
Novel therapeutic strategies targeting fibroblasts and fibrosis in 
heart disease

Robert G. Gourdie,
Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, 
Roanoke, 2 Riverside Circle, VA 24016, United States

Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Kelly Hall, 
325 Stanger St, Blacksburg, Blacksburg, VA 24061, United States

Department of Emergency Medicine, Carilion Clinic, 1906 Belleview Ave, VA 24016, United 
States

Stefanie Dimmeler, and
Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Frankfurt, University 
Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany

German Center of Cardiovascular Research, DZHK, RheinMain, Theodor Stern Kai 7, 60590 
Frankfurt, Germany

Peter Kohl
Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg · Bad 
Krozingen, Medical School of the Albert‐Ludwigs-Universität Freiburg, Elsässer Str. 4, 79110 
Freiburg, Germany

Cardiac Biophysics and Systems Biology, National Heart and Lung Institute, Imperial College 
London, Hill End Road, Harefield UB9 6JH, UK

Abstract

Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure 

and extracellular matrix generation, and now includes contributions to paracrine, mechanical and 

electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles 

in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key 

contributors to scar formation, they are crucial for tissue repair after interventions including 

surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising 

potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through 

effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in 

cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current 

and emerging clinical interventions; and identifies future targets for research and development.
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Cardiac mesenchymal cells, often referred to simply as ‘fibroblasts’, are among the most 

populous cells of the heart.1, 2 Fibroblasts are also a cell type most conspicuously linked to 

heart disease, as they are associated with tissue remodelling involving ‘fibrosis’.1, 3–6 

Fibrosis contributes to the leading causes of sickness and death in the developed world, 

including the pathophysiological consequences of myocardial infarction (MI), in which 

myocytes are replaced by a collagen-rich scar; and hypertension, diabetes, rheumatic heart 

disease, hypertrophic cardiomyopathy and heart failure, which are associated with the 

patchy or diffuse appearance of excess fibrotic tissue. Surplus collagen, generated by 

activated fibroblasts, increases the stiffness of the myocardial wall and is linked to 

myocardial remodelling, thereby impeding normal systolic and diastolic mechanical 

function.

Focal scarring and diffuse fibrosis are independent predictors of the likelihood of developing 

electrophysiological disturbances resulting in cardiac arrhythmias.2, 7, 8 Therefore, inhibiting 

or reversing fibrosis and its adverse consequences is an established target of many widely 

used clinical interventions for treating heart disease, including angiotensin converting 

enzyme (ACE) inhibitors, aldosterone antagonists, and statins (Table 1). These interventions 

may lead to a partial recovery of contractile function via a process known as ‘reverse 

remodelling’, and thereby delay the progression towards heart failure.

The individual and societal costs of heart diseases linked to fibrosis are staggering.9 In the 

case of ischaemic heart disease alone, the American Heart Association reports that each year 

approximately 635,000 Americans are hospitalized or die from their first MI. More than half 

survive, but each year around 280,000 patients will go on to suffer subsequent coronary 

events, leading to further loss of cardiac muscle and additional deposition of non-contractile 

and potentially arrhythmogenic fibrotic tissue. The direct costs arising from ischaemic heart 

disease in the USA are in excess of $180 billion dollars per year. Heart failure after MI 

represents a further annual burden of $20–40 billion dollars.

There is a strong clinical and economic case, therefore, for developing new and effective 

approaches to targeting cardiac disease processes linked to fibroblast function. This Review 

will consider the origin and roles of fibroblasts, illustrate their involvement in current and 

emerging clinical interventions, and identify future targets for basic and applied heart 

research.

Fibroblasts and adult myocardial homeostasis

In the healthy heart, fibroblasts are the main cell type involved in formation and maintenance 

of connective tissue.1, 3, 10 Cardiac connective tissue consists of cellular and acellular 

components, with the acellular extracellular matrix (ECM) providing a flexible scaffold for 

individual myocytes and for the heart as a whole.11 The highly organized collagen-rich 

meshwork, laid down by fibroblasts, stabilizes the myocardial wall and supports force 

transmission, while allowing for intricate patterns of tissue deformation.12 This fibrous 

skeleton also provides regions that act as barriers and supports, for example establishing 

myo-fascial planes between sheetlets of muscle, reinforcing conduits for blood vessels, 
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separating electrical activation of the atria and ventricles, or insulating bundles of the cardiac 

conduction system.

The fibrous skeleton of the heart also provides a substrate for tissue-engineered repair.13 In 

these experiments, perfused rodent hearts were decellularized, leaving the ECM scaffold, 

including the ECM surrounding the coronary vascular tree, intact. This ECM scaffold was 

then repopulated with neonatal myocytes, which – based on the available structural cues – 

settled to recapitulate a beating, heart-like organ. Whilst regeneration of a mature heart in 
toto by this approach remains a distant prospect, initial clinical applications of this method 

could include use of decellularized ECM patches for surgical repair.14 These cardiac ECM 

scaffolds can be repopulated with induced pluripotent stem cells (iPSCs) – raising the 

prospect of patient-specific reparative therapies.15 Conceptually, this builds on 

breakthroughs, over the past 10 to 15 years, in the pre-clinical and clinical application of 

decellularized allo- and xenografts for heart valve repair and replacement,16 including the 

limitations and challenges associated with the approach.17

In addition to the maintenance of connective tissue, cardiac fibroblasts express a wide array 

of paracrine factors and cytokines and have complex biochemical and biophysical 

interactions with myocytes, thereby influencing development, growth, and functional 

adaptation of muscle cells.1, 3, 5 Paradoxically, given the aforementioned role of fibrous 

tissue in insulation, there is evidence for direct electrical communication via heterocellular 

connexin (Cx) junctions between fibroblasts and myocytes18–20– interactions that may well 

have implications for the modulation of electro-mechanical activity of heart muscle in health 

and disease.2, 7, 21 Thus, fibroblasts form physiological signalling hubs whose relevance 

extends well beyond classic roles in the generation and maintenance of ‘mechanically 

connective, yet electrically divisive’ tissue.

Developmental origins of fibroblasts

One of the impediments to developing new mechanistically based strategies to target 

fibroblast function in disease has been an incomplete understanding of their multi-lineage 

derivation and potential regulatory interactions between mesenchymal cells of differing 

origin. A characteristic feature of fibroblasts is the ability to generate ECM; however, this 

functional capacity is frequently left unconfirmed when classifying non-myocytes in vitro or 

in vivo. Nonetheless, considerable progress has been made over the past 25 years, and the 

associated new insight is beginning to affect our understanding of the normal and diseased 

heart (Fig. 1).

The pro-epicardium – a sprout-like cluster of extra-cardiac cells that first comes to 

prominence at the looped-tube stage of cardiac development29, 44 – provides the source for a 

thin mantle of epicardial epithelium that progressively envelopes the embryonic heart.22, 44 

Epithelial-mesenchymal transition (EMT) at the epicardium is the largest initial source of 

resident interstitial cells (Fig. 2).29, 45, 46

Recent data suggest that the pro-epicardium itself is an evolutionary derivative of the 

primordium of an ancient pro-nephric glomerulus,47 suggestive of interesting phylogenetic 

links between fibrotic processes in kidneys and heart. Paracrine signalling by fibroblast 
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growth factors (FGFs), bone morphogenetic proteins, retinoic acid, various members of the 

transforming growth factor β (TGFβ) family,4, 48–50 as well as transcriptional activators 

including Wilms tumor 1 (WT1) protein,51 and T-box proteins-18 and 20,52, 53 have been 

identified as early regulators of epicardial EMT. These proteins affect pathways including 

canonical and non-canonical Wnt signalling and hedgehog and retinoic acid signalling, 

which have downstream effects on gene programmes that regulate intercellular interactions, 

actin dynamics and cell motility. Following invagination of mesenchyme from the 

embryonic epicardium into the myocardium, various signal transduction and regulatory 

molecules, including TGFβ,54, 55 FGF,56 platelet derived growth factor (PDGF),57 proto-

oncogene tyrosine-protein kinase,55 rho kinase,58 integrins,59 popeye domain-containing 

genes such as Bves,60, 61 serum response factor,62 transcription factor 21 (Tcf21),63, 64 and 

myocardin-related factors65 govern the transition of epicardium derived cells (EPDCs) into 

cells with more mature fates, including fibroblasts.5, 6 There is also evidence from studies in 

