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The constraint-based analysis of genome-scale metabolic and regulatory networks has been successful in predicting
phenotypes and useful for analyzing high-throughput data sets. Within this modeling framework, linear optimization
has been used to study genome-scale metabolic models, resulting in the enumeration of single optimal solutions
describing the best use of the network to support growth. Here mixed-integer linear programming was used to
calculate and study a subset of the alternate optimal solutions for a genome-scale metabolic model of Escherichia coli
(iJR904) under a wide variety of environmental conditions. Analysis of the calculated sets of optimal solutions found
that: (1) only a small subset of reactions in the network have variable fluxes across optima; (2) sets of reactions that
are always used together in optimal solutions, correlated reaction sets, showed moderate agreement with the
currently known transcriptional regulatory structure in E. coli and available expression data, and (3) reactions that
are used under certain environmental conditions can provide clues about network regulatory needs. In addition,
calculation of suboptimal flux distributions, using flux variability analysis, identified reactions which are used under
significantly more environmental conditions suboptimally than optimally. Together these results demonstrate the
utilization of reactions in genome-scale models under a variety of different growth conditions.

[Supplemental material is available online at www.genome.org.]

Constraint-based modeling of reconstructed genome-scale meta-
bolic networks has proven useful for understanding and predict-
ing the genotype-phenotype relationship in microbes (Ibarra et
al. 2002; Segre et al. 2002; Stelling et al. 2002; Fong et al. 2003;
Forster et al. 2003; Price et al. 2003; Reed and Palsson 2003).
Within this analysis framework, a variety of methods have been
developed to characterize the metabolic steady-state flux solu-
tion space and select solutions within that space that might be
physiologically relevant, including elementary mode analysis
and extreme pathway analysis (Papin et al. 2003), flux balance
analysis (Kauffman et al. 2003), MOMA (Segre et al. 2002), Opt-
Knock (Burgard et al. 2003), flux-coupling (Burgard et al. 2004),
random sampling (Almaas et al. 2004; Price et al. 2004; Wiback et
al. 2004), and flux variability analysis (Mahadevan and Schilling
2003). Flux balance analysis uses linear optimization to find a
flux distribution that maximizes a particular objective function
(e.g., growth rate or ATP production; Varma and Palsson 1994;
Kauffman et al. 2003). However, there are often multiple flux
distributions that are equally optimal (value of the objective
function is the same) giving rise to the concept of multiple al-
ternate optima (Lee et al. 2000; Mahadevan and Schilling 2003).
The existence of such multiple optima would correspond to the
biological notion of silent phenotypes (Raamsdonk et al. 2001),
that is, the same observed overall cellular function is achieved
with different uses of underlying reaction networks (Fong et al.
2003).

Mixed-integer linear programming (MILP) has been used to
study optimal solutions by identifying the minimum number of

reactions needed for optimal growth (minimum reaction sets;
Burgard and Maranas 2001; Burgard et al. 2001), as well as enu-
merating alternate basic optima for small metabolic networks,
where the objective function takes on the same value but the flux
distributions through the metabolic network are different (Lee et
al. 2000; Phalakornkule et al. 2001). The alternate optimal flux
distributions calculated using the MILP algorithm differ in that
they all use a different set of reactions. For the small-scale net-
works previously studied (Lee et al. 2000; Phalakornkule et al.
2001), the number of alternate optima was on the order of 10
solutions. In genome-scale networks, a large number of network
redundancies exist (Mahadevan and Schilling 2003) creating
computational challenges in calculating all alternative optima.
One approach to explore the range of optimal solutions is to fix
the growth rate and then calculate the minimum and maximum
flux values through each reaction in the network (referred to in
this paper as ‘flux variability analysis’). The approach was re-
cently used to analyze the initial genome-scale network for Esch-
erichia coli (iJE660a; Edwards and Palsson 2000) for a select num-
ber of environmental conditions including aerobic growth on
glucose, acetate, and D-lactate (Mahadevan and Schilling 2003).

