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Abstract

Objective—Combined source imaging techniques and directional connectivity analysis can 

provide useful information about the underlying brain networks in a non-invasive fashion. Source 

imaging techniques have been used successfully to either determine the source of activity or to 

extract source time-courses for Granger causality analysis, previously. In this work, we utilize 

source imaging algorithms to both find the network nodes (regions of interest) and then extract the 

activation time series for further Granger causality analysis. The aim of this work is to find 

network nodes objectively from noninvasive electromagnetic signals, extract activation time-

courses and apply Granger analysis on the extracted series to study brain networks under realistic 

conditions.

Methods—Source imaging methods are used to identify network nodes and extract time-courses 

and then Granger causality analysis is applied to delineate the directional functional connectivity 

of underlying brain networks. Computer simulations studies where the underlying network (nodes 

and connectivity pattern) is known were performed; additionally, this approach has been evaluated 

in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by 

EEG and/or MEG.
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Results—Localization errors of network nodes are less than 5 mm and normalized connectivity 

errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two 

focal epilepsy patients were studied and the identified nodes driving the epileptic network were 

concordant with clinical findings from intracranial recordings or surgical resection.

Conclusion—Our study indicates that combined source imaging algorithms with Granger 

causality analysis can identify underlying networks precisely (both in terms of network nodes 

location and internodal connectivity).

Significance—The combined source imaging and Granger analysis technique is an effective tool 

for studying normal or pathological brain conditions.

Index Terms

Directed transfer function (DTF); Dynamic seizure imaging (DSI); Electromagnetic source 
imaging (ESI); Granger causality analysis; High-density EEG; Inter-ictal spikes (IIS); MEG; 
Network

I. Introduction

The brain is organized as an interconnection of many networks and neural circuits which 

interact with each other constantly [1]–[3]. In order to understand the functional connections 

among different brain regions and networks, it is important to detect and analyze the nature 

of such connections. Conventional methods such as coherence [4], [5], measure the 

functional connectivity or the existence of such connections, trying to answer the question of 

which regions are demonstrating highly correlated activity [6]. While finding functional 

connectivity has been a major focus in neuroscience research, the more interesting problem, 

however, is to study the effective connectivity of underlying neural networks. A crucial step 

towards this end, is to study the direction of connections among regions of interest in the 

brain, to investigate for example if regions A and B are correlated (functional connectivity), 

is A driving B or is B driving A or neither is influencing the other directly (directional 
connectivity). In the previous example, it might turn out that A and B are being driven by 

another region C, thus resulting in the determination of the effective connectivity [7], [8]. 

Thus, directional connectivity analysis is a crucial step in further understanding and 

interacting with the brain, either to study brain functions or dysfunctions or to intervene in 

case of pathophysiological processes [3], [9].

Granger causality analysis [10]–[12] provides such a framework, with the idea that if a time 

series Y is causally driving a time series X, then the previous samples of Y should improve 

the predictions of future values of X compared to the case where only previous samples of X 

are used to predict future values of X. This idea can be generalized for application to 

multivariate time series (as opposed to the bivariate example with X and Y) which makes it 

suitable for studying brain signals [13], [14].

Modeling the activity of brain regions using multivariate autoregressive (MVAR) models, 

directional connectivity can be inferred from activation of different brain regions. Based on 

the coefficients estimated from the MVAR model, Kaminski and Blinowska proposed a 

spectral measure called directed transfer function (DTF) which provides a spectral measure 
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for directed connections among the modeled time series by the MVAR [13], [14]. DTF on 

intra-cranial recordings has proven useful in objectively determining underlying 

connections, specifically in pathological cases such as epilepsy [13], [15]–[20]. Other 

measures such as partial directed coherence (PDC) and direct DTF (dDTF) have also been 

proposed based on the MVAR model coefficients or DTF coefficients [21], [22]. PDC and 

dDTF are claimed to deal better with indirect causal links compared to DTF. Astolfi et al., 

however, showed that all three methods function well in determining underlying brain 

networks under realistic settings [23].

While applying directional connectivity to intracranial and electrocorticography (ECoG) 

recordings is useful, DTF analysis was tested on noninvasive recordings such as EEG and 

MEG, early on. Initially, the Granger analysis was performed in the sensor space and on 

recorded EEG time series [13], [14]. While this provided insight about the nature of 

underlying brain processes, two major disadvantages were evident. Firstly, the analyzed 

connectivity on sensor space was not directly related to source space and brain regions, thus 

if for example, an electrode located in the frontal area was determined as a driving node, it is 

vague as to where exactly in the brain does this activity pertain to. Secondly, due to volume 

conduction and mixing, the time series recorded on the surface EEG could potentially be 

highly correlated which can potentially obscure the connectivity estimation. Due to these 

issues, more effort and emphasis has been put in place to estimate directional connectivity 

from source signals in the brain by combining source imaging techniques and connectivity 

analysis [24].

Electromagnetic source imaging (ESI) techniques basically estimate the neuronal electrical 

activity of the brain from electromagnetic surface recordings such as EEG and MEG [25]–

[27]. Using high-density measurements, ESI techniques can provide quite robust estimates 

of the cortical activation [28], [29]. Combining ESI techniques with connectivity analysis 

not only helps with reducing volume conduction effects but could also be used to objectively 

determine the brain regions involved, rather than resorting to pre-defined cortical 

segmentation [30]–[32].