Xenopus laevis that Tcf21 functions as a transcriptional repressor to regulate proepicardial 

cell specification and the correct formation of a mature epithelial epicardium.64

Pericytes form a distinct cohort of mesenchymal cells that reside at perivascular locations.4 

Pericytes can express stem cell markers (e.g., Oct4, Sox2)66 and may be fibroblast 

progenitor cells that are capable of self-renewal and differentiation into more mature 

mesenchymal phenotypes. There are unresolved questions as to whether pericytes contribute 

to cardiac fibrotic remodelling.67 Prominent fibrosis around blood vessels is a feature of 

many diseases of the heart, and there is evidence for phenotypic variance between quiescent 

and activated fibroblasts at perivascular and interstitial loci.3, 4

Mesenchymal cells can also arise in the embryonic myocardium through endothelial-

mesenchymal transition (EndoMT) of endocardial endothelial cells,68 as well as from 

migratory populations of neural crest cells (Fig. 2).69 Cells of endocardial origin primarily 

contribute to the developing inlet valves, whereas neural crestderived cells appear to be 

largely confined to the connective tissue of the great vessels and, possibly, the cardiac 

outflow tract.70 Minor populations of fibroblast-like cells that originate from these sources 

are also resident in homeostatic myocardial tissues. Notable in this respect are neural crest-

derived mesenchymal cells in the atria71 and around proximal components of the cardiac 

conduction system.72

The tissues of the embryonic heart are thus subject to waves of immigration of mesenchymal 

progenitors from heterogeneous sources, with each of these different populations 

demonstrating some specificity in their spatiotemporal and, possibly, functional assignments 

in the developing organ.

Fibroblasts in the adult heart

Myofibroblasts—Fibroblasts are changeable in character. A pertinent aspect of this 

phenotypic variability is the transition of quiescent fibroblasts, via a proto-myofibroblast 

intermediary stage, into activated fibroblasts or myofibroblasts (Fig. 2).1, 3, 5, 6 Pathways 

involved in the conversion of fibroblasts into myofibroblasts are thought to include TGF73 

endothelin-1,6, 74 angiotensin II (Ang-II),75 and Wingless-related integration site (Wnt)/β-

catenin signalling.3, 6 The gap junction protein connexin 43 (Cx43) has been found to 
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regulate TGFβ signalling in a non-channel-dependent manner,76 and knockdown or over-

expression of Cx43 inhibits or potentiates TGFβ-induced myofibroblastic phenoconversion, 

respectively.77 Other signal transduction pathways implicated in regulating phenotypic 

conversion of quiescent fibroblasts into myofibroblasts include the peroxisome proliferator-

activated receptor γ, JNK and Akt signalling pathways; some effectors of these pathways are 

also downstream of TGFβ signalling.1, 5 The cell membrane protein caveolin-178 and a 

number of proteins mediating interactions between cell membrane receptors and the ECM 

(so-called matricellular proteins), including thrombospodins,79 SPARC,80 periostin,81 

tenascin-C,82 and extracellular matrix-associated proteins (named CCN as an acronym 

derived from the first three proteins discovered in this family)83 are also involved in 

regulating myofibroblast transdifferentiation. Whilst their contribution to heart function is 

evident, the specific roles of each of the matricellular proteins remain poorly characterized, 

but probably include the generation of a conducive mechano-environment, effects on 

directed migration, stress fiber formation and the production and/or activation of signalling 

factors, such as TGFβ1, that promote the conversion of fibroblasts to myofibroblasts.84

Many of the pathways governing the transition of fibroblasts to myofibroblasts are mechano-

sensitive85–87 and potentially involve stretch-activated ion channels and changes in cellular 

calcium handling.88–90 Myofibroblasts are able to generate mechanical force, which is 

important for scar contraction and remodelling.91 This is a consequence of upregulation of 

proteins involved in coordinated force- and tension-generation, including α smooth muscle 

actin (αSMA), myosins and junctional molecules such as cadherins and Cx43. These cells 

also have important roles in the active secretion and turnover of collagen and other ECM 

molecules10 and are responsive to hypoxia, cytokines and signalling molecules associated 

with the inflammatory milieu, such as TGFβ, tumor necrosis factor α, interleukin-6 (IL-6), 

and IL-2.1, 3, 5, 6, 92 Activated fibroblasts are a common component of granulation tissue 

throughout the body, typically peaking in density at 4–6 days post-injury. An interesting 

difference between wound healing in skin vs. heart is that myofibroblasts appear to persist 

(for up to 17 years!) in cardiac scars.93 The mechanism for their preservation in healed post-

MI scars may be related to the interplay between endothelin, angiotensin and TGFβ 
signalling. Maintenance of myofibroblasts in the scar post-MI is thought to confer 

mechanical benefits: murine strains with high densities of myofibroblasts in healed infarcts 

showed improved ventricular function and reduced propensity for scar expansion and 

ventricular dilation.94

Resident and non-resident mesenchymal cell populations—The heterogeneous 

origin and phenotypic variability of fibroblasts pose technical challenges for experimental 

cell identification. Expressed proteins, including discoidin domain receptor tyrosine kinase-2 

(DDR2), periostin, vimentin, fibronectin ED-A, WT1, PDGF receptor, TCF21, αSMA and 

CD90/Thy1, are commonly used to identify fibroblasts and myofibroblasts.4 However, these 

markers (including some whose naming wrongly implies fibroblast-specificity, e.g. so-called 

fibroblast-specific proteins such as FSP-1)95 may not be uniquely or continuously expressed 

and they do not, therefore, provide a means for reliable tracking of the differentiation history 

of mesenchymal cells.
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Basic studies of cell fate in chick29 and mouse4, 96 embryos using genome integrating virus 

and transgenic lineage markers, respectively, were key to the demonstration that early 

populations of cardiac fibroblasts are derived from the pro-epicardial organ. More recently, 

genetic fate-mapping tools have contributed to new insights into fibroblasts in adult heart 

and disease. Using Cre-expressing lines and a collagen1α1-green fluorescent protein (GFP) 

fusion reporter, the majority of fibroblasts in a mouse model of fibrosis, induced by pressure 

overload, were shown to be derived from cells resident in the heart, mainly from epicardial 

sources.43 Concurrently, a study in which mice expressing Tbx18-Cre, Tie2-Cre and Pax-3-

Cre were used to determine the origin of fibroblast lineages came to a similar conclusion – 

although a minor contribution by neural crest-derived cells was also noted.71

A twist was recently added to this story. Cre-LoxP technology was used to track epicardial- 

and bone marrow-derived mesenchymal cells,97 and although pressure overload did indeed 

trigger fibroblastic differentiation predominantly from resident EPDCs in these experiments, 

collagen deposition and scar formation following MI was determined by interactions 

between cells originating from both the bone marrow and the pro-epicardium. This study 

further suggested that regulatory interactions between the two different mesenchymal 

populations determined the transition to pathological levels of fibrosis – though it did not 

provide data that directly supported this interesting hypothesis. Notably, this report used 

WT1-Cre, which, because of its activation at the earliest stages of pro-epicardial 

differentiation, tags of a range of cardiac cells, largely with non-myocyte phenotypes.