Here we applied the recursive MILP algorithm (Lee et al.
2000) to calculate a subset of the alternate optimal solutions in
an expanded genome-scale model of E. coli (iJR904; Reed et al.
2003) for a large number of media conditions (136). Compari-
sons between the optimal solutions characterized by the flux
variability analysis and those calculated with an MILP approach
found that the first 500 solutions identify all of the variable
fluxes in the set of alternate optima, but do not fully capture the
magnitude of the flux variability through the individual reac-
tions. Looking at the alternate optima across the 136 simulated
growth environments, a number of reactions were found to be
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utilized in all of the calculated alternative optima, whereas others
were used under only a few environmental conditions. This col-
lection of optimal solutions was studied to provide insights into
the candidate regulatory mechanisms and strategies that would
allow E. coli to grow optimally. Flux variability analysis was also
used to study how fluxes are used in suboptimal solutions, and
this approach identified reactions that if used would lead to sub-
optimal growth by the cell. Thus, the present study is the most
comprehensive evaluation of alternative optima in genome-scale
models to date.

RESULTS
We first computed a sample of 56,756 optimal solutions under
136 growth environments. We then assessed the properties of
these solutions and found the correlated reaction subsets in these
optimal solutions. The correlated reaction subsets were then
compared to known regulon structures and expression profiling
data sets. For aerobic and anaerobic growth on glucose, we com-
pared the utilization of reactions in the alternative optima to
described transcriptional regulation
of the genes that are associated with
some of these fluxes. Finally, we
compared the reaction usage in op-
timal growth solutions to those in
suboptimal growth solutions.

Comparing Results From MILP
and Flux Variability Analysis
Previous metabolic networks stud-
ied using MILP have enumerated a
finite number of flux distributions
(Lee et al. 2000). A modified version
of the algorithm (see Methods sec-
tion) was implemented here and
used to calculate basic optimal so-
lutions for 88 aerobic and 48 an-
aerobic growth conditions, where
different carbon sources were used
(see Table 1 for a list of simulated
carbon sources). The set of optima
for a given environment will be re-
ferred to in this paper as the ‘con-
dition-specific optima’. Application
of the modified MILP algorithm to
a genome-scale metabolic network
showed that for many carbon
sources the number of alternate op-
tima was large, making it computa-
tionally difficult to enumerate all of
the optimal solutions. As such, only
the first 500 optimal solutions were
calculated for each of the 136
(= 88 + 48) environmental condi-
tions. For some simulated environ-
ments, aerobic growth with glycine
as the sole carbon source and for all
48 anaerobic conditions, it was pos-
sible to enumerate all of the alter-
nate optima.

To investigate how well the
calculated condition-specific op-
tima spanned or represented the ac-
tual range of optimal solutions, the
number of varying fluxes and the
range of those fluxes were calcu-

lated from the different sets of condition-specific optima and
compared to the results using flux variability analysis. Figure 1
shows that for the 88 aerobic conditions, the first 150 optimal
solutions are sufficient to identify all of the variable fluxes
among the set of condition-specific optima, whereas determining
the numerical range of these fluxes in the set sometimes required
the calculation of more optima. For some carbon sources, the
magnitude of the flux ranges when looking at all 500 optimal
solutions was smaller than the actual flux ranges calculated using
flux variability analysis. These results imply that the first 500
optimal solutions are adequate for getting a sample of the full set
of condition-specific optima, while still remaining computation-
ally tractable. With adequate sampling, the set of condition-
specific optima can be further analyzed.

Properties of Alternate Optima
The average optimal flux distribution, found among the 136
growth conditions considered, used 294 of the 931 internal re-
actions in iJR904, and for a given growth condition the average