The underlying assumption of the MVAR analysis is that the underlying signal is stationary 

and the inter-relation of the time series does not change over the window of study. As brain 

signals could change rather fast, an adaptive DTF analysis (ADTF) has been proposed [16], 

[33], which looks at data at windows that are short enough to ensure quasi-stationarity and at 

the same time, long enough to determine the MVAR model parameters [34], [35].

This study aims to implement the combined ESI and A/DTF analysis to investigate the 

efficacy of this method in determining brain networks. In order to estimate underlying 

networks the nodes or regions of interest (ROI) will first be determined using ESI and then 

the activation time-course of each ROI will be extracted. Finally the directional connections 

will be analyzed using DTF analysis. The overall strategy of combined ESI and directional 

functional connectivity analysis is schematically depicted in Fig. 1. This study differs from 

previous studies in the sense that no pre-defined ROIs will be assumed and basically the 

whole process from identifying network nodes, extracting time series for each node and 
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applying ADTF analysis will be completely data driven under the combined ESI and A/DTF 

framework.

A series of computer simulations based on this idea is conducted first, to assess the 

feasibility and performance of this approach in practical settings and under realistic 

conditions, when the “ground truth” is available (ground truth is the simulated/target 

network in simulation studies and clinical findings in clinical data analysis). The errors 

computed for these simulations will comprise of localization and connectivity errors to 

determine how well the underlying networks can be determined. Various electrode 

configurations (256, 128, 64 and 32 electrodes) and noise levels have been tested in these 

simulation studies (Fig. 2). The present approach was then validated in two epilepsy patients 

using intracranial recordings and surgical resection. These simulation and clinical studies 

provide a carefully designed study to assess the effective connectivity from noninvasive EEG 

or EEG/MEG.

II. Methods

A. Electromagnetic Source Imaging

ESI algorithms try to solve the bio-electromagnetic inverse problem which is the process of 

estimating underlying neuronal activity from limited scalp measurements such as EEG and 

MEG. This can be formulated as follows

(1)

Where ϕ(t) is the electrical potential (magnetic field in case of MEG) recorded on the scalp 

by EEG at every time point t, K(R,Q) is the lead field matrix for a current dipole at location 

R with orientation Q, j(t) is the source activation profile in time (current density) and n(t) is 

the measurement noise. The goal is to estimate j(t) given ϕ(t). The lead field matrix is 

calculated using a three layer boundary element method (BEM) model constructed from 

subjects’ MRI images [36], [37]. The BEM model is composed of skin, skull and brain with 

the conductivity of 0.33 S/m, 0.0165 S/m and 0.33 S/m, respectively [38], [39], where the 

three layers were obtained from subject’s MRI (in clinical data analysis). In this paper we 

confined the source space to the cortical layer, using the cortical current density model [40].

In this paper two inverse algorithms were used, the minimum norm (MN) estimate [41] and 

the standardized low resolution electromagnetic tomography (sLORETA) [42] to obtain the 

underlying neuronal activity. The MN is a linear inverse estimate of the form,

(2)

Where † is a symbol for Moore-Penrose pseudo-inverse and λ is a hyper-parameter related 

to scalp measurement noise. For the simulation study, sLORETA was utilized to solve the 

Sohrabpour et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inverse as sLORETA estimates seem to be more accurate than MN solutions. The algorithm, 

sLORETA, is based on MN estimates, but further divides the MN solution by the estimated 

source covariance at each dipole location to accommodate for the distortion caused by the 

inverse kernel T (which in turn is also related to the lead field matrix, K) and noise variation 

[42],

(3)

Where ĵr is the MN solution from (2) for dipole located at location r. In effect, sLORETA 

solutions from (3), have the form of a pseudo “F” statistics [42]. Due to this correction, 

sLORETA solutions are more robust against noise and are less biased towards superficial 

sources.

B. Functional Connectivity Analysis

DTF, ADTF and PDC analysis were used to derive directional connectivity in this study. 

DTF and PDC analysis were used for the computer simulation study [13], where the 

underlying connectivity was kept constant and ADTF was used for clinical data analysis 

[16], [33]. The MVAR model was first fit to the time series under study,

(4)

Where X(t) is the multi-dimensional time series under study, A(i) are coefficient matrices of 

the MVAR model to be estimated and ε(t) is the vector of white noise, driving the MVAR 

model. The order of this MVAR model is p, as the model leans upon the effect of p previous 

values of the time series to predict the future values. The model order can be determined 

using the Schwarz Bayesian criterion (SBC) or the Akaike information criterion (AIC) [43], 

[44]. The transfer function of the system can be derived by taking the Fourier transform of 

(4) and inverting the coefficient matrix as follows,

(5)

Where H(f) is the transfer matrix of the system. The DTF value γij (f) represents the signal 

flow from time series of node j to node i, which can be obtained as follows,

(6)
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As the relation between the A/DTF and the time series are highly nonlinear, a nonparametric 

statistical testing was employed to reject spurious connections due to random noise [45], 

[46]. The surrogate data were generated by keeping the amplitude of the time series 

spectrum the same as the original data but permuting the phases. This shuffling procedure 

was performed for 1000 times and if the A/DTF value computed passed the significance 

level (p < 0.05), they were kept, otherwise replaced by zero [31]–[33]. This shuffling process 

has been performed for all A/DTF analysis presented in this paper. The DTF analysis was 

performed using eConnectome [47] which is an open source software freely available at 

(http://econnectome.umn.edu). The combined ESI and A/DTF analysis adopted in this study 

is summarized graphically in Fig. 3.