The conclusions of this work,97 however, support earlier studies that detected hematopoietic 

contributions to mesenchymal cell populations in the heart, including to post-MI scar 

formation.36, 98 These reports were based primarily on chimeric mouse models, wherein 

genetically tagged (e.g., GFP) bone marrow cells were transplanted into irradiated (bone-

marrow incompetent) animals. The tag was then used to trace the fate of marked cells. Using 

this method, it was estimated that 28–57% of fibroblast-like cells in post-MI scar tissue were 

of bone marrow origin, with a third of these cells adopting a myofibroblastic phenotype.

In a noteworthy extension of this experimental approach, hematopoietic stem cells were 

evaluated in a clonogenic manner in vivo by repopulating lethally irradiated murine 

recipients with a single GFP-marked bone marrow-derived stem cell clone.98 Following 

surgically induced MI, clonally derived GFP-expressing cells were found to densely 

populate post-MI scars. These cells were of fibroblastic morphology and persisted in scar 

tissue 30 days post-MI, a time point at which the inflammatory response was already largely 

resolved.

Bone marrow-derived, or myeloid fibroblasts (also known as fibrocytes) are recruited to 

injured loci as monocytes from the blood via the stromal cell derived Factor 1α/chemokine 

receptor type 4 signalling axis. They undergo a further transition to CD45+ mesenchymal 

cells under the influence of cytokines, including IL-6 and monocyte chemoattractant 

protein-1 (MCP-1).99 Myeloid fibroblasts contribute to non-adaptive cardiac fibrosis and 

adverse remodelling, particularly post-MI and during ischaemic cardiomyopathy, heart 

failure and aging.99, 100 In this context, TNF signalling, which regulates the transition of 

macrophages from an M2 phenotype (immunosuppressive, pro-angiogenic macrophages) to 

Gourdie et al. Page 6

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fibroblast-like cells, could be particularly relevant, as has been shown in models of heart 

disease.101

Finally, endothelial cells in the adult heart may undergo EndoMT and contribute to fibrosis 

after myocardial injury.102 In this process, endothelial cells lose their endothelial identity 

and acquire mesenchymal or myofibroblastic markers, such as αSMA expression and type I 

collagen secretion. Similar to EMT, EndoMT can be regulated by TGFβ.102 Interestingly, 

recent studies suggest that this process can also be reversed, and mesenchymal cells can 

generate coronary vascular endothelial cells by mesenchymal-endothelial transition in a p53-

dependent manner.103

Thus, available evidence suggests that three main cell populations contribute to fibrosis after 

injury or in pathologic conditions in the adult heart: resident fibroblasts derived from 

EPDCs, mesenchymal populations originating from circulating precursors and cells that 

have undergone EndoMT (Fig. 2). There may also be a fourth minor contribution from 

neuroectoderm.71 EPDCs seem to be the major contributor to fibroblast cell numbers 

overall, but ongoing studies may well uncover disease-specific responses by different 

lineages, including regulatory interactions between the different mesenchymal populations 

that vary according to pathology.

Work on targeting or using mesenchymal cells for treating cardiac disease is broad and 

intensive.104 Key foci of current translational research in this context are on regenerating 

heart muscle lost to disease by reprogramming fibroblasts to trans-differentiate into 

cardiomyocytes, and on reducing fibrosis or the extent of pathologic scarring that occurs in 

response to injury and/or disease (Box 1)

Fibroblast reprogramming in cardiac repair

Fibroblast reprogramming falls into the burgeoning field of regenerative medicine. Whereas 

the adult mammalian heart repairs by forming a scar, amphibians and fish can regenerate 

injured myocardial tissue.105, 106 There have been numerous tantalizing hints that therapies 

could be developed which recapitulate or simulate regenerative processes similar to those 

occurring in lower vertebrates, most recently from studies of reparative responses in 

newborn mice.107, 108

The rationale for exploring whether fibroblasts can be reprogrammed into myocytes as a 

cardiac regeneration strategy can be traced back to the Nobel prize-winning discoveries of 

Yamanaka and colleagues, who reported the generation of iPSC from somatic cells by 

retrovirus-mediated overexpression of a combination of four transcription factors – Oct4, 

Sox2, Klf4 and c-Myc.37 Subsequently, it was shown that forced expression of lineage-

specific factors could reprogramme cells into defined phenotypes, without reverting to an 

intervening stem cell.109 In cardiac biology, Gata4, Mef2c, and Tbx5 (collectively referred 

to as GMT), are sufficient to prompt the trans-differentiation of murine cultured fibroblasts 

into cardiomyocytes with early ontogenetic traits.42 The GMT cocktail –subsequently 

extended by adding a fourth transcription factor, the heart and neural crest derivatives gene 2 

(Hand2) – improved cardiac function in a murine model of MI.110, 111
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In parallel, micro-ribonucleic acid (miRNA) was shown to reprogramme cardiac fibroblasts 

into cardiomyocytes in vitro and in vivo.112 Priming of EPDCs with the actin-binding 

peptide thymosin-β4 also triggers trans-differentiation of these cells into myocytes – albeit 

at very low frequency113 and potentially not in clinically relevant settings.114

The path to cardiac reprogramming has not been smooth. In a replication study, the GMT-

induced conversion was relatively inefficient.115 This work also indicated that the 

electrophysiological phenotype of converted fibroblasts might not align with that of 

cardiomyocytes. Methodological differences between studies may underlie variable 

observations. For example, vector-dependent imbalances in protein expression of the G, M, 

and T factors have been proposed as one reason underlying study-to-study variation.116 A 

further impediment to translation may come from the finding that human cardiac fibroblasts 

appear to be resistant to reprogramming by GMT, though may convert at low efficiency to 

immature beating myocytes if GMT is combined with Hand2, myocardin and two muscle-

specific miRNAs: miR-1 and miR-133.117

Ongoing work on fibroblast reprogramming has focused on improving its reliability, safety 

and efficiency. These efforts include the optimization of the stoichiometry of factors in the 

reprogramming cocktail;116 identification of combinatorial miRNA treatments;118 

development of delivery methods other than genome-integrating retroviruses;119 and 

attempts to generate specific cardiac phenotypes, including atrial, ventricular and 

pacemaking cells,120 with the long-term aim of producing cells with adult-like structural and 

functional properties. In addition, manipulation of cell transduction pathways including 

those associated with TGFβ121 and Akt1 signalling122 could increase the efficiency of cell 

reprogramming. Enhancing Akt1 activation notably increased the efficiency of fibroblast to 

myocyte conversion in vitro.122 Interestingly, thymosin β4, which activates Akt, has been 

reported to enhance function post-MI in the presence of GMT reprogramming.110

Novel drugs and biologics

Partial recovery of disease-induced changes in structural and functional tissue properties 

(reverse remodelling) is a target of clinical interventions,123 in part because fibrosis is an 

independent predictor of arrhythmogenesis and sudden death in patients.124, 125 Several 

established pharmacological therapies that are known to reduce arrhythmias or progression 

of heart disease affect connective tissue, including ACE inhibitors, aldosterone antagonists 

and statins.1, 3, 6 Novel cardioprotective therapies are being developed that preserve 

myocardial muscle, thereby inhibiting its replacement by scar tissue in the acute phase 

following cardiac injury. In addition, interventions, including cell therapies, may provide 

both cardioprotection and enhance the ongoing wound healing response of damaged hearts. 

Third, pharmacological approaches are also being developed to target chronic pathologic 

processes that lead to the accumulation of fibrotic tissue and heart failure. These are 

discussed in detail below.