Table 1. Allowable Carbon Sources

Abbr. Metabolite name Abbr. Metabolite name

2ddglcn 2-Dehydro-3-deoxy-D-gluconate tre Trehalose
acgam N-acetyl-D-glucosamine uri Uridine
acmana N-Acetyl-D-mannosamine xtsn Xanthosine
acnam N-Acetylneuraminate xyl-D D-Xylose
adn Adenosine 12ppd-S (S)-Propane-1,2-diol
arab-L L-Arabinose 3hcinnm 3-hydroxycinnamic acid
cytd Cytidine 3hpppn 3-(3-hydroxy-phenyl)propionate
dad-2 Deoxyadenosine 4abut 4-Aminobutanoate
dcyt Deoxycytidine ac Acetate
dgsn Deoxyguanosine acac Acetoacetate
dha Dihydroxyacetone acald Acetaldehyde
din Deoxyinosine akg 2-Oxoglutarate
duri Deoxyuridine ala-D D-Alanine
fru D-Fructose ala-L L-Alanine
fuc-L L-Fucose arg-L L-Arginine
g6p D-Glucose 6-phosphate asn-L L-Asparagine
gal D-Galactose asp-L L-Aspartate
galct-D D-Galactarate but Butyrate (n-C4:0)
galctn-D D-Galactonate cit Citrate
galt Galactitol etoh Ethanol
galur D-Galacturonate fum Fumarate
gam D-Glucosamine gin-L L-Glutamine
glc-D D-Glucose glu-L L-Glutamate
glcn D-Gluconate gly Glycine
glcr D-Glucarate glyc Glycerol
glcur D-Glucuronate glyclt Glycolate
glyald D-Glyceraldehyde hdca Hexadecanoate (n-C16:0)
glyc3p Glycerol 3-phosphate lac-D D-Lactate
gsn Guanosine lac-L L-Lactate
idon-L L-idonate mal-L L-Malate
ins Inosine mnl D-Mannitol
lcts Lactose ocdca Octadecanoate (n-C18:0)
malt Maltose orn Ornithine
malthx Maltohexaose pppn Phenylpropanoate
maltpt Maltopentaose pro-L L-Proline
malttr Maltotriose ptrc Putrescine
maltttr Maltotetraose pyr Pyruvate
man D-Mannose ser-D D-Serine
man6p D-Mannose 6-phosphate ser-L L-Serine
melib Melibiose succ Succinate
rib-D D-Ribose tartr-L L-tartrate
rmn L-Rhamnose thr-L L-Threonine
sbt-D D-Sorbitol trp-L L-Tryptophan
sucr Sucrose ttdca Tetradecanoate (n-C14:0)

Shaded metabolites can be used aerobically and anaerobically as sole carbon sources; unshaded me-
tabolites can only be used as sole carbon sources under aerobic conditions.
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number of variable fluxes was 49 (with the number of variable
fluxes typically being higher under aerobic conditions). Interest-
ingly, with the exception of anaerobic growth on adenosine and
deoxyadenosine, none of the exchange fluxes with the environ-
ment varied across alternate optima. This result indicates that the
external state or phenotype of the cell is normally unique for a
set of condition-specific optima, whereas flexibility in the inter-
nal fluxes accounts for the different optima. In all, there were 140
internal fluxes and five exchange fluxes that were variable under
at least one of the 136 tested environmental conditions (see
Supplemental material). Most of the flexibility in the network
resides with reactions using different electron carriers, nucleotide
salvage reactions, and central metabolic reactions. There were
quite a few instances in central metabolism where the flux
through a reaction was variable across the different optima (most
of glycolysis, TCA cycle, anaplerotic reactions, and oxidative
phosphorylation reactions).

The complete set of alternate optima, both aerobic and an-
aerobic, are a set of 56,756 flux distributions that were further
studied—grouped together they are referred to here as the ‘mixed
optima’. For each reaction in the network, the fraction of the
optimal solutions, in the set of mixed optima, which use that

particular reaction (fopt) was calculated (Fig. 2A, also available in
Supplemental material). Reactions in the iJR904 model were pre-
viously assigned to different metabolic subsystems based on
metabolic function, and Figure 2B shows for each subsystem how
many reactions are assigned to that subsystem and the distribu-
tion of fractional usage within this subsystem. For example, there
are 40 oxidative phosphorylation reactions: 65% of these are
never used in any of the mixed optima, 20% have a fopt between
0 and 0.25, 3% have a fopt between 0.25 and 0.5, 8% have a fopt

between 0.75 and 1.0, and 5% are used in all optima.
A total of 201 reactions were used in all optimal solutions

across the different environmental conditions; these include re-
actions involved in amino acid metabolism (cys, his, ile, leu, lys,
met, phe, and tyr—the amino acids that cannot serve as carbon
sources), folate metabolism, and membrane lipid biosynthesis.
These 201 reactions are needed for optimal growth across all 136
simulated growth environments, and are related to the intersec-
tion of minimal reactions sets (Burgard and Maranas 2001; Bur-
gard et al. 2001) for the different growth environments. Com-
parisons to experimental gene essentiality data for growth on
rich media (Gerdes et al. 2003) shows that of the 201 reactions,
81 are associated with genes essential for growth on rich media,
20 have multiple isozymes explaining why single knockouts
might not have been essential experimentally, and another 20 do
not have any ORFs associated with it in iJR904. For the remaining
80 reactions, the rich media might contain metabolites that can-
not be used as sole carbon sources, allowing for some of these
reactions to be unessential. All mixed optima use histidine bio-
synthesis reactions, but if histidine was present in the growth
medium these associated genes would be unessential. These 201
reactions are needed for optimal growth across the tested envi-
ronmental conditions, but not necessarily for suboptimal
growth, further explaining why not all of the reactions were as-
sociated with lethal genes.