PDC was also tested in the simulation studies to compare its performance with DTF 

analysis. PDC is claimed to be more accurate in determining the direct connectivity 

compared to DTF (for more details on the definition of PDC and its properties please refer to 

[21], [48]), which captures direct and indirect connectivity effects. The PDC algorithm was 

implemented using the AsymPDC package which is an open source software for calculating 

PDC and DTF, freely available from (http://www.lcs.poli.usp.br/~baccala/pdc/) [49], [50].

C. Dynamic Seizure Imaging

The Dynamic seizure imaging (DSI) algorithm [51], decomposes the scalp potential into 

independent components using the independent component analysis (ICA) and then 

identifies the components that are due to ictal activity. The selected components will be 

inverted and transformed into the source space, only to be recombined using the activation 

time-courses of each component (derived from the ICA) to estimate and monitor the 

generation and propagation of ictal activity. EEG signal can be decomposed into 

independent components (IC) as follows [52],

(7)

Where ϕ is the potential recorded by scalp EEG, Nc is the number of ICs, wi are the weights 

of each IC, Mi is the weighting of the ICs for each recorded EEG channel which is 

interpreted as topographical scalp maps and Ti is the activation time-course associated with 

each IC.

Components contaminated by artifacts such as movement artifact and eye blink or 

movement, were removed by visual inspection. Within the remaining ICs the correlation 

between the spectrogram of the IC components and the ictal EEG was computed. ICs 

showing significantly high correlation with the ictal time-course (p < 0.05) were selected 

(Ns) as ictally relevant ICs [51]. As outlined previously, the inverse problem was solved by 

inverting each IC and recombining in source space as follows,
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(8)

Where K† is the operation of cancelling the volume conduction due to the mixing of the lead 

field and Ŝi is the estimated source from the topographical scalp map of each selected IC. 

DSI has been tested in epileptic patients and has proven to be quite effective in determining 

the SOZ [51], [53], [54].

D. Simulation Protocols

A series of computer simulations were performed in this study to investigate the efficacy of 

the combined ESI and DTF analysis (graphically depicted in Fig. 3). Three different network 

configurations (in terms of connectivity) were modeled (refer to Fig. 2). The networks 

consisted of three nodes. The three nodes of the network were randomly placed on a realistic 

cortex (very deep nodes near the thalamus or in the inter-hemisphere region were excluded) 

segmented from a human MRI. The time activity of the three nodes was simulated based on 

the MVAR model of (4) to create the desired configurations depicted in Fig. 2. For more 

details on implementation please refer to the supplementary materials.

The forward problem was solved and white noise with different strength was added to the 

simulated scalp maps (in addition to the internal noise driving the MVAR model of the 

underlying source activities) to obtain average signal-to-noise ratios (SNR) of 5, 10 and 

20dB. Additionally the whole process was repeated for various electrode configurations of 

32, 64, 128 and 256 electrodes.

After the forward problem was solved and EEG signals simulated, the inverse problem was 

solved using sLORETA for each case (connectivity type, node location, SNR, electrode 

number) and the nodes of the network were determined by observing the hot-spots of the 

source space to find dipole locations which demonstrated a strong and frequent dipole 

activity. This process was achieved by taking the singular value decomposition (SVD) of the 

estimated source currents and looking at the dominant components (components 

corresponding to large singular values which were distinct from noisy and background 

components once the singular values were plotted), which spatially corresponded to 

simulated nodes of the network. Once nodes of the networks were determined the activation 

of the dipole located at the estimated node was extracted and used for the subsequent DTF 

analysis. Additionally, we used another method to extract the activation time-courses of the 

underlying sources. After the location of the network nodes were estimated, the lead field 

matrix columns corresponding to those locations were selected and the scalp potential was 

projected to these columns to estimate the source activation of each estimated node location,

(9)

Where Ks is the reduced lead field matrix where only the columns corresponding to the 

estimated nodes are selected; thus Ks is a tall matrix and Ks TKs is full rank. The 
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connectivity results for time-courses extracted using the method formulated in (9) are 

analyzed and presented separately (Fig. 4) from the results pertaining to the case where time 

courses were extracted from sLORETA solutions. The results of connectivity analysis when 

activation time-courses are extracted directly from sLORETA solution are presented with the 

localization error (of network nodes) in Fig. 5. To compare the connectivity results two 

measures are used: correlation and normalized error. The true DTF/PDC matrix is derived 

from simulated time-courses, first. The DTF/PDC are N×N×F matrices where N is the 

number of network nodes or time series and F is the number of frequency bins at which the 

DTF/PDC is calculated. These three-dimensional matrices are averaged over frequency to 

obtain two-dimensional matrices (N×N) which bear average information regarding the 

connectivity among nodes over the span of the spectrum. These average DTF/PDC matrices 

are computed for the original and estimated time-courses, as mentioned before. To compare 

these two matrices which show the pattern of connectivity among nodes, a simple metric 

would be to look at the correlation coefficient between the DTF/PDC matrices of the 

simulated and estimated time-courses. Basically, the estimated DTF/PDC is computed and 

correlated with the true DTF/PDC to see how close the two matrices are (higher values 

indicate a better match).