Cardioprotection—The single most important contribution to reducing the fibrotic burden 

in ischaemic heart disease in the last 25 years has come from the advent of reperfusion 

procedures such as angioplasty and antiplatelet and antithrombotic medications, which 
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restore blood flow to ischaemic myocardium in the immediate aftermath of MI.126 Myocyte 

viability is critically dependent on the availability of sufficient oxygen and thus swift re-

establishment of coronary vascular flow following MI increases the survival of myocardial 

cells, thereby reducing post-infarction fibrosis. Whilst revolutionizing the critical care of MI 

patients, the generation of reactive oxygen species associated with reperfusion can itself 

cause damage to the heart, known as ischaemia-reperfusion injury, resulting in diminished 

contractile function and increased risk of arrhythmia.127

Ischaemic pre-conditioning, in which short episodes of hypoxia reduce infarct size upon 

subsequent MI,128 has inspired the search for therapeutic approaches that take advantage of, 

or mimic, this cardioprotective effect, in particular in the critical 1–3 hour window following 

coronary arterial occlusion.129 An important step in the search for clinically useful 

cardioprotection strategies has been the recent agreement on standardized animal models for 

preclinical screening.130 In addition to classic preconditioning, cardioprotection can also be 

induced by temporary hypoxia at body locations other than the heart (for example, a limb) 

prior to MI (remote preconditioning),131 acutely following MI (post-conditioning),132 or by 

subjecting the heart to mechanical stretch.133 All these may contribute to the beneficial 

cardiovascular effects of regular exercise.

Novel approaches to pharmacologically induce cardioprotection include targeting signalling 

through mitochondrial-associated protein kinase C and its substrates, such as aldehyde 

dehydrogenase 2, which reduces ischemic damage by reactive aldehydesCompounds 

inhibiting the mitochondrial permeability transition pore (mPTP) may also mitigate changes 

that initiate mitochondrial-driven cardiomyocyte death.129, 135 This being said, the mPTP 

blocker cyclosporine A recently failed to meet endpoints in the CIRCUS trial – a study 

designed to determine whether this inhibitor protected hearts from ischaemia/reperfusion 

injury.136 Other experimental and clinical-stage therapeutics that may mimic pathways 

activated in ischemic preconditioning include phosphodiesterase 5 inhibitors (such as 

Viagra),137 chloride channel and transporter modulators,138 hydrogen sulfide,139 

rapamycin,140 and nitric oxide (NO) donors.141 Overexpression of extracellular superoxide 

dismutase has been shown to increase NO bioavailability and provide cardioprotective 

benefit in transgenic mouse models.142

Connexin hemichannels (connexons) are single membrane channels in transit to docking 

within gap junctions. Hemichannels have recently come into focus as another novel 

determinant of acute injury severity following MI.143, 144 The majority of hemichannels in 

the cardiomyocyte cell membrane reside in a zone surrounding the gap junction, called the 

perinexus.145 In response to an ischaemic insult, hemichannels activate, opening non-

selective pores that discharge high concentrations of pro-inflammatory, pro-fibrotic 

molecules such as adenosine triphosphate (ATP), while admitting cytotoxic levels of Na2+ 

and Ca2+ into cells.144 There is also evidence that Cx43 hemichannels act in concordance 

with mPTP channels in response to ischaemic injury.146 The short peptides Gap26/27, αCT1 

and Gap19 mimic key functional domains of Cx43, and have all been shown to inhibit 

hemichannel activity (Gap26/27 blocks gap junction channels as well).147 Gap19 has 

cardioprotective effects, significantly decreasing infarct size in a mouse MI model.144 Gap26 

confers cardioprotection post-injury in a rat MI model in vivo: intra-arterial injection of the 
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peptide 30 minutes after coronary artery ligation reduced infarct size by 61%.143 

Interestingly, the same experimental hemichannel blockers have proved effective in reducing 

glial scarring, providing neuroprotection following ischaemic stroke in animal models.148

Cell therapies—Mesenchymal stromal cells (MSCs), haematopoietic and endothelial 

progenitor cells, as well as mononuclear cells that are derived from bone marrow and other 

sources are at the core of a concerted effort in experimental reparative therapy 

development.149, 150 Supported by preclinical studies in animal models, several groups have 

tested cell therapies in patients with MI. Many, but not all, trials reported modest increases 

in ejection fraction or other signs of functional improvement, and some meta-analyses 

suggest that cell therapy with bone marrow mononuclear cells or mesenchymal cells may 

assist in the recovery of function of injured or diseased hearts.149, 151

However, thus far analyses have been based on small or moderately sized clinical 

investigations. Given the heterogeneity of both the cell preparations used and the patient 

populations studied, such analyses should be interpreted with caution.152 The US 

clinicaltrials.gov website lists more than 300 trials involving cardiac cell therapy, the 

majority of which are early Phase I and II safety and efficacy studies. Outcomes from Phase 

III clinical trials involving thousands of patients are still missing but are necessary to 

establish whether or not largely bone marrow or adipose tissue-derived mesenchymal 

populations reliably provide clinically meaningful improvements, on top of current standard-

of-care. A further note of caution on these therapies came from meta-analyses, such the 

ACCRUE review of 12 randomized clinical trials, of the effects of intracoronary cell therapy 

on ischaemic heart disease, which failed to identify patient benefit, in terms of either clinical 

events or improved left ventricular function.153

Cardiac stem cells have been suggested to be, or at least include, resident progenitor cell 

populations in the heart, with potential roles in regenerating myocardium.154 Various surface 

antigens such as tyrosine-protein kinase Kit (c-Kit) or Stem cell antigen-1 (Sca-1), or 

spheroid cultivation assays, have been used to isolate cardiac stem cells. Engraftment of 

different cell populations improves cardiac function and reduces infarct area in mouse 

models, and two first-in-human clinical trials assessing c-Kit+ (SCIPIO)155 and 

cardiosphere-derived cells (CADUCEUS)156 reported promising results. However, the 

contribution of cardiac stem cells to regeneration of the heart is still a matter of debate, as is 

the potential for heart muscle cells to contribute to self-repair by proliferation.157 Whereas 

mouse heart failure models have suggested that resident c-Kit+ cells may affect cardiac 

repair by direct cardiomyogenic contributions,158 Cre-reporter-based experiments have 

demonstrated that c-Kit expression is largely confined to non-myocyte cardiac lineages.159 

The latter finding is consistent with other reports, which found that the cardiogenic potential 

of c-Kit expressing cells in the adult heart is limited,160 and that c-Kit predominantly 

labelled cardiac endothelial cells in developing and adult hearts.161 Another study suggested 

that the large majority of c-Kit-derived muscle cells were pre-existing c-Kit-expressing 

cardiomyocytes, rather than cells formed de novo from CSCs.162 Similarly, lineage tracing 

of Sca-1-positive stromal cells revealed only a modest contribution of these cells to 

cardiovascular lineages after injury and during aging.163

Gourdie et al. Page 10

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Unfortunately, the debate on cardiac cell therapy has, in a few high-profile cases, moved 

beyond scientific controversy.164 The emphasis of the field has also shifted from 

regeneration to the potential cardioprotective effects of cell therapies – effects that, in large 

part, are now thought to be mediated by paracrine mechanisms. This latter view is consistent 

with the fact that many of the paracrine factors released by the applied cells are known to 

influence fibrosis, angiogenesis and inflammation, and by these means, affect cardiac 

healing responses and scar properties.165 Matrix remodelling can be influenced by the 

release of matrix-modulating enzymes, such as matrix metalloproteases,166 or by modulating 

expression of tenascins.167 The secretion of HGF,168 adrenomedullin,169 and thymosin-

β4170 may also directly affect cardiac fibrosis. Interleukins may act to inhibit cardiac 

fibroblast proliferation and collagen production as well as myofibroblast differentiation,171 

while MSC-derived leptin was shown to inhibit fibroblast activation by blocking pathways 

involving TGFβ/‘small mothers against decapentaplegic’ (Smad) and Myocardin-Related 

Transcription Factor-A.172

Detailed analysis of bone marrow mononuclear cell secretomes has led to the identification 

of novel cardioprotective proteins, such as myeloid-derived growth factor.173 In addition to 

secreted proteins and growth factors, cells of different origins can release extracellular 

vesicles, such as exosomes, which contain various bioactive molecules, including 

microRNA.174 Cell therapies, thus, may profoundly alter the paracrine microenvironment in 

the healing heart, thereby not only affecting mesenchymal cell activity and trans-

differentiation, but also enhancing regeneration, potentially by inducing cardiomyocyte 

proliferation,175 albeit at rates as low as 1% in 25 years.157

The low homing and survival rates of externally applied cells in scar tissue, however, are 

likely to limit the duration of paracrine protective actions.176 Augmenting homing and 

survival, either by pre-treating the engrafted cells with pro-survival factors, genes or 

miRNA, or by preconditioning the target tissue, may enhance the efficacy of cell therapy.176 

