabetes) for which diabetes is
less likely to be noted. It is also possible that the person decides
to seek treatment at another facility, so the diagnosis of diabetes
is less likely to be noted during abstraction of the current EHR
—this would be of particular concern in the analysis of an
acute event such as a surgical procedure.

When analyzing EHR data, an important step is imple-
menting an algorithm to define the presence of the clinical
phenotype of interest, such as diabetes. To do so, one looks
across an array of data fields (e.g., diagnosis codes, labora-
tory tests, medications) to derive a diabetes phenotype (8).
Depending on the criterion, definitions of diabetes mellitus
(DM) will vary in their sensitivity and specificity. We can
imagine that each medical encounter has some probability,
Pr(DM), of being related to diabetes management and
therefore noted in the medical record. Across a set of

medical encounters, the conditional probability of observ-
ing diabetes given that the person has diabetes, Pr(DMobs|
DM), is referred to as the sensitivity of the phenotyping
algorithm. Quan et al. (9) assessed sensitivities based on
International Classification of Diseases, Ninth Revision,
codes across 32 common conditions. They found that sen-
sitivities for prevalence of a condition ranged from 9.3%
(weight loss) to 83.1% (metastatic cancer). Diabetes with
complications, for example, has a sensitivity of 63.6%.
Therefore, the more medical encounters someone has, the
more likely that the presence of diabetes will be detected.
However, another challenge can arise. Since phenotype al-
gorithms are generally designed to detect the prevalence of
a condition via ever/never algorithms (you either have the
condition or you don’t), the more health-care encounters
someone has the higher the probability of a false-positive
diagnosis. Such false-positive diagnoses, expressed through
specificity, may occur through a “rule-out” diagnosis, an
aberrant laboratory test, or miscoding. In the same study (9),
the comparable specificity was higher, but there still existed
an approximately 1% false-positive rate (99% specificity)
across various conditions.

A typical clinical question of interest may be whether 2
chronic conditions are related; for example, do persons
with diabetes have an increased risk of depression (sensi-
tivity = 56.6%)? To answer such a question, one would
typically regress the presence of depression onto the pres-
ence of diabetes (and other factors) in the form of a logistic
regression, as we did in our motivating example. As the
above scenario suggests, diabetics with more health-care
encounters are more likely to have diabetes noted in the
medical record. Similarly, depressed persons with more en-
counters are more likely to have depression noted. We can
picture this in a causal diagram (Figure 1A). In this sense,
we can consider the number of medical encounters to be a
confounder of the proposed observed diabetes-depression
relationship, as people with more encounters are more like-
ly to have their clinical condition noted in the EHR. To re-
solve this confounding, it is clear that conditioning on the
number of inpatient encounters removes this bias.

While the opportunity for confounding is clear from
Figure 1A, what is less evident is the potential for M bias
(10)—bias from conditioning on a collider. In the causal
literature, a collider is a variable that is an outcome of 2
other variables (11). Here, the number of health-care en-
counters is a result of one’s underlying disease state. There-
fore, while number of encounters is a confounder of the
observed diabetes-depression relationship, it is also a col-
lider of the actual diabetes-depression relationship. More-
over, as Greenland suggests theoretically (10) and others
have shown in simulation (12), as the strength of the actual-
observed relationship increases (i.e., Pr(DMobs|DM) → 1),
the greater the potential for M bias.

Finally, as the motivating example illustrates, there is
another potential source of confounding: general illness
(Figure 1B). It is possible that other disease states are driv-
ing both the presence of diabetes and depression. These
states may or may not be fully captured or known. In the
absence of such precise measurements, the number of en-
counters may be able to serve as a proxy for general illness,

Am J Epidemiol. 2016;184(11):847–855

848 Goldstein et al.



since sicker people are more likely to use the medical sys-
tem. Therefore, even if we have a perfect phenotyping
algorithm, there still may be utility to conditioning on the
number of medical encounters.