Additionally the estimated and true DTF are normalized by the total outflow (sum of the 

elements in each column of the DTF matrix) of the network nodes (to better deal with 

potential scaling) and the norm of the difference is calculated (smaller values indicate a 

better match). This metric basically seeks the norm of the difference between the original 

and estimated DTF/PDC matrices (the norm of the matrix obtained by subtracting the 

DTF/PDC matrix derived from original and estimated time-courses). Thus, it can be 

concluded that the correlation matrix measures the similarity of the estimated DTF/PDC 

matrices with the ground truth while the normalized error measures the deviation of the two. 

The simulation results are summarized in Fig. 4 and 5. Sensitivity and specificity were also 

calculated to determine the performance of the simulations results. Please refer to the 

supplementary materials to review these results and for more details.

Additionally the DTF values were computed on the sensors. To avoid applying the analysis 

on all electrodes (due to the large number of electrodes), three electrodes were selected for 

further Granger causality analysis. The scalp maps (for each network configuration and 

noise level) were searched to find electrodes that demonstrated strong and frequent activity 

(over the simulation time course) compared to their neighboring electrodes; basically being a 

local maxima in the scalp topography. Among all such electrodes, the three electrodes 

demonstrating the strongest activity (over the scalp map) were chosen as the three nodes of 

the network reflecting the underlying three brain network nodes. Although, knowing the 

number of nodes a priori is not usually an option in practice, this approach was pursued to 

provide a fair framework to compare sensor space connectivity and source space 

connectivity. The results of sensor and source space connectivity are presented side by side, 

in Fig. 4, for better comparison.
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E. The Effect of Correlated Noise

In order to more realistically model the problem, a new set of simulation studies were 

conducted in which correlated noise (in sensor space) was also included (in addition to the 

white noise added in sensor level modeling the measurement noise). White Gaussian noise 

was added in all source locations to model background activity of the brain [55], thus source 

level and sensor level noise were included in this new simulation study to better model 

various possible noise sources. The results of these simulations are presented in the 

supplementary section (Fig. S1). The results (in terms of localization error of network nodes 

and connectivity measures) do not change drastically.

F. Clinical Studies and Data Acquisition

Two epilepsy patients suffering from medically intractable focal seizures were included in 

this study. The study was performed based on a protocol approved by the institutional review 

boards (IRB) of the University of Minnesota, Mayo Clinic and Allina Hospitals and Clinics. 

The patients had undergone surgery and were seizure-free after the surgery. The first patient 

was a parietal-lobe epilepsy case which was seizure-free for a period of one year post-

operation and the second patient was a temporal-lobe epilepsy patient who became seizure-

free during a follow-up of 6 months post-operation.

The first patient had pre-operational scalp EEG recordings with multiple ictal recordings and 

also underwent intra-cranial EEG recordings before the surgery. A total of 76 EEG channels 

sampled at 500 Hz were recorded in this patient (Mayo Clinic). The EEG was later filtered 

between 1 and 50 Hz for DSI analysis. Three seizures in this patient were analyzed. ECoG 

electrodes marked as SOZ (by the physician) was available in this patient. The surgical 

resection surface was also extracted from post-operational MRI. Such clinical findings were 

used to validate the DSI results (sLORETA was used to invert each IC). After the seizure 

was imaged and ictal components were derived, the time-course of the location pertaining to 

the maximum dipole strength for each IC map, were extracted and input into ADTF analysis 

to determine, which component drove the brain into ictal activity.

Pre-operational structural MRI (voxel size: 0.937×0.937×1.2 mm3, 196 slices) obtained 

from a 3 Tesla GE Signa scanner (General Electric Medical Systems, Milwaukee, WI) were 

used to create the BEM model, as detailed above. The BEM model was reconstructed using 

Curry software (Compumedics, Charlotte, NC).

The second patient suffered from temporal lobe epilepsy. Simultaneous 64-channel EEG and 

148-channel MEG were recorded inter-ictally with a 1KHz sampling rate (Allina Hospitals 

and Clinics). The EEG and MEG were filtered between 1 and 50 Hz for later analysis. Intra-

cranial recordings were not available in this patient but post-operational MRI was used to 

extract the surgically resected surface. The EEG and MEG recordings were monitored for 

inter-ictal spikes (IIS) and averaged IIS were input into the MN inverse algorithm [41] to 

estimate underlying epileptic networks to determine the epileptogenic zone. Utilizing the 

theory of Granger Causality and computing ADTF, directional connectivity among the ROIs 

(determined by source imaging) was estimated from the activity time-course (estimated from 

source imaging results). The shuffling procedure destroying the phase information of the 

Sohrabpour et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



original signals was repeated 1000 times and the DTF values with the significance level (p < 

0.05) were considered as true connections based on which the primary region responsible for 

seizure generation was determined.