With ongoing development of the field, it will be interesting to see whether cell-free 

cocktails of bioactive molecules can be formulated that supersede cell-injection based 

therapies.177

Antifibrotic therapies—Congestive heart failure, a progressive and ultimately incurable 

disease, is marked by the increasing inability of the ventricle to pump blood sufficiently to 

meet the demands of the body. Replacement of cardiac muscle by fibrotic tissue is thought to 

be at the pathogenic nidus of heart failure.1, 3–6 The acute loss of muscle, such as sparked by 

MI, viral infection, or drug toxicity, could be the precipitating cause of heart failure, and is 

followed by disease progression. Fibrosis at interstitial and perivascular locations in the 

failing ventricle can also occur as part of longer term processes associated with aging or 

diseases such as hypertension, aortic stenosis, metabolic disease and obesity. In the atria, 

connective tissue accumulation is an underlying cause of atrial fibrillation. Preventing, or at 

least inhibiting, the accumulation of pathologic levels of fibrotic tissue in both ventricular 

and atrial myocardium is thus a major therapeutic goal.

Exploration in this area is focused on anti-fibrotic activities of established drugs, and on 

novel compounds. Examples of the former category include statins, which are anything but 
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new and are among the most widely prescribed drugs of the last quarter century. Their 

primary mode-of-action is to lower cholesterol levels via inhibition of 3-hydroxy-3-

methylglutaryl-coenzyme A reductase.178 It has emerged from preclinical and clinical 

studies that certain statins also inhibit scarring, fibrosis and adverse myocardial 

remodelling.31, 179, 180 The mechanism through which statins inhibit fibrosis is not entirely 

clear, though simvastatin inhibits trans-differentiation of cardiac fibroblasts into 

myofibroblasts, an effect that is overcome by application of TGFβ.181 Other established 

drugs that have anti-fibrotic actions include aldosterone antagonists and angiotensin receptor 

and ACE inhibitors.3

A number of recent reviews have summarized preclinical and clinical progress on novel 

therapeutics, which are only briefly covered here (Table 1).1, 3–6 Experimental or clinical 

stage antifibrotic compounds include TGFβ pathway inhibitors,209–214 matrix 

metalloproteinase inhibitors,10 inhibitors of mast cell function,195, 215 monoclonal 

antibodies neutralizing the monocyte chemo-attractant MCP-1,188 chemokine interferon-

gamma-inducible protein IP-10/CXCL10,216 endothelin pathway inhibitors,217 Ang-II 

pathway inhibitors,184, 185 and modulators of Wnt-signalling.196, 197

Other new anti-fibrotic targets include the proto-oncogene ski, the basic helix-loop-helix 

transcription factor scleraxis, and the cell membrane proteins β3 integrin and caveolin-1. Ski 

inhibits TGFβ signalling by binding to downstream transcriptional regulatory proteins in the 

TGFβ/Smad pathway.218 Overexpression of ski in isolated cardiac myofibroblasts was found 

to result in phenotypic reversion, marked by reduced collagen expression and myofibroblast 

contractility.219 Scleraxis is a key regulator of collagen synthesis in cardiac fibroblasts, with 

potential regulatory roles in fibroblast to myofibroblast differentiation.220

Mice deficient for β3 integrin showed substantial decreases in pressure overload-induced 

fibrosis, suggesting the involvement of this integrin in maladaptive ECM accumulation.221 

By contrast, loss of caveolin-1 function in mice following MI222 and in isolated human atrial 

fibroblasts223 resulted in TGFβ1 associated fibrosis and upregulation of pro-fibrotic genes. 

Whilst the path to clinical translation of ski, scleraxis, and β3 Integrin to druggable targets is 

still in exploratory phases,224, 225 peptidergic drugs targeting caveolin-1 function have 

demonstrated promise as anti-fibrotic therapeutics in studies of lung fibroblasts from 

scleroderma patients.226

Relaxin-2, a neurohormone historically linked to pregnancy and parturition, is another novel 

biologic compound that has made the translational jump from basic research to the clinic 

(under the generic name serelaxin), and had efficacy in clinical testing of patients with acute 

heart failure.227, 228 The large placebo-controlled Phase III trial of 1,161 patients with heart 

failure, RELAX-AHF, reported significant improvements in patient symptoms, as well as 

decreases in their length of hospital stays and increased survival rates.191 It is presently 

unclear what molecular mechanism underlies the effect of relaxin on fibrosis. However, 

experiments in cell culture models indicate that relaxin inhibits and/or reverses 

myofibroblast differentiation induced by angiotensin and TGFβ, as assessed by changes in 

gene expression and markers of cellular electrophysiology.229, 230
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A number of miRNA-based strategies have also shown potential recently for inhibiting 

cardiac fibrotic processes.231, 232 The first matrix-regulating miRNA to be identified in the 

heart, miR-29, targets several matrix proteins, including collagens.40 Over-expression of 

miR-29 in cardiac fibroblasts reduces collagen expression, albeit modestly.40 Antagomir-

mediated silencing of miR-21 in vivo inhibits interstitial fibrosis and attenuates dysfunction 

in a murine ventricular pressure-overload model.204 Similarly, knockdown of miR-21 by 

anti-sense RNA in the atria was found to suppress atrial fibrosis in a rat model of MI-

induced heart failure.233 However, in other studies, locked-nucleic acid anti-miR-based 

inhibition or genetic deletion of miR-21 failed to block the adverse ventricular remodelling 

response of mouse hearts subjected to pressure overload.234 Differences in the anti-fibrotic 

response may in part rely on the chemistry that was used to inhibit miR-21.233 Although the 

anti-fibrotic activity of anti-miR-21 in the heart is debated, a modified miR-21 antisense 

(RG-012) is currently being clinically tested in patients with kidney fibrosis (the ATHENA 

trial).235 Many additional miRNAs control myocyte survival after MI, thereby indirectly or 

directly affecting fibrosis.236 Inhibition of age-induced miR-34 expression can also decrease 

age-related cardiac fibrosis.237 Interestingly, miRNA may not only directly or indirectly 

target fibroblasts, but it is also released by cardiac fibroblasts. For example, fibroblast-

derived exosomal miR-21-3p (miR-21*) acts as a potent paracrine-acting RNA molecule 

that induces cardiomyocyte hypertrophy.238

All in all, present conceptual approaches for therapeutic interventions are focused on 

avoiding or inhibiting fibrosis and/or on turning non-myocytes into working cardiac muscle. 

An alternative idea, providing a lower-hanging fruit of potentially high value, will be 

discussed next: the making of better scars.2

Re-engineering scars

Utilizing the natural reparative processes of fibroblasts to modify properties of the forming 

cardiac scar is quietly emerging as an exciting therapeutic avenue. Part of the rationale here 

comes from the recognition that, whilst fibrotic responses are common in the repair 

processes in the human heart, not all fibroblast-mediated cardiac remodelling is 

detrimental.41, 53, 94

Fibroblast lineage studies already hint at differences in regulatory interactions that determine 

fibrosis in response to ischaemic versus hypertrophic diseases.97, 99, 100 Furthermore, 

fibroblasts in the atrium and ventricle show differences in gene expression,239 

electrophysiological characteristics,88, 240 and propensity for pro-fibrotic activity.241, 242

Cardiac scar formation is not always the result of disease. Interventions such as catheter 

ablation therapy intentionally generate scars in the heart to obliterate reentrant activation 

pathways, for example to alleviate atrial rhythm disturbances.243 On the other hand, 

pediatric cardiologists face a growing (and in some ways welcome) problem of managing 

adult patients with morbidities that are linked to the accumulation of scar tissue resulting 

from childhood surgeries to correct heart birth defects.244
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It is important in this context to recall that not all cardiac scars are created equal. Post-

surgery, de-novo generation of both ECM and cellular content are involved in scar 

generation, while post-ablation scars are re-cellularized on the background of pre-existing 

ECM. Post-MI scars, in contrast, contain not only native ECM but also surviving heart cells 

of different types, albeit with reduced myocyte content, caused by the pronounced sensitivity 

of these cells to oxygen starvation. These pose three potentially quite different 

pathophysiological settings.