In contrast to the 201 reactions that are used across all of the
mixed optima, a number of reactions (351) were never utilized by
any of the optimal solutions for any of the tested environments.
These include 185 blocked reactions—reactions that will never be
used by the network even if all exchange fluxes are free (Burgard
et al. 2004). In addition to these blocked reactions are reactions
needed for unsimulated environments (e.g., anaerobic growth
with alternate electron acceptors such as dimethylsulfoxide or
nitrate) and reactions that are less efficient than others (e.g., oxi-
dative phosphorylation reactions that transfer different amounts
of protons across the membrane). This first-pass analysis of the
mixed optima can be advanced by a more detailed investigation
of how reactions are used relative to each other and with respect
to specific environmental conditions.

Correlated Reaction Sets
Further examination of the mixed optima identified sets of reac-
tions that are always used together in a flux distribution; these
reaction sets have been previously referred to as ‘correlated reac-
tions,’ ‘fully coupled reactions,’ and ‘reaction/enzyme subsets’
(Papin et al. 2002; Schilling et al. 2002; Schuster et al. 2002;
Burgard et al. 2004). The 66 correlated reaction sets calculated in
the present study arise from flux distributions which maximize
biomass yields, leading to the hypothesis that the reactions in a
correlated reaction set would have similar regulation if a cell uses
its metabolic network to maximize biomass production. The
number of reactions in a set of correlated reactions varied be-
tween two and nine, with a set size of two being the most fre-
quent (Fig. 3).

The regulatory structure in E. coli—taken from EcoCyc (Karp
et al. 2002), RegulonDB (Salgado et al. 2004), and primary litera-

Figure 1 Comparisons of properties for sampled optima with all op-
tima. The number of variable fluxes and the allowable ranges for these
fluxes across all optima were calculated using a flux variability analysis.
Each line is for one of the 88 carbon sources capable of supporting
aerobic growth. (A) shows that as the number of calculated optima in-
creases, the number of variable fluxes found in these sampled optimal
solutions approaches the total number of variable fluxes. (B) shows how
the magnitude of the flux variations is represented by the sampled op-
tima relative to the actual flux variability across all optima.
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ture data—was used to test whether the genes associated with
correlated reaction sets have been found to be coregulated. For
9% of the correlated reaction sets no comparisons could be made,
because there were not at least two reactions in the set with
associated genes. Comparisons between regulon information and
correlated reaction sets showed that 68% of the correlated reac-
tion sets were consistent with established regulatory structure
(where more than half of the associated genes belonged to the

same regulon), and for 23% of the cor-
related reaction sets there was only weak
evidence of conserved regulatory struc-
ture (less than half of the associated
genes belonged to the same regulon).
The transcriptional regulatory network
in E. coli, however, has not been com-
pletely elucidated. Recent analysis of ex-
pression data in the context of a regula-
tory model indicates that roughly only
25% of the transcriptional regulatory
mechanisms have been described in the
primary literature (Covert et al. 2004).

As a further comparison, expression
data were used to determine whether
genes in a correlated reaction set have
similar expression patterns under differ-
ent conditions. Using publicly available
AffyMetrix data, from the ASAP data-
base, (Allen et al. 2003), the average pair-
wise correlation coefficient between
genes involved in a reaction set was cal-
culated. P-values, indicating whether
the correlation coefficient is significant,
were calculated by computing the aver-
age correlation coefficients from a ran-
dom set of genes (see Methods). The re-
sulting average correlation coefficients
and associated P-values for the corre-
lated reaction sets are shown in Figure
4A (also available in Supplemental ma-
terials). For comparison the average cor-
relation coefficients and P-values for
genes belonging to the same transcrip-
tion unit (Karp et al. 2002) were calcu-
lated (Fig. 4B). Only transcription units
with at least two genes with measured
expression data were included in the
analysis.