III. Results

A. Computer Simulation

The simulation results are presented in Fig. 4–6. Comparing the results in Fig. 4 and Fig 5, it 

is observed that connectivity results in sensor space show more spurious activity than source 

space results (smaller correlation values and higher normalized error values). This is 

expected due to the volume conduction effect and mixing, as previously reported for 

Granger causality analyses [56], [57]. Comparing Fig. 4 and Fig. 5, it is also interesting to 

note that connectivity results are slightly better when the time-course of source activation is 

estimated (Fig. 4, right column) using (9) compared to the case where the time-courses are 

extracted from sLORETA solution (Fig. 5, right column). Comparing the results of PDC 

analysis in Fig. 6 with DTF analysis results in Fig. 4 and 5, it can be observed that PDC 

analysis seems to perform slightly better. While DTF and PDC both measure directed 

connectivity, DTF analysis measures the non-direct and direct effects while PDC is claimed 

to measure the direct effects [21]. Given that the metrics used to quantify the performance of 

our simulation studies (correlation and normalized error), measure direct links and penalize 

non-direct links, the obtained results were expected. It is worthy to note that, in practice both 

direct and non-direct connections are important; for instance, when trying to determine the 

source of seizure in an epileptic patient. Philosophically, one could also argue that non-direct 

links are causally related as well. For example, if node A is driving node B and node B is 

driving node C, it could be argued that node A is driving node C (as long as we believe that 

causality is a transitive property).

The localization error presented in Fig. 5 (right column), shows that in general, node 

locations can be extracted relatively precisely even under noisy conditions. The localization 

error calculated pertains to the localization error of network nodes for all the conditions. 

Another interesting phenomenon observed, is that not only the localization error decreases 

once more EEG channels are recorded, but the improvement rate decreases, as well. 

Effectively, a “plateauing effect” can be observed [58]. It also seems that in lower SNRs the 

improvement due to using more electrodes is more prominent. Similar patterns can be 

observed for connectivity results, where including more electrodes improves the results to a 

certain point. Note that the correlation metric shows also a saturating effect towards higher 

values (higher connectivity values in configurations which have more electrodes).

B. DSI Analysis in Parietal Lobe Epilepsy Patient

The combined DSI and ADTF analysis for patient 1 is presented in Fig. 7. In this figure the 

ICs related to the ictal activity are presented (in source space). The location corresponding to 

the strongest dipole for each inverted IC map, was selected as network nodes. In the 

following when we refer to IC we are really referring to the inverted IC map as we are 

interested in the location and spatial distribution of each component to determine where in 

the brain it is arising from. After the time-course from different ICs were recombined in the 
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source space, the total activation time-course for each of those nodes were extracted for 

further ADTF analysis. The ADTF values were averaged for a period of 1 second prior to 

seizure onset and post-ictally in the 1 to 20 Hz frequency band (where most of the seizure 

spectrum power is concentrated) and are presented in Fig. 7 (denoted as DTF values as 

averaged over time).

As it can be seen from the ADTF analysis (Fig. 7) the component which is driving the ictal 

network is IC #6. This is reflected in the DTF values presented; by looking at the DTF-value 

matrix it can be observed that the 6th column of this matrix demonstrates high DTF values 

(hot colors). This means that the 6th node of the network is driving the other nodes while no 

reciprocal back-activations are observed in the network (look at the almost zero values of 

other elements of the connectivity matrix). It can be concluded that the 6th node 

corresponding to IC #6 is the driving node of the epileptic network. The location of this 

node is in the ipsilateral side of the resection hemisphere and furthermore corresponds with 

SOZ electrodes pretty well (red electrodes in Fig. 7). The aforementioned IC corresponds 

well with the resection, as well. Another interesting observation is that post-ictally the 

seizure starts to propagate, and another component (IC #4) also begins to drive other nodes 

of the ictal network (look at the increasing DTF values of the 4th column of the DTF-value 

matrix which is still much weaker compared to IC #6). Seizure propagation is one important 

reason, why directional connectivity analysis such as Granger causality is crucial in studying 

epilepsy networks and identifying the seizure onset zone.

C. Inter-ictal Activity Analysis for E/MEG Recordings in a Temporal Lobe Epilepsy Patient

The source imaging and connectivity analysis results of patient 2 are shown in Fig. 8. Two 

types of spikes (both observed in EEG and MEG) were observed. One type of the extracted 

spikes, localized to the temporal region (21 spikes in EEG and 23 spikes in MEG), and the 

other type to the left parietal-occipital region (8 spikes in EEG and 8 spikes in MEG), when 

the inverse problem was solved for the peak of the averaged spike. The spikes were averaged 

and the MN solution was obtained to find regions of interest (ROIs). ROIs found using both 

EEG spikes and MEG spikes overlap well with each other (ROI centers are within 10 mm). 

In Fig. 8(a), the source locations and extent are displayed with the cortex model constructed 

from the pre-operative MRI of the patient. The averaged spikes are also displayed next to the 

sources in Fig. 8(a). Spikes in the left column of a) (spike 1) were used to find ROI 1 and 

spikes in the right column of a) (spike 2) were used to find ROI 2.