The ability to personalize the properties of cardiac scar tissue to meet the needs of different 

types of scar and patient is thus an interesting and currently unmet clinical need.2, 245

Therapeutic potential of modifying scar mechanics

Notable aspects of the effort to “engineer a better scar” include insights into biomechanical 

inputs in fibrotic tissue differentiation, as well as the role of scar structure in determining the 

efficiency of cardiac output. Ventricular function has recently been recognized to be affected 

more by the alignment of collagen fibers within post-MI scars than by scar stiffness or 

collagen density.246 Collagen alignment, in turn, is a function of mechanical stress patterns 

that cardiac scars are subjected to during the contraction cycle.

Scar mechanical properties are also critical factors for the genesis of complications arising 

from ischaemic heart disease — including infarct rupture and scar expansion — that can 

occur after MI. Experimental therapies that attempt to modify mechanics and inhibit 

pathological remodelling of the infarct include mechanical restraints that limit or direct the 

motion of scars during the heartbeat,247, 248 injection of polymers to modify scar 

rigidity,249–251 MMP9 loss-of-function,252 and hydrogels containing tissue MMP inhibitors 

or viruses over-expressing them.253, 254 It is also of note that cardiac resynchronization 

therapy, an approved treatment for dilated heart failure, can promote reverse remodelling by 

normalizing regional stress/strain patterns across the infarcted ventricle.255

The risk of post-MI scar dilation and rupture is an important safety consideration for 

therapies targeting scar mechanical properties. The ventricle of the adult human heart 

generates systolic pressures of 120 to 180 mmHg, similar to mice and rats post-partum, but 

nearly one order of magnitude higher than pressures in utero (~30 mmHg) and about two 

orders above that of animals in whom myocardial regeneration is maintained into adulthood, 

such as the zebrafish (~2 mmHg).256 It seems a reasonable conjecture that the evolutionary 

emergence of higher blood pressure in adult mammals may have had an impact on the risks 

and benefits of healing the heart by scarring versus regeneration. In an illustration of this 

potential trade-off, adult mice in whom the gene encoding the ECM protein periostin has 

been knocked out are prone to ventricular rupture following MI.81, 257 However, those 

periostin knockout mice that survived exhibited reduced levels of scarring and improved 

cardiac performance.81

One might expect that therapies based on cardiomyogenic stem cells also pose increased risk 

of rupture and ventricular dilation, wherein infarcts could be more likely to show mechanical 

failure when healing is shifted towards regeneration and away from expeditious formation of 

a mechanically strong scar. Bone marrow-derived cells, which have limited cardiomyogenic 
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potential, may be beneficial in this respect. Pharmacologically induced increases in 

recruitment of bone marrow-derived mesenchymal progenitor cells to MI in a mouse model 

was reported to be associated with reduced rates of ventricular rupture and death.258 These 

effects may provide a further explanation for how bone marrow-derived cell infusion 

contributes to clinical improvements following MI, and also suggest novel strategies to 

manipulate these cells, which to home-in on infarcts, to generate better scars. In an example 

of this approach, injection into femur bone marrow of a lentivirus expressing a small hairpin 

RNA targeting periostin prior to ventricular injury was reported to reduce scar size and 

improve cardiac function – without ventricular rupture that was found to occur following MI 

in mice with a global knockout of periostin.259 In this experiment, periostin knockdown was 

limited to bone marrow cells migrating to the MI, suggesting that selectively decreasing 

periostin expression in this extracardiac cell population may provide a therapeutic path to 

reduce scarring, and possibly promoting regenerative healing, following cardiac injury.

Therapeutic potential of modifying scar electrical properties

Fibrous, collagen-rich tissues in the heart have traditionally been viewed solely as non-

conducting and electrically insulating structures. Undoubtedly, that is one of the most 

relevant functional effects of fibrosis, as observed more than a century ago.260 However, 

newer data has led to a more nuanced understanding of the electrical properties of cardiac 

scars and the implications of the electrical interaction between myocytes and non-

myocytes.7, 21, 261 Since the 1960s, it has been known that fibroblasts and myocytes can 

couple electrically in vitro,23 and more recently it was confirmed that cultured fibroblasts 

can bridge the transmission of action potentials (APs) between otherwise separated clusters 

of myocytes across gaps of up to 300 μm.34 In an analogous example from the clinical 

literature, 10–20% of heart transplant recipients have been reported to develop electrical 

coupling across scar tissue at suture lines separating donor and recipient heart tissue.262 

Similarly, electrical conduction across fully transmural scars can be seen after surgical 

correction of cardiac birth defects.263

Myocyte-fibroblast coupling may occur via connexin-based gap junctions,20, 264–266 which 

are far from uncommon in native myocardium.267 However, functionality of connexin-based 

fibroblast-myocyte coupling in native cardiac tissue has been corroborated only in rabbit 

sino-atrial node tissue.19 Underlying structures may also involve filamentous projections 

made by mesenchymal cells, called tunnelling nanotubes, through which ions and small 

molecules can be directly exchanged.268 Ephaptic conduction, a non-gap junction coupling-

based method to transfer currents between cells, has been reported between myocytes and 

could also have a role in myocyte-fibroblast coupling.269, 270

In situ, cardiac fibroblasts exhibit complex and extended flat shapes, with irregular folds and 

elongated cell processes.18 To give a sense of their extended spatial scale in vivo, cardiac 

fibroblasts are typically an order of magnitude larger in the intact heart than when freshly 

isolated.2 Fibroblasts have membrane potentials of between −10 and −50 mV and a 

relatively high membrane resistance.2 Their extended morphology and elevated membrane 

resistance enhances the ability of fibroblasts to act as passive, long-distance conductors of 

electrical signals in vivo, including APs, when coupled to electrically active cells such as 
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myocytes.264, 271 In quantitative mathematical simulations of heterocellular electrical cross-

talk in the 1990s, using ‘passive’ fibroblast models, fibroblasts that were electrically coupled 

to muscle cells could affect cardiomyocyte excitability, altering heart rate and rhythm.272 

More recently, based on emerging experimental insight into their electrophysiology, detailed 

ionic models of cardiac fibroblasts have been developed.273 Modelling studies have since 

provided indications that activated fibroblasts (myofibroblasts) may have specific 

electrophysiological relevance for arrhythmogenesis,274 a phenomenon that may relate to 

fibroblast-myocyte coupling and include changes in fibroblast membrane ion currents that 

occur following MI.2, 5, 7, 274–277 Both passive and active fibroblast models have been 

productive for theoretical assessment and hypothesis testing, at times preceding 

experimental validation.278–281 A major step towards more realistic computer simulations 

occurred with the advent of detailed three-dimensional scar reconstructions,282 paving the 

way towards clinically relevant prediction of scar effects on heart function, though thus far 

these studies have focussed largely on the classic view of scars as electrical 

insulators.283–285

In an influential study, ventricular scars were shown to be capable of conducting electrical 

signals;38 optically mapped AP waveforms were observed to conduct into scar tissue in a 

rabbit transmural MI model. Infarct tissue continued to support conduction even after sub-

endocardial muscle layers were chemically ablated, thus excluding the possibility of 

electrical contributions from surviving contiguous myocardium. This observation was 

followed by reports from other teams,286, 287 indicating the possibility that nonmyocytes 