The transcription units appear to
have more significant correlation than
the correlated reaction sets: 18 out of 66
(27.3%) correlated reaction sets have P-
values less than 0.05, whereas 159 of 321
(49.5%) transcription units have P-
values less than 0.05. Almost all of the
correlated reaction sets with significant
correlation were classified as having evi-
dence of being part of the same regulon
(17). The number of times a correlated
reaction set is used in the mixed optima
does not seem to affect how well the set
correlates with the expression data.

Condition-Dependent Fluxes
The condition-specific optimal solutions
for glucose aerobic and glucose anaero-
bic growth were further analyzed to in-

vestigate whether the transcriptional regulatory network control-
ling metabolic enzymes pushes the cell towards an optimal state.
The fraction of solutions that use a particular reaction under
glucose aerobic conditions was compared to the fraction for glu-
cose anaerobic conditions (Fig. 5, also available in Supplemental
materials). Each point in Figure 5 represents a different metabolic
reaction. One may expect that reactions that fall below the line
(meaning that they are used more highly in glucose aerobic op-

Figure 2 Reaction usage in optimal flux distributions. (A) shows for each reaction in the metabolic
network, what fraction of the optimal flux distributions utilize this reaction (fopt). The reactions are then
rank-ordered by frequency of use in optimal flux distributions. Each reaction in the model was previ-
ously classified into one of 30 subsystems. (B) shows for each subsystem how many reactions belong
to that subsystem (No. Rxns) and what fraction of these reactions are: never used (fopt = 0), used in less
than 25% of the solutions (0 < fopt < 0.25), used in between 25% and 50% of the solutions
(0.25 < fopt < 0.5), used in between 50% and 75% of the solutions (0.5 < fopt < 0.75), used in between
75% and 100% of the solutions (0.75 < fopt < 1), and used in all of the solutions (fopt = 1). The
individual fractions are shaded according to value: less than 0.1 is white, between 0.1 and 0.5 is light
gray, and larger than 0.5 is dark gray.
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tima) would have their genes up-regulated under aerobic condi-
tions and down-regulated under anaerobic conditions; the oppo-
site would be true for reactions falling above the line.

A previously developed regulatory model, iMC1010v2, was
used to compare these predictions with the transcriptional regu-
latory structure in E. coli. The iMC1010v2 model was constructed
based on established regulatory mechanisms and went through
one iteration of improvement using transcription factor knock-
out strains whose expression was measured under glucose aerobic
and glucose anaerobic conditions (Covert et al. 2004). The tran-
scriptional regulatory model predicted for 61 reactions that more
isozymes would be expressed under aerobic glucose conditions
(aerobic reaction set), and for 53 reactions that more isozymes
would be expressed under anaerobic glucose conditions (anaero-
bic reaction set). Black squares in Figure 5 are used to indicate
reactions belonging to the aerobic reaction set, white squares for
reactions in the anaerobic reaction set, and gray squares for the
remaining reactions in the model. Assuming that the bacteria
operate optimally, it would be expected that the white points
would fall above the line and the black points below the line.

Most of the reactions that have predicted changes in the
expression of associated genes, based on iMC1010v2, are not used
in any of the condition-specific optimal solutions for glucose
aerobic or glucose anaerobic conditions. For both the aerobic
and anaerobic reaction sets, nine reactions in each set fell on the
predicted half of the graph. Discrepancies occurred in both
reaction sets, where more isozymes are expressed under the
condition that utilizes a reaction the least under optimal condi-
tions.

One of the two discrepancies in the aerobic reaction set is
used only slightly more in the anaerobic case (fanaerobic = 0.681
vs. faerobic = 0.676); further sampling of the alternate optima
could result in higher aerobic usage (faerobic). The other aerobic
reaction set discrepancy is for the glycolate transport reaction
(GLYCLT2r) which is used in all glucose anaerobic optimal solu-
tions and in no glucose aerobic optimal solutions. Deletion of
GLYCLT2r from the network only drops the maximal anaerobic
growth rate by 0.1%, so even if the transporter is not expressed
there would be negligible differences in observed growth rate. It
is also important to note that the model predicts that glycolate
cannot serve as a carbon source under anaerobic conditions, ex-
plaining why this transporter might be expressed aerobically.