METHODS

Simulation study

To explore the potential for bias and the effect of adjust-
ment, we first performed a simulation study under 4 basic con-
ditions. Described further below is a fifth simulation that
assesses the use of number of encounters as a proxy for general
health. Figure 2 illustrates the causal diagrams for these condi-
tions. The first scenario (Figure 2A) is the basic confounding
scenario described above, where people with a chronic disease
have more medical encounters and the number of encounters
increases the probability of observing the condition. Here we
would expect controlling for number of encounters to improve
estimation. However, as Pr(DMobs|DM) approaches 1, we
would expect M bias to occur. Scenario 2 (Figure 2B) is
the no-collider scenario when Pr(DMobs|DM) < 1. However,
people with the chronic condition do not go to the doctor any
more than others. In this case, we would expect controlling for
the confounder to be beneficial, and we would not expect there
to be any M bias, since the number of encounters is not a

collider. Scenario 3 (Figure 2C) is the no-confounding scenario.
Here Pr(DMobs|DM) = 1, so the number of encounters has no
effect on whether one observes the condition. This would be
the case with a high-sensitivity phenotyping algorithm, where
the condition is likely to be captured. In this case, we do not
expect there to be any bias from not adjusting for number of
encounters, but there is the greatest potential for M bias.
Finally, scenario 4 (Figure 2D) is the null case, where there
is no impact of the number of medical visits. Here we would
expect there to be no effect of adjusting.

Each scenario had the same simulation structure:

1. We simulated an equal number of people with and with-
out “diabetes” (n = 2,000).

2. We simulated the presence of “depression.” We re-
peated each simulation twice, once under a null associa-
tion and once where diabetics had 25% increased odds
of depression.

3. We simulated a number of health-care visits. To corre-
spond with observed data, we had the number of visits
follow a lognormal (skewed) distribution. In scenarios
1 and 3, people with diabetes and/or depression had
more visits. In scenarios 2 and 4, all people had the
same number of expected visits.

4. For scenarios 1 and 2, we varied the probability that an
individual visit would yield either a diabetes (DM) or
depression (DEP) diagnosis. These probabilities were
10%, 25%, 50%, 75%, 90%, and 100%. Therefore, sce-
narios 1 and 2 had 36 cases each. We note that when
Pr(DMobs|DM) = Pr(DEPobs|DEP) = 1, scenarios 1 and
2 correspond to scenarios 3 and 4, respectively.

5. We next conducted 2 regression analyses:

a. Depression regressed on diabetes.
b. Depression regressed on diabetes, controlling for the

number of medical encounters.
6. We repeated this 500 times.

In the fifth simulation, we simulated a causal scenario
similar to Figure 1B. Here the goal was to assess the condi-
tions under which number of visits could serve as a proxy
for a true confounder, such as general health. To do so, we
varied the strength of the relationship between number of
visits and general health.

1. We generated a random variable indicating “overall
health.”

2. Using a logistic model, we simulated the presence of both
“diabetes” and “depression” as a function of “overall
health.”

3. We simulated the number of visits with varying degrees
of correlation (r = 0, 0.1, 0.25, 0.50, 0.75, 0.90, or 1)
with “overall health.”

4. We performed 4 regression analyses:

a. Depression regressed on diabetes.
b. Depression regressed on diabetes, controlling for gen-

eral health.
c. Depression regressed on diabetes, controlling for num-

ber of medical encounters.

No. of
Encounters

Observed
Diabetes

General
Illness

Depression

No. of
Visits

Diabetes Depression

Observed
Depression

Diabetes

B)

A)

Figure 1. Causal diagram illustrating number of health-care encoun-
ters as a confounder of the observed relationship between diabetes
and depression. A) Basic causal model, where number of health-care
encounters can serve as a confounder of the proposed (dotted line)
diabetes-depression relationship. B) Causal model in which number
of encounters may serve as a proxy for general illness.
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d. Depression regressed on diabetes, controlling for both
general health and number of encounters.

Our primary interest was in assessing the conditions under
which controlling for number of medical encounters could
serve as a proxy for general health. Therefore, for simplicity,
in these simulations Pr(DMobs|DM) = Pr(DEPobs|DEP) = 1,
removing the C-D and C-E pathways from Figure 1B. For
each scenario, across the 500 simulations, we calculated the
average bias and a 95% confidence interval. Simulation code
is provided in the Web Appendix (available at http://aje.
oxfordjournals.org/).

Data illustration

We next illustrate these points with real data. We abstracted
data from EHRs in the Duke University Health System
(DUHS). The DUHS consists of a network of community
outpatient clinics, as well as 3 hospitals. Approximately 80%
of Durham County, North Carolina, residents receive their
regular medical care from the DUHS (13). Using data from
2007–2013, we extracted information on all patients living in
Durham County. Since the DUHS is a referral system, by lim-
iting the data to Durham County residents we increased the
likelihood that we were observing local patients who received
their regular health care through the medical system.