may serve as conduction pathways that link surviving myocyte islands inside post-MI scar 

tissue, thus allowing trans-scar conduction. Further support for this theory was provided at a 

recent Keystone conference, where data were presented demonstrating Cx43-dependent 

conduction into scar tissue in a fully transmural ventricular injury in a transgenic mouse 

model;288 another group reported direct evidence of conduction into non-myocytes of the 

scar border zone, using a fluorescent voltage reporter genetically targeted to non-myocytes 

by the WT1 promoter.289

Non-myocyte based trans-scar conduction could be used in novel therapeutic approaches. If, 

in a clinical setting, scar tissue could be rendered electrically “invisible” with respect to the 

propagating impulse, then the potential for infarcts to cause life-threatening arrhythmias 

might be reduced. For example, engraftment of Cx43-expressing cells into murine scar 

tissue prevents post-MI arrhythmogenesis.39 A peptide mimetic of the Cx43 carboxyl-

terminus (αCT1) has been reported to reduce hemichannel activity and increase intercellular 

coupling by enhancing the recruitment of undocked connexin hemichannels into gap 

junctions.145 Similar to the engraftment of Cx43-expressing cells post-infarction,39 

treatment of mouse ventricular injuries with αCT1 reduced the incidence of arrhythmia and 

increased conduction velocity, including through the infarcted section of the ventricle.198

Tissue-engineered constructs containing cardiac myocytes and fibroblasts have also been 

used successfully to conduct excitation from atria to ventricles in cases of experimental 

atrio-ventricular conduction block.290 This is another potential therapeutic application that 

depends on efficient heterocellular coupling, both among tissue graft components and at the 
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graft-myocardial interface, both of which involve propagation of electrical signals across 

non-myocytes.261

The goal of engineering more conductive scars in post-MI patients is contrasted by the need 

for certain types of scars to remain impenetrable to electrical inputs from surrounding 

myocardial tissues, such as in the context of atrial ablation.243 For this procedure, focal 

energy delivery, e.g. from a radiofrequency catheter, is used to generate lesions that interrupt 

conduction of spurious excitation waves, thereby terminating atrial arrhythmias. 

Unfortunately, a large proportion of patients show re-emergence of functional conduction 

across intra-procedurally established ablation lines.291 Extrapolating from (and ‘inverting’) 

the electrophysiological effects of Cx43 over-expression in post-MI scar tissue, a decrease in 

Cx expression in atrial fibroblasts could potentially provide an approach to improving 

outcomes of atrial ablation procedures. Alternatively, one could build on an engineering 

approach in which Cx43-expressing fibroblasts were first transfected to express voltage-

sensitive potassium channels, such as Kv1.3, and then engrafted into rat hearts.292 These 

grafts of clustered mesenchymal cells were found to alter local electrophysiological 

properties and, owing to their enhanced potassium current, reduced automaticity and 

prolonged refractoriness of surrounding electrically coupled cardiac myocytes. This concept, 

pioneered in ventricular tissue, could be adapted to counter trans-scar conduction across 

atrial ablation lines.

Outlook

Research over the past 25 years has identified the cardiac fibroblast as a cell with an 

unexpected range of effects, integrating and organizing myocardial structure and function at 

various levels, from local signalling to global electro-mechanical function. There has been 

further insight into the well-established roles of fibroblasts in cardiac structure and ECM 

generation, together with an expanding appreciation of their paracrine effects, functions as 

mechanical and electrical signalling hubs, and roles in myocardial repair. There can be little 

doubt that there will be new surprising roles for fibroblasts in homeostasis and disease, but 

this is a suitable moment to take stock of this protean cell. By analogy to the glia of the 

central nervous system, which was once regarded as a trophic glue but is now recognized as 

a structure whose relevance for tissue function is on par with that of the neural network 

itself, we know too little about the relevance of non-excitable cells in homeostasis of 

excitable tissues and organs. What we do know is that the replacement of excitable cells, 

whether by gliosis or fibrosis, is a chief element of pathogenic processes in diseases of the 

brain and heart.

It is time, therefore, to shift our appreciation of cardiac mesenchymal cells away from 

viewing them as a passive component in an integrated and dynamic tissue system – diverse 

in ontogeny and inseparable from the myocardial syncytium but otherwise secondary in 

relevance – to one where they are credited with active roles in complex, multifunctional 

regulatory processes crucial not only for development but also for structural maintenance 

and functional operation of the heart.
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The concept that fibroblasts link together to form a cardiac sub-system of co-equal 

importance to the syncytial network of myocytes should inform our approach to targeting or 

utilizing mesenchymal cells in therapies for heart disease. In this respect there are a number 

of exciting opportunities and important questions. The implications of complex sets of 

intercellular interactions, both homocellular and heterocellular, are poorly understood, and 

modulating cell-to-cell communication in the heart via biochemical and biophysical factors 

may provide new therapeutic targets. Novel paracrine factors could be identified by 

analyzing the secretome of cells – as has been done for cells used for cell therapy.173 Recent 

studies suggest that among the many long non-coding RNA molecules, some may code for 

small peptides with potent biological activity.293 Similarly, well-known cardiac proteins 

such as Cx43 can generate alternative bioactive peptides in response to ischaemia by cap-

independent translation,294, 295 peptidase processing,296 or as a docking motif for exosome-

cell communication,297 further suggesting the possibility of new regulatory molecules and 

mechanisms that have been overlooked so far. In addition to proteins and peptides,298 

metabolites (e.g. lipids, metabolic intermediates etc.) may be identified by new “omics” 

tools as structural and functional regulators of the heterocellular heart. Development of 

pharmaceutically tractable compositions and delivery systems, including cell-specific 

targeting, are among the hurdles that must be overcome if these newly identified factors are 

to be harnessed as therapies for improving cardiac health.

Better markers and lineage tracing tools are needed for cardiac mesenchymal cells. Such 

tools would enable the exploration of the regulation of cell plasticity, allowing insight into 

the heterogeneous origins of fibroblasts, processes such as EMT, EndoMT and (reverse) 

mesenchymal-endothelial transition, and their various response patterns to physiological and 

pathophysiological challenges. Improved lineage tools may also provide us with the 

knowledge necessary for co-opting fibroblast behaviours, such as homing to injured loci, as 

a treatment modality. One might envisage genetic modifications of these migratory cells to 

carry payloads to damaged myocardial tissues in personalized medicine-type approaches. 

Further, the ability to more reliably trace cell fate would enable a more thorough 

understanding of mechanisms underlying fibroblast reprogramming and cell therapies, thus 

moving us closer to being able to comprehensively repair and/or regenerate the damaged 

heart.

In the meantime, the more modest goal of modifying scar tissue for patient benefit seems to 

be a useful tangible objective. Humans and other mammals heal damaged hearts by scarring 

and fibrosis. We should take a cue from Mother Nature, and determine how to 

therapeutically nudge or re-engineer this process, to improve clinical outcomes for patients 

with heart disease.
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Box 1

Effects of fibroblasts on cardiac physiology

Fibroblasts affect numerous aspects of cardiac form and function.