The arrow between the two panels of Fig. 8(a) indicates the information flow derived from 

connectivity analysis, directing from the primary source to the secondary source where the 

epileptic activity propagates after being generated by the primary source. This can also be 

seen from the information flow direction and comparison of total outflow volume (between 

the two nodes) in Fig. 8(b). The significance level of DTF information flow between ROI 1 

and ROI 2 is depicted in Fig. 8(c) as a function of frequency. What these curves reflect are 

the significance of the calculated DTF value as compared to the surrogate DTF values for 

every frequency in the 1–15 Hz frequency band where signal energy is most concentrated in; 

thus only DTF values that are statistically significant and are above the red line indicate 

meaningful connections. DTF results above the red line pass the significance level (p < 0.05) 
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of the information flow and are thus significant (refer to the Methods section for more detail 

on the shuffling process). In this patient, ROI 1 shows significant information flow to ROI 2 

while no such significance can be observed from ROI 2 to ROI 1. Both spike 1 and spike 2 

were used to calculate the DTF values and the connectivity results presented in Fig. 8(c) 

indicates that the flow from ROI 1 to ROI 2 passes the significance level (left column) while 

the flow from ROI 2 to ROI 1 does not pass the significance level (right column). Thus, ROI 

1 which is located in the left temporal lobe was identified as the primary source. Fig. 8(d) 

shows the post-operative MR image with the red line marking out the surgically resected 

area. The resection is also approximately marked with the red oval on the cortex. The results 

indicate that source imaging results and connectivity analysis results from E/MEG coincide 

well with the clinical findings and analyzing IIS network sheds light on the underlying 

epileptic network.

IV. Discussion

This study along with previous studies has shown the usefulness and strength of combining 

source imaging with directional functional connectivity analyses, in particular Granger-

Geweke Causality analysis [23], [24], [30]–[32], [47], [59]. Furthermore, we have shown in 

this study that ESI algorithms can be used to identify network nodes in an objective matter 

in addition to activation time-course extraction, under realistic conditions and in data 

recorded in clinical settings.

Granger causality analysis is basically a data-driven technique where no prior assumptions 

about the type, direction and strength of interactions among the network nodes are assumed. 

As opposed to data-driven techniques, model-driven techniques assume prior models about 

the underlying network interactions and update the model parameters or compare between 

different viable models to choose the model that best explains the data. Structural equation 

modeling (SEM) and dynamic causal modeling (DCM) are two noteworthy algorithms 

belonging to the model-based category [60], [61]. The number of citations for both DCM 

and Granger causality analysis has been increasing over the past years [62]. In order for 

DCM to work efficiently, the experiment has to be designed in such a manner that brain 

responses can be measured and a good prior model to explain the observations and hidden 

states of the model should exist; additionally many alternative models need to be assumed as 

well to ensure unbiased results [63]. This means that DCM computations can be time-

consuming and that there must be enough prior knowledge about the network under study to 

be able to construct alternative models and hypothesis, whereas in Granger causality analysis 

such issues are not met. However, this enables DCM to deal with nonlinearity and non-

stationarity. It should be noted though, that nonlinear and adaptive Granger causality 

analysis techniques have been proposed which could potentially circumvent the difficulties 

caused by non-stationarity and nonlinearity [16], [33], [64]. All in all, Granger causality 

analysis and DCM might have more in common (although based on different premises) and 

ultimately converge in many ways [65].

Granger causality methods have been criticized for being susceptible to noise [66], [67]. 

Haufe et al. [67] have shown in a simulation study (sensor space) that conventional Granger 

causality analysis and surrogate testing by phase shuffling, might not be as effective as 
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measures such as phase-slope index (PSI) [68], [69]. Haufe et al. have also proposed an 

time-reversed scheme for Granger causality analyses and have shown that this improves the 

results and makes it as good as PSI performance [67], [70]. A later study by Vinck et al. 

demonstrated that correlated and uncorrelated noise might have different effects on the 

causality analysis results [57]. They also demonstrated that the time-reversed scheme 

applied to Granger causality analysis produces much less false positives compared to PSI or 

conventional Granger analysis results in case of correlated noise [57]. Nalatore et al., have 

also applied a combination of kalman filtering and expectation maximization denoising 

algorithm to alleviate this problem [71]. This can be thought of as another opportunity for 

ESI algorithms to remove the effect of correlated and uncorrelated noise through the process 

of solving the inverse problem, provided that noise covariance matrix is estimated and dealt 

with properly [72]. This can also be observed in our simulations where uncorrelated noise in 

the sensor space and correlated noise in the source space were used in simulations, yet the 

network nodes and inter-connections were detected (refer to Supplementary section). Our 

simulation results and specifically the comparison between sensor and source space 

connectivity results attest to the fact that solving the inverse problem helps in removing 

spurious connections otherwise occurring in sensor space connectivity analyses. It must be 

stated though, that due to the difficulty of removing volume conduction effects, some errors 

and spurious connection might be detected [73], [74]. Thus the choice of the inverse 

algorithm, noise level, electrode configuration and connectivity analysis used can all affect 

the results, as comprehensively demonstrated in this work. Additionally, selecting a handful 

of electrodes to perform the sensor space connectivity could potentially induce some 

erroneous results when studying the connectivity. This issue seems very difficult to 

circumvent for practical and theoretical reasons. Firstly, due to the high number of 

electrodes used in this study (which also seems to be a general trend), performing 

connectivity analysis on all electrodes is very time consuming [75], [76]. Additionally, since 

we simulated a network with finite number of nodes, in order to compare the results we 

needed to match the number of nodes in the estimated and simulated network, thus selecting 

a somewhat optimal set of electrodes was unavoidable. Secondly, the sensor and source 

spaces are very distinct spaces and it is very difficult to meaningfully relate the connectivity 

results derived in the sensor space to anatomical regions in the brain. While solving the 

inverse problem might add some difficulties, our simulations results demonstrate that once 

applied with tact and care, much can be gained.

Recently, sparse connectivity networks have been proposed as well [77]–[79], which might 

prove to be more robust against spurious connections and links. Information theoretic 

measures might also prove useful in determining underlying connectivity of brain networks 

effectively [80].