There are also six discrepancies for reactions in the aerobic
reaction set: hydrogenase reactions (HYD1, HYD2, HYD3), fuma-

rate reductase (FRD2), formate-hydrogen lyase (FHL), and for-
mate dehydrogenase (FDH2). Like the glycolate transporter, all
six reactions can be deleted simultaneously with negligible effect
on the predicted maximal growth rate (drops only by 0.1%). The
fumarate reductase enzyme is responsible for two reactions, FRD2
and FRD3 (where different quinones are used as electron donors
in the two reactions). The FRD3 reaction is used in all glucose
anaerobic optima, explaining why the fumarate reductase en-
zyme is expressed under anaerobic conditions.

Figure 3 Distribution of correlated reaction sets. The 66 correlated
reaction sets can be categorized by the number of reactions in a set as
well as the set’s metabolic purpose (metabolite biosynthesis or degrada-
tion or other). Using known regulation from databases and available
literature, 45 out of 66 sets involved genes where at least half of the genes
belonged to the same regulon (strong regulation). For six of the two
reaction sets, one or both of the reactions were not associated with any
genes, so no comparison could be made.

Figure 4 Correlation of genes in correlated reaction sets and transcrip-
tion units based on expression data. The average correlation coefficients
between genes associated with reactions in correlated reaction sets was
calculated using a set of publicly available (ASAP) expression data from 20
different conditions. The calculated average correlation coefficients and
their corresponding P-values are plotted in A (six of the two reaction sets
were omitted from the graph because at least one of the reactions had no
associated genes). Circles are used to denote small sets (only two genes
with expression data), and triangles are used to denote larger sets
(greater than two genes with expression data); open shapes are used for
sets that are used in less than 10,000 optimal solutions, and filled shapes
are used for sets used in more than 10,000 optimal solutions. (B) shows
average correlation coefficients between genes on the same transcription
unit (Karp et al. 2002) using the same set of expression data. Open circles
are used to denote small sets (only two genes with expression data) and
solid triangles to denote larger sets (greater than two genes with expres-
sion data).
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Suboptimal Fluxes
The previous sections focused on properties of optimal solutions;
this section examines properties of suboptimal solutions. Flux
variability analysis rather than MILP was used to calculate the
variability of fluxes for different fixed growth rates (99% maxi-
mal growth, 90% maximal growth, 50% maximal growth, and
25% maximal growth) under the 88 aerobic environments. For
each of the aerobic growth conditions (see Table 1) the set of
suboptimal reactions (those reactions that can be used in a sub-
optimal flux distribution) for the different suboptimal growth
rate levels was identical. The fraction of environmental condi-

tions, fenv, (out of a total of 88 considered) in which a reaction
can be used in an optimal solution (gray curve) or suboptimal
solution (black curve) was determined (Fig. 6; note that the 185
blocked reactions are left out of this figure). The black curve in
Figure 6 is always greater than or equal to the gray curve, indi-
cating that the set of optimal reactions (those reactions that can
be used in an optimal flux distribution) is always a subset of the
suboptimal reactions. Again reactions can be categorized accord-
ing to their usage: 380 reactions are used under the same number
of conditions optimally and suboptimally (ignoring blocked re-
actions), and 366 reactions are used under more growth condi-
tions suboptimally than optimally (see Supplemental materials).

Looking at the usage patterns of exchange fluxes in optimal
and suboptimal aerobic solutions (these are not shown in Fig. 6)
gives insights into how certain metabolites are used by the cell
(Table 2). Some metabolites can only serve as carbon sources and
will never be secreted either optimally or suboptimally; this is
true for 52 extracellular metabolites. Thirteen extracellular me-
tabolites can be secreted suboptimally and cannot be used as

Table 2. Characterization of Extracellular Metabolites by Their
Roles in Various Single Carbon Aerobic Environments

CS BP Metabolite names

O N (52) 3-hydroxycinnamic acid; 3-(3-hydroxy-
phenyl)propionate: Acetoacetate; N-Acetyl-D-
glucosamine; N-Acetyl-D-mannosamine;
N-Acetylneuraminate; L-Arabinose; L-Aspartate;
Butyrate (n-C4:0); Citrate; Deoxyadenosine;
Deoxycytidine; Deoxyguanosine; Deoxyinosine;
Deoxyuridine; D-Fructose; L-Fucose; D-Glucose
6-phosphate; D-Galactose; D-Galactarate;
D-Galactonate; Galactitol; D-Galacturonate;
D-Glucarate; D-Glucuronate; L-Glutamine; Glycerol
3-phosphate; Guanosine; Hexadecanoate (n-C16:0);
Lactose L-Malate; Maltose; Maltohexaose;
Maltopentaose; Maltotriose; Maltotetraose;
D-Mannose; D-Mannose 6-phosphate; Melibiose;
D-Mannitol; octadecanoate (n-C18:0);
Phenylpropanoate; D-Ribose; L-Rhamnose; D-Sorbitol;
D-Serine; Sucrose; L-tartrate; Trehalose; tetradecanoate
(n-C14:0); D-Xylose