Altered histoanatomy:

- adaptive fibrosis

- remodelling of the extracellular matrix (ECM)

- increased tissue stiffness

- contribute to heart failure

Changes in biophysical signalling:

- alterations in connexin localisation and function

- altered conduction into the scar

- increased ECM can act as an electrical insulator, thereby reducing electrical 

connectivity

Changes in biochemical signalling:

- adaptive hypertrophy

- increased inflammation

- apoptosis, resulting in muscle loss

Cell differentiation:

- Fibroblast to myocyte transdifferentiation

- Endothelial- or epithelial-mesenchymal transition

- Fibroblasts may affect the microenvironment by paracrine signaling

These fibroblast-induced changes could be harnessed to regenerate or repair muscle. For 

example, fibroblasts could be targeted in patients with atrial or ventricular fibrillation to 

prevent the disease or improve the efficacy of catheter ablation, or to make scars in 

patients who have had myocardial infarctions electrically invisible.
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Figure 1. Key developments and changing focus of cardiac fibroblast research
This timeline shows key articles on cardiac fibroblasts. Early research in this area was 

predominantly descriptive of histoanatomical structures, then changed to also describing 

biophysical and biochemical signalling. Since the early 2000s cardiac fibroblast research has 

also included the roles of fibroblasts in myocyte transdifferentiation as a potential source for 

regeneration as well as their potential to be utilized to improve scarring. *Embryonic chick 

heart; ‡cultured cells from embryonic mouse heart, §embryonic rat heart, ║cultured cells 

from neonatal rat heart, ¶cultured cells from embryonic chick heart, #adult rat heart, 

**transgenic rabbit model of hypertrophic cardiomyopathy, ‡‡humans, §§adult rabbit 

heart, ║║adult mouse heart. Cx43, connexin 43; EndoMT, endothelial to mesenchymal 

transition; FGF, fibroblastgrowth factor; MI, myocardial infarction; miRNA, microRNA; 

RCT, randomized clinical trial; TGFβ, transforming growth factor β.
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Figure 2. Cardiac fibroblast and myofibroblast origins in health and disease
Cardiac fibroblasts originate from various sources, including the (pro-)epicardium, cardiac 

endothelium, neural creast and bone marrow. They form amultiplicity of cells, with hitherto 

ill-defined precursurs (both resident and circulating), subtypes, and relations to pericytes. 

Fibroblast activation by pathological stimuli, including stretch, hypoxia, and inflammation, 

lead to phenotype-conversion via proto-myofibrobalsts to myofibroblasts. For detailed 

explanations, see text.
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Table 1

Selected compounds and interventions that may reduce or reverse fibrosis*

Drug class or intervention Target Anti-fibrotic biological mode-of-action Potential indication

Drugs and biologic compounds

ACE inhibitors (e.g. enalapril) Angiotensin converting enzyme Inhibit fibroblast activation, macrophage 
attracting enzymes, ECM deposition

Hypertension, ischaemic heart 
disease, heart failure182

Aldosterone inhibitors (e.g. 
spirolactone)

Mineralocorticoid receptors Reduce oedema, cardiac load Heart failure183

Statins (e.g. simvastatin) Co enzyme A-reductase Reduce lipid levels, inhibit fibroblast 
activation

Ischaemic heart disease, heart 
failure, atrial fibrosis179, 181

Angiotensin receptorinhibitors
(e.g., losartan)

AT1 receptor Inhibit fibroblast activation, ECM 
deposition

Heart failure184, 185

Endothelin receptor inhibitors 
(e.g. bosentan)

ET receptors Reduce fibroblast ECM deposition Failed Phase III testing for heart 
failure and ischaemia 
reperfusion injury {Rodriguez-
Pascual, 2014 #14279; Singh, 
2006 #14280}

Beta blockers
(e.g. propranolol)

Beta adrenergic receptors Inhibit fibroblast activation, ECM 
deposition

Heart failure, reverse 
remodelling186

Acetylsalicylic acid
(e.g. asprin)

Cyclooxygenase, redox-sensitive 
transcription factors

Inhibit fibroblast activation Cardiac hypertrophy, reverse 
remodelling187

MCP-1 neutralizers (e.g., anti-
CCL2 antibody)

Monocyte Chemo-attractant Protein-1 Inhibits macrophage and fibroblast 
proliferation, and induction

Myocardial infarction, 
ischaemia reperfusion injury188

PPARγ agonists
(e.g. thiazolidinediones)

Nuclear hormone receptor 
peroxisome proliferator activated 
receptor-gamma

Inhibit fibroblast activation, ECM 
deposition

Hypertrophic cardiomyopathy, 
heart failure, myocardial 
infarction189

MMP inhibitors (e.g., batimas) Matrix metalloprotein Inhibit extracellular matrix remodelling Cardiac scar re-engineering. 
Failed Phase III testing for heart 
failure190

Relaxin inhibitors
(e.g., serelaxin)

Relaxin-2 Inhibit fibroblast activation ECM 
expression

Heart failure, atrial fibrosis191

PDGFR inhibitors and anti-
PDGFR antibodies

Platelet derived growth factor 
receptor-α

Inhibit atrial fibrosis Atrial fibrosis/fibrillation192

Mast cell inhibitors
(e.g., nedocromil)

Mast cells Inhibit mast cell activation and 
histamine release

Heart failure, hypertension, 
ischaemia reperfusion injury193

Hyaluronan inhibitors
(e.g., exogenous HA)

Endogenous hyaluronan organization Inhibit fibroblast activation Myocardial infarction194

Chymase inhibitors
(e.g., TY51469)

Chymase Attenuation of inflammatory pathways, 
inhibition of fibroblast proliferation

Ischaemia reperfusion injury195

Wnt inhibitors
(e.g. sFrpl)

Canonical Wnt signalling Inhibit pro-fibrotic cytokine signalling, 
ECM remodeling

Myocardial infarction196, 197

Connexin inhibitors
(e.g., αCT1)

Connexin 43 Inhibit connexin hemichannel activity Myocardial infarction, atrial 
fibrosis143, 144, 198

Cardioprotective drugs
(e.g., mitochondrial PTP 
Inhibitors)

Mitochondrial permeability transition 
pore in myocytes

Prevention of muscle loss and 
replacement by scar during ischaemia

Myocardial infarction. 
{Duncker, 2000 #14300; Chen, 
2008 #7585} CIRCUS trial 
failed to meet primary 
endpoints136

Cell and tissue interventions

Bone marrow-derived stem cells
(e.g., BMCs, CD34+ cells, MSCs)

Multiple cells: endothelial cells, 
myocytes, fibroblasts

Paracrine modulation of wound healing 
and scarring

Myocardial infarction, 
ischaemic heart failure149, 150, 153
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Drug class or intervention Target Anti-fibrotic biological mode-of-action Potential indication

Adipose-derived cells
(e.g. MSCs)

Multiple cells: endothelial cells, 
myocytes, fibroblasts

Paracrine modulation of wound healing 
and scarring

Myocardial infarction200

Endogenous cardiac stem cells 
(e.g., cardiospheres, c-Kit+ cells)

Multiple cells: endothelial cells, 
myocytes, fibroblasts

Paracrine modulation, Possibly through 
myocyte differentiation

Myocardial infarction, 
ischaemic heart failure155, 156

Cardioprotective procedures (e.g., 
remote preconditioning)

Myocytes Prevention of muscle loss and 
replacement by scar during ischaemic 
events

Myocardial infarction201

Fibroblast reprogramming
(e.g. GMT)

Cardiac fibroblasts Convert scar-forming fibroblasts into 
myocytes

Myocardial 
infarction110–112, 122, 202

Cellularized ECM Scaffolds (e.g., 
with iPSC-derived myocytes)

Cardiac scar Revision/replacement of scar tissue with 
new myocardium

Myocardial infarction13, 15, 203

miRNAs, lncRNAs etc

AntimiR-21 Fibroblasts Inhibition of fibrosis Kidney fibrosis, myocardial 
infarction204

AntimiR-92 Endothelial cells Improvement of angiogenesis, 
cardioprotection

Myocardial infarction205

Other

Angioplasty Blocked coronary arteries Balloon catheter used to re-establish 
blood flow to prevent replacement of 
muscle by scar

Myocardial infarction194

Thrombolytic therapy
(e.g., tPA)

Blocked coronary arteries Clot-dissolving drug used to re-establish 
blood flow to prevent replacement of 
muscle by scar

Myocardial infarction182, 206

Cardiac resynchronization therapy Ventricular stress/strain patterns Promotes reverse remodelling Myocardial infarction207

Dietary sugar reduction p300 Inhibit fibroblast activation, ECM 
expression

Diabetes-induced heart failure208

*
Substances or strategies that are or are close to clinical use are included.
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