Volume conduction and mixing in the source space could potentially cause Granger analysis 

results to detect more spurious links [81]. Although, solving the inverse problem could 

potentially neutralize the effect of volume conduction, but it cannot remove the effects 

completely. Our simulations results also showed the detrimental effect of volume conduction 

on estimating connectivity. It was observed that sensor space connectivity results show much 

more spurious connections than source space connectivity results. Hui et al. performed a 

simulation study, starting from ECoG recordings and solving the forward problem to obtain 
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corresponding EEG signals [56]. Then by solving the inverse problem and going back to the 

cortex, calculated the connectivity on the ECoG nodes (a priori known locations) and 

compared their results to the connectivity derived from directly feeding the ECoG activity 

into the Granger causality analysis. They have shown that MN-type solutions might detect 

erroneous links, due to the ineffective removal of volume conduction and proposed to use a 

nulling beamformer technique to alleviate this problem and have shown improvements [56]. 

While nulling beamformer can be very effective, it only works well if the number of ROIs 

are less than number of measurements (electrodes) and the location of the nodes need to be 

specified prior to applying the method, which could limit its application in practice. On a 

similar note, Cheung et al. proposed a combined algorithm where estimating the MVAR 

model of the source activity and solving the inverse problem is combined into one step 

rather than two steps [82] and show that their method is less susceptible to detection of 

erroneous connections. However, this method also needs the prior knowledge of network 

nodes on the cortex, which is generally unknown in practice.

Another work by Gómez-Herrero et al. attempts to estimate the MVAR model for the 

underlying sources from the MVAR model of EEG signals, essentially performing an inverse 

by cancelling the volume conduction effects [83]. The volume cancellation was achieved 

through a process of removing instantaneous connectivity of the sources (which is due to 

volume conduction and not neurophysiological processes as neurological connections 

happen with delays due to synaptic delays) applying ICA [83]. This approach of solving the 

inverse problem may lead to spurious results depending on the type of noise present, and is 

quite different from the approach adopted in our work.

The combined ESI and A/DTF analysis presented in this paper seems a viable path to 

objectively estimate network nodes and interactions. It has been tested in previous studied 

specifically in estimating epilepsy network nodes [31], [32], [84], [85]. Other networks like 

the pain network have also been studied using combined ESI and ADTF analysis [86]. 

However, for inverse solutions to be accurate enough, the number of measurements needs to 

be large enough. Placing electrodes on the scalp can be thought of as a spatial sampling 

process [87], [88], thus using too few electrodes can result in undersampling and aliasing 

happens. The effect of electrode numbers on source localization has been studied previously 

[28], [32], [58], [89], [90]. As it has been shown in these studies, source localization 

accuracy is improved when more electrodes are used but the rate of improvement decreases 

with the increasing electrode number. This plateauing effect has been observed in 

localization error (network nodes) and connectivity performance in the results presented in 

this paper, as well. This is an interesting observation for connectivity measures and our 

results are the first to quantify the effect of electrode number on the accuracy of estimated 

networks, to the best of our knowledge. Our results indicate that high density electrode 

configuration (64 electrodes and above) is needed for more accurate localization of network 

nodes, as well as the underlying connectivity. The simulations results provided in this paper 

quantify this effect to some extent.

In this study we estimated the nodes’ locations by finding the dipole location with the 

maximum amplitude within the distributed current density estimation (which is consistent 

with our simulations). This might not be the case when studying brain networks, thus being 
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able to estimate the extent of underlying brain networks seems crucial and has to be assessed 

further in the future. We have proposed a source imaging algorithm that can potentially 

achieve this goal by objectively estimating the source extent [91], and would be useful once 

implemented in the framework of combined ESI and A/DTF analysis.

In this paper we looked at the application of Granger causality analysis in identifying 

epilepsy networks, as in such clinical cases independent information about the underlying 

sources and connectivity would be available through intracranial recordings or validated by 

surgical resection. Inter-ictal recordings from EEG and MEG [30], [35], [84], [92], [93], as 

well as ictal signals have been analyzed to delineate underlying brain networks’ connectivity 

[31], [32], [94], [95]. Investigating network connectivity in resting state has also been 

adopted recently, and seems encouraging [96]–[98]. These functional connectivity studies 

add to our knowledge about localization and imaging of epileptogenic networks using 

various source imaging techniques alone [28], [51], [91], [99]–[101].

Combining the A/DTF connectivity analysis with the DSI algorithm to identify driving 

nodes of the ictal network is another novel feature of this work. Previously, Yang e al. [51] 

used the initial segment of the ictal recordings (after seizure onset) to localize ictal sources 

and showed good concordance with clinical findings, but did not perform A/DTF analysis on 

the results to identify the ictal network and its causal links. We believe that the example 

presented in this paper, could potentially be applied to ictal recordings and lead to a better 

understanding of ictal networks, as more information about the underlying connectivity can 

be provided. This is of importance in studying ictal networks as such networks could evolve 

in a fast pace and propagate from the initiation site pretty fast, making it difficult to identify 

the SOZ. The proposed DSI and A/DTF integrated analysis might provide a better 

framework for studying ictal networks.

Another novel aspect of this work is the application of the combined approach to study 

epileptogenic networks using inter-ictal spikes recorded from simultaneous EEG and MEG. 