O S (36) 4-Aminobutanoate; Acetate; Acetaldehyde;
Adenosine; 2-Oxoglutarate; D-Alanine; L-Alanine;
L-Arginine; L-Asparagine; Cytidine; Dihydroxyacetone;
Ethanol; Fumarate; L-Glutamate; Glycine;
D-Glyceraldehyde; Glycerol; Glycolate; Inosine;
D-Lactate; Ornithine; L-Proline; Putrescine; Pyruvate;
L-Serine; Succinate; L-Threonine; L-Tryptophan;
Uridine; Xanthosine; D-Glucose; 2-Dehydro-3-
deoxy-D-gluconate; (S)-Propane-1,2-diol;
D-Gluconate; L-Idonate; L-Lactate

N S (13) 1,5-Diaminopentane; Adenine; Formate; Guanine;
L-Histidine; Hypoxanthine; L-Isoleucine; L-Leucine;
L-Lysine; L-Phenylalanine; Thymidine; L-Tyrosine;
L-Valine

N O,S (4) urea, xanthine, uracil, indole
N N (31) meso-2,6-Diaminoheptanedioate; Allantoin; AMP;

Cob(l)alamin; Choline; L-Carnitine; Cytosine; Cyanate;
L-Cysteine; Dimethyl sulfide; Dimethyl sulfoxide; Fe2+;
L-Fucose 1-phosphate; gamma-butyrobetaine; Glycine
betaine; K+; D-Methionine; L-Methionine; Sodium;
Nicotinate; Nicotinamide adenine dinucleotide; NMN;
Nitrite; Nitrate; (R)-Pantothenate; Spermidine; Taurine;
Thiamin; Trimethylamine; Trimethylamine N-oxide;
Thiosulfate

N O (7) CO2, H2O, h, ammonium, phosphate, O2, sulfate

Columns correspond to carbon source (CS) and by-product (BP).
O, both optimal and suboptimal; N, neither optimal nor suboptimal;
S, only suboptimal.

Figure 5 Preferential usage of fluxes under aerobic glucose vs. anaero-
bic glucose optimal growth. Each point in the graph represents one of the
931 metabolic reactions; the x-axis plots the fraction of optimal solutions
that utilize that reaction under glucose aerobic conditions (500 optima),
and the y-axis plots the fraction of optimal solutions that utilize that
reaction under glucose anaerobic conditions (204 optima). Using a regu-
latory model (iMC1010v2) that accounts for known regulation and hy-
pothesized regulation based on expression data, some reactions were
predicted to have more isozymes present aerobically (black) or more
isozymes present anaerobically (white). Discrepancies between regula-
tion and usage of fluxes in alternate optima are circled and labeled in the
figure, see text for further details.

Figure 6 Reaction usage in optimal and suboptimal flux distributions.
For each of the tested 88 aerobic environmental conditions, reactions
were classified as being used in optimal solutions or used only in subop-
timal solutions. The black line in the figure shows for each reaction the
fraction of environments (fenv) that can use this reaction suboptimally.
The gray line in the figure shows for each reaction the fraction of envi-
ronments that can use this reaction in optimal solutions. The 185 blocked
reactions in the network are not shown in the figure.
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carbon sources (they can only serve as by-products). Another set
of 30 metabolites can be used as a sole carbon source and can be
secreted during suboptimal growth on any of the other carbon
sources, and additionally six carbon sources can be secreted dur-
ing suboptimal growth on only a limited number of other carbon
sources. Finally, the metabolites urea, xanthine, uracil, and in-
dole cannot serve as carbon sources and are secreted optimally
under aerobic growth conditions on a select number of carbon
sources.

Interestingly, a set of 147 metabolic reactions are used sub-
optimally but never optimally (Fig. 6), so the presence of the
responsible enzymes under the tested conditions would drive the
cell towards a less optimal state. These reactions include ABC
transporters, when alternate transport mechanisms are available;
the first step in the Entner Dourdoroff pathway; phospholipid
recycling; nucleotide degradation; transporters associated with
by-products that cannot be utilized as carbon sources; and oxi-
dative phosphorylation reactions.