For each person in the medical records, we abstracted his/
her age, sex, and number of encounters. Next we identified
which individuals had a range of comorbid conditions. Since
theory suggests that the effect of adjusting for number of en-
counters should be greatest when the sensitivity of the algo-
rithm defining the comorbid condition is lowest, we chose
comorbidities that had both high and low sensitivity, respec-
tively. We used the study by Quan et al. (9) for these pur-
poses. In our low-sensitivity case, we regressed the probability
of observing depression (sensitivity (Sn) = 56.6%) onto the
probability of observing weight loss (Sn = 9.3%). For our
high-sensitivity case, we regressed the probability of a myo-
cardial infarction (Sn = 72.4%) onto the probability of hyper-
tension (Sn = 78.6%).

For each association analysis, we performed 4 regressions.
We first regressed the outcome onto the exposure, adjusting
only for age and sex. Secondly, we adjusted for number of
medical encounters. To assess whether controlling for number
of encounters was simply the same as controlling for general
illness, we calculated the Charlson Comorbidity Index (CCI)
(14), a single summary measure of 19 comorbid conditions,
and adjusted for the score. Finally we adjusted for both the
number of encounters and the Charlson score. We computed
the estimated odds ratio for the exposure in each regression
and calculated the change in the log odds ratio from the base-
line (minimally adjusted) case. To illustrate the potential for
confounding, we also computed the median number of
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Depression

A)

DepressionDepression

Depression

No. of
Encounters

Observed
Depression

B)

DepressionDepression

Depression

No. of
Encounters

Observed
Depression

C)

DepressionDepression

Depression

No. of
Encounters

Observed
Depression

D)

DepressionDepression
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Figure 2. Four simulation strategies for relating number of health-care encounters to observed data. A) People who have the disease have
more health-care encounters, making number of encounters a collider of the actual relationship. Having more encounters increases the likeli-
hood of observing the condition, making it a confounder of the observed relationship. B) The number of health-care encounters is only a con-
founder. C) The phenotyping algorithm is perfect, so the number of encounters is only a collider. D) The number of encounters is not related to
actual or observed disease.
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Figure 3. Simulation results from different phenotyping algorithm sensitivities (scenarios 1 and 3). The figure shows the estimated bias when
people with disease are more likely to have more health-care encounters. As the quality of the phenotyping algorithm increases (moving from
part A to part F and from left to right within the figure), we expect less bias due to confounding (▪, unadjusted). Adjusting for the number of
health-care encounters removes this bias (▴, adjusted). As the quality of the phenotyping algorithm increases, the potential for M bias increases
(part F).
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Figure 4. Simulation results from different phenotyping algorithm sensitivities (for scenarios 2 and 4). The figure shows the estimated bias
when people with disease are no more likely to have more health-care encounters than people without disease. As the quality of the phenotyp-
ing algorithm increases (moving from part A to part F and from left to right within the figure), we expect less bias due to confounding (▪, unad-
justed). Adjusting for the number of health-care encounters removes this bias (▴, adjusted). However, since the number of encounters is no
longer a collider, the potential for M bias is removed (part F).
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encounters for people who had neither the outcome nor expo-
sure, either the outcome or exposure, and both the outcome
and exposure. Note that the regression estimates do not reflect
actual expected associations, since other confounders were
not considered.

We defined the comorbid conditions using the algo-
rithms presented by Quan et al. (15). All analyses were per-
formed in R 3.1.2 (R Foundation for Statistical Computing,
Vienna, Austria) (16).

RESULTS

Simulation results

Figures 3 and 4 show the simulation results derived from
the various scenarios. Results were very similar under the alter-
native hypothesis (association between diabetes and depression)
and the null hypothesis, so we present only the results obtained
under the alternative hypothesis. In scenario 1, confounding
bias is greatest when Pr(DMobs|DM) or Pr(DEPobs|DEP) is rel-
atively low. Adjusting for the number of encounters removes
this bias. However, as Pr(DMobs|DM) and Pr(DEPobs|DEP)
both increase, confounding bias attenuates, and M bias
increases. M bias is larger than confounding bias when
Pr(DMobs|DM) ≥ Pr(DEPobs|DEP) ≥ 0.9, having its strongest
effect when Pr(DMobs|DM) = Pr(DEPobs|DEP) = 1 (scenario
3). However, even in this case the estimate is only slightly
biased (bias = −0.21, 95% CI: −0.400, −0.039).

In the second set of simulations, we removed the path-
ways between the disease and the number of encounters
(Figure 2B). In this case, we would expect confounding but
no M bias. Our simulations support this (Figure 4), since we
see evidence of confounding but no M bias, as the adjusted
estimates are essentially unbiased. The overall confound-
ing bias in scenario 2 is less than that in scenario 1. As
Pr(DMobs|DM) → Pr(DEPobs|DEP) → 1 (scenario 4), we
notice that there is no difference between the adjusted and
unadjusted estimates.