While Dai et al. [30] used inter-ictal spikes from MEG to study the epileptic networks and 

reported results which were in agreement with clinical findings, no study to date has applied 

the combined ESI and ADTF analysis in simultaneous EEG and MEG recordings to study 

epileptic networks, to the best of our knowledge. This approach could potentially provide 

more insight into the nature of epileptic networks as EEG and MEG have different 

sensitivity to source location and orientation and thus could potentially provide slightly 

complementary information about underlying epileptic sources [102], [103]. The presented 

example in this paper showed EEG and MEG results to be consistent and in agreement with 

each other, but this approach could potentially lead to more comprehensive findings in the 

future. All in all, we have demonstrated in this paper that both ictal and inter-ictal signals 

can reveal valuable and relevant information about the underlying epilepsy networks by 

means of the combined ESI and A/DTF analysis framework.

Functional brain connectivity mapping could potentially help address the grand challenges 

of studying the brain [9], [25]. A number of studies have looked into various metrics of 

connectivity among multiple brain regions from EEG/MEG [47], [104]–[112] and from 

fMRI [113]–[120]. In addition to Granger causality and DCM approaches, graph theoretic 
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methods have also been used to study brain functional connectivity from ECoG [121] and 

EEG [122], [123].

V. Conclusion

This work demonstrated the possibility of using the combined ESI and A/DTF analysis 

approach to identify the network nodes, extract activation time-courses and ultimately 

estimate the directional inter-nodal connections in an objective manner, in computer 

simulations and clinical data analysis. We presented two new approaches in epileptic 

network analysis which can potentially further our understanding of underlying mechanisms 

of focal epilepsy.

In conclusion, this work along with the existing literature has demonstrated the efficacy and 

usefulness of combined ESI and A/DTF analysis in non-invasively studying underlying brain 

networks from surface measurements (EEG and MEG). ESI algorithms can help identify the 

nodes of the network and source activation time-courses and in combination with A/DTF 

analysis the directional inter-nodal connections and causal links can be estimated. The 

present simulation and clinical evaluation results are promising and provide a quantitative 

assessment of directional connectivity estimated from noninvasive EEG/MEG 

measurements.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mapping and imaging the electrophysiological connectome (eConnectome)
The combined ESI and directional functional connectivity analysis identifies nodes and 

inter-nodal connections of the network under study. ESI can objectively determine the 

network nodes and extract activation time-courses and feed them to a directional functional-

connectivity analysis, such as Granger causality analysis, to determine the directional 

connectivity patterns.
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Fig. 2. Simulation protocol
The different connectivity configurations in this simulation study are presented in this figure 

(upper left). Network nodes are randomly chosen and different noise levels are added to the 

simulated scalp maps (upper row right). Four different electrode configurations are used in 

this study (lower). The goal is to estimate the underlying networks, node location and nodal 

interconnections, from scalp measurements.
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Fig. 3. Combined ESI and A/DTF analysis applied in this study
The strategy pursued in this work to study brain networks is schematically depicted. ESI 

algorithms not only provide information about the activation of source nodes but can also be 

used to objectively determine the network nodes. A/DTF analysis provides vital information 

about directional information flow in the brain. This approach is powerful in studying brain 

networks in normal conditions and/or pathological networks such as epilepsy.
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Fig. 4. Simulation results (I)
The connectivity performance of the sensor-space connectivity (left column) and the source-

space connectivity (right column) are presented in this figure. The source-space connectivity 

is for the case where the nodes’ locations are estimated from sLORETA but the time series 

are estimated from projecting the scalp potentials to the known lead field columns. Error 

bars depict standard deviation. Refer to Eq. (9) in the Methods section for more details.
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Fig. 5. Simulation results (II)
The connectivity results for a simulated network (a particular configuration: left upper 

panel) is presented (left column) for different electrode configurations and SNR levels, as an 

example. The “ground truth” network connectivity map, i.e. simulated network, is depicted 

in the upper middle panel. The localization error (of network nodes), and connectivity 

metrics are also depicted for the case where the activation time-courses are extracted from 

sLORETA solutions (right column). Error bars depict standard deviation. Refer to the 

Methods section for more details.
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Fig. 6. Simulation results (III)
The connectivity results using PDC as the connectivity measure, is presented for different 

electrode configurations and SNR levels. Comparing with DTF analysis results, some 

improvement is observed. Error bars depict standard deviation.
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Fig. 7. Identifying epileptic networks from ictal signals in patient I
Dynamic seizure imaging is applied to the seizures recorded in the EEG of this patient prior 

to surgery to identify the nodes of the ictal network. ADTF analysis was then applied to 

combined source space signals to determine the driving IC (left). The identified IC is in 

good accord with clinical findings, i.e. SOZ electrodes and surgical resection (right).
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Fig. 8. Identifying epileptic networks from IIS in patient II
(a) Spikes (blue from EEG, green from MEG), estimated sources, and directional causality 

of two regions of interest. (b) Information flow direction and comparison of total outflow 

volumes between the two ROIs depicted on cortex model. (c) Statistical testing results of 

DTF values between the two ROIs. DTF values above the red line are significant with a 

corresponding p-value < 0.05. (d) Surgical resection marked by red dotted line on post-

operative MR image and red oval on the cortex model. This patient suffered from left 

temporal lobe epilepsy, and is seizure-free after the resection.
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