DISCUSSION
Alternate optimal growth solutions exist in genome-scale mod-
els, and these solutions need to be studied. Herein, application of
an MILP algorithm to a genome-scale metabolic model of E. coli
revealed that the number of alternate optima for genome-scale
models is often large, making it computationally challenging to
enumerate all of the optima for some conditions. Analysis of the
calculated sets of optimal solutions showed that: (1) only a small
subset of reactions in the network have variable fluxes across
optima, (2) correlated reaction sets showed moderate agreement
with the regulatory structure elucidated to date using classical
methods and with expression data, and (3) condition-dependent
reactions help provide clues about network regulatory needs. The
additional calculation of suboptimal flux distributions identified
reactions which are used under more environmental conditions
suboptimally than optimally.

There are many more alternate optima than the number of
fluxes that can vary across the set of alternate optimal solutions.
Only a relatively small subset of reactions in the network (140 of
931 internal reactions) has variable fluxes across optimal solu-
tions. For only a few environmental conditions (2 of 136) will the
exchange fluxes vary across optima, indicating that the internal
state of the cell is where the variability lies. In some cases it will
be difficult to exactly determine which optima a cell might use
based on expression data or protein levels, as some variable re-
actions are carried out by the same enzymes. For example, there
are 45 nucleotide salvage reactions whose fluxes can vary under
at least one of the tested environmental conditions; however,
there are only 19 different enzymes associated with these reac-
tions. For some variable reactions, such as those involved in cen-
tral metabolism, expression data, proteomic data, and flux data
could be used to help identify which reaction a cell is utilizing.
Another level of complication in identifying the physiological
solution is that an affine convex combination of the basic alter-
nate optima is also an alternate optima; it will also be a valid flux
distribution with the same objective value. For these reasons it
may prove too difficult to determine exactly what solution a
living cell utilizes.

The first 500 alternate optima for each condition were used
to identify sets of correlated reactions. The majority of these cor-
related reaction sets (45 of 66) were consistent with established
regulatory structure. However, comparisons made using estab-
lished transcriptional regulatory structure are limited by the fact
that a large portion of the transcriptional regulatory network has
not been elucidated. A better agreement with regulon structure
and correlated reaction sets in genome-scale models could

emerge as the transcriptional regulatory network is further char-
acterized. It was recently shown that the consistency between
transcriptional regulatory network structure and expression data
can vary depending on the structural features of network
elements and functional classes of genes (Herrgard et al. 2003).
Analysis of expression data showed that only a quarter of
the correlated reaction sets (27.3%) showed significant cor-
relation (P < 0.05) across different conditions. However, 49.5%
of the genes belonging to the same transcription unit showed
significant correlation across expression data sets. In con-
trast, comparisons between correlated reaction sets and expres-
sion data in yeast found that the correlated reaction sets
were highly correlated with expression data (Schuster et al.
2002). The yeast network studied, however, contained only cen-
tral metabolism, and the study looked at expression data for only
a small number of genes under two different environmental con-
ditions.

Unraveling the transcriptional regulatory network in E. coli
is currently of great interest to many researchers. Comparing
condition-specific optima provides useful insights into why the
bacteria choose to express certain enzymes under certain condi-
tions. Comparisons between glucose anaerobic and glucose aero-
bic reaction usage in optimal solutions generated testable hy-
potheses, some of which have already been proven experimen-
tally. It will be important to investigate multiple sets of
conditional optima, as the reasons behind enzyme regulation
might not be apparent by studying only two environmental con-
ditions.

By looking at optimal and suboptimal flux distributions,
reactions which are used only in suboptimal solutions can be
identified. Why would E. coli over the course of evolution retain
these enzymes, since these reactions are never used optimally?
These enzymes might be useful for reasons not captured based on
the assumed condition of optimal growth. Network topology
cannot capture the importance of enzymes that might catalyze a
less efficient overall reaction; these enzymes could have higher
turnover rates, better kinetics, allosteric regulation, or other such
reasons making them beneficial. For example, to convert pyru-
vate into acetyl-CoA, many of the aerobic optimal solutions use
pyruvate formate lyase (PFL) rather than pyruvate dehydrogenase
(PDH), because formate, a product of