In the final set of simulations, we explored the conditions
under which number of encounters could serve as a proxy
for general health. Figure 5 shows the results obtained
under varying correlations between number of encounters
and general health. As expected, the effect estimate is bi-
ased under no adjustment and unbiased after adjustment for
general health (the true model). When only information on
number of encounters is used in the model, the correlation
between general health and number of encounters needs to
be relatively strong (r > 0.75), to serve as a reasonable
proxy. There was no observed bias from adjusting for both
encounters and general health.

Data results

We assessed how adjustment performs in a real data set
while evaluating associations between comorbid conditions
that should be captured with low and high sensitivity, respec-
tively. We first note that whether someone had both con-
ditions, 1 condition, or neither condition was meaningfully
related to the number of medical encounters, highlighting
the potential for confounding (Table 1). After adjustment for

number of encounters (Table 2) in our low-sensitivity-condition
scenario, depression–weight loss, the association decreased
by 0.52 units on the log odds scale (we reemphasize that these
are not causal associations but illustrative). This attenuation
was greater than that obtained by adjusting for the CCI (0.35
log odds units). Moreover, adding the Charlson score to the
number of encounters had a minimal impact. In our high-
sensitivity scenario, myocardial infarction–hypertension, we
saw a much smaller attenuation in the log odds ratio after
adjustment (0.16 log odds units). Notably, the CCI produced
much larger attenuation (0.39 log odds units), which was not
amplified by the addition of number of encounters. Finally,
the coefficient for correlation (r) between the CCI and the
number of encounters was 0.47, suggesting that number of

Table 1. Median Number of Health-Care Encounters According to
Disease State in Electronic Health Records From the Duke University
Health System, Durham County, North Carolina, 2007–2013

Sensitivity,
%

Median No. of Medical
Encounters

Without
Condition

With
Condition

Low sensitivity

Depression 56.6 6 38

Weight loss 9.3 7 45

High sensitivity

Myocardial infarction 72.4 7 41

Hypertension 78.6 5 31

Correlation Between Disease Severity and No. of Visits

B
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Figure 5. Estimated bias from a simulation allowing number of
health-care encounters to serve as a proxy for disease severity.
There needs to be a relatively strong correlation (r > 0.75) in order for
number of medical encounters to serve as a proxy for general health.
▪, unadjusted; ●, adjusted for general health; ▴, adjusted for number
of visits; ♦, adjusted for both general health and number of visits.
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medical encounters would serve as a moderate proxy for general
health.

DISCUSSION

In this simulation study, we illustrate the potential for bias
in the analysis of EHR and administrative data. If the presence
of a medical condition is not captured with high probability
(i.e., high sensitivity), there is the potential for inflation of the
effect estimate for association with another such condition.
This potential for bias is exacerbated when the medical condi-
tion also leads to more patient encounters—something our
data example illustrates and other authors have suggested (4).

Theory suggests, and our simulations confirm, that condi-
tioning on the number of health-care encounters can remove
this bias. The impact of conditioning is greatest for diagnoses
captured with low sensitivity. While we did not explore the
role of specificity explicitly, one may expect that this would
also be the case for diagnoses captured with low specificity.
However, as the work validating phenotyping algorithms has
shown, specificity is usually quite high (approximately 99%)
while sensitivity can be more variable (9), suggesting that
the low-specificity case is of lesser concern.

While conditioning on the number of encounters seems to
be a simple solution, analysis of causal diagrams suggests that
there is the potential for M bias, or bias from conditioning on
a collider. We would expect M bias to be largest when sensi-
tivity (and specificity) was highest. This was, in fact, observed
to be the case. As Pr(Outcomeobs|Outcome) = Pr(Predictorobs|
Predictor) approached 1, the degree of bias associated with
conditioning increased. Moreover, this is the same scenario
where confounding bias is least noticeable. This suggests
that researchers ought to be aware of the sensitivity and
specificity of their phenotyping algorithms. However, as
theory suggests (10) and others have illustrated (12), M bias
is usually smaller than confounding bias. This was con-
firmed in our analysis, where even the most extreme case,
Pr(Outcomeobs|Outcome) = Pr(Predictorobs|Predictor) = 1,
still provided nominal 95% coverage of the true parameter
value. Therefore, if one is not certain of the sensitivity and
specificity of the phenotyping algorithm, it seems prudent
to consider conditioning on the number of encounters.

We also considered the situations in which the number
of medical encounters could serve as a proxy for general
health—something challenging to ascertain from claims-
based data. The simulation study suggests that there needs
to be a relatively high correlation between the two measures
(r > 0.75) in order to do so. We observed only moderate
correlation (r > 0.47) in our data analysis using the CCI to
define general health. Our empirical evaluation suggests that
controlling for general health is distinct from controlling for
number of encounters. Where informed presence is expected
(the low-sensitivity condition), controlling for number of en-
counters provides greater attenuation than does the Charlson
score. However, when informed presence is not expected
(the high-sensitivity condition), the Charlson score provides
more attenuation. Interestingly, the presence of both metrics
seems to have a minimal effect on overall attenuation, sug-
gesting that while the mechanisms may be different, they are
capturing overlapping information. This is a point worthy of
further consideration.

We have couched the possibility of confounding and M
bias through the sensitivity of a phenotyping algorithm.
However, it is important to note that this is only one means
through which informed presence may occur. An algorithm
may have perfect sensitivity but still have Pr(DMobs|DM) < 1.
For example, if someone seeks care at multiple facilities or
moves to a different facility and his/her medical records are
not forwarded to the new system, there would be similar cap-
ture issues. As other authors have noted, Berkson’s bias can
be construed as a missing data problem (6, 17), which is also
the case here. We have chosen to focus on the sensitivity
component, because this is particularly unique to EHRs. It is
likely that other approaches may be needed to address these
other sources of bias, and this is worthy of further research.

While we have introduced the notion of informed presence
as a form of Berkson’s bias, we emphasize that this is only
one way in which informed presence can manifest. The fact
that people who interact with a medical center are usually
sicker than the general population can lead to different biases,
each likely requiring different solutions. Moreover, it is
important to note that all EHR analyses are inherently condi-
tional on people having at least 1 health encounter. While we
assessed bias by comparing our estimates with the true
population-level parameter value, future work ought to more

Table 2. Change in Estimated Associations Between Depression and Weight Loss and Between Myocardial Infarction and Hypertension After
Adjustment for Number of Health-Care Encounters, Durham County, North Carolina, 2007–2013

Model

Depression–Weight Loss (Low Sensitivity) Myocardial Infarction–Hypertension (High Sensitivity)

OR 95% CI Change in
Log Odds

Change
in OR OR 95% CI Change in

Log Odds
Change
in OR

Minimal adjustmenta 3.98 3.81, 4.17 12.93 11.75, 14.25

+ No. of medical encounters 2.37 2.26, 2.50 −0.52 −1.61 11.02 9.99, 12.15 −0.16 −1.91

+ CCI 2.82 2.69, 2.96 −0.35 −1.16 8.78 7.94, 9.71 −0.39 −4.15

+ No. of encounters and CCI 2.30 2.18, 2.42 −0.55 −1.68 8.66 7.82, 9.58 −0.4 −4.27

Abbreviations: CCI, Charlson Comorbidity Index; CI, confidence interval; OR, odds ratio.
a Results were adjusted for age and sex.

Am J Epidemiol. 2016;184(11):847–855

854 Goldstein et al.



fully assess how EHR-based inference pertains to the general
population.

This study had several strengths and weaknesses. Encour-
agingly, our simulation results correspond well with both the
findings of previous simulation studies (12) and epidemio-
logic theory (10). Moreover, we were able to empirically
illustrate the effect of conditioning with anticipated results.
Overall, the proposed solution is intuitive and easy to imple-
ment. The primary weakness of this study was the simplicity
of the simulation study and analysis. Disease relationships are
obviously much more complex than illustrated in our causal
diagrams and corresponding analyses. It is possible that a
more complex, and realistic, analysis would inherently control
for such capture biases—perhaps by controlling for factors
like disease severity. Moreover, as more complex EHR data
become more accessible, phenotyping algorithms are becom-
ing more complex (8) and ultimately more precise, making
such solutions less necessary. Even so, it is important to be
wary of such biases and how they may affect analyses and
inference. Finally, the results suggest that it is important to be
aware of the sensitivity of one’s phenotyping algorithm. How-
ever, unless researchers perform a validation study within
their own EHR system, it is challenging to know exactly
which conditions are not well captured. Studies like those of
Quan et al. (15) can serve as a guide, but it is hard to know
how well the results will transfer to different systems.

Overall, we illustrate a potential bias inherent in the analy-
sis of EHRs and administrative data and propose a simple
solution. While there is the potential for residual M bias, the
conditions under which this may occur are (potentially) pre-
dictable and can be avoided. As EHR data become more of a
standard for clinical analyses, identification of such problems
with corresponding solutions will become more salient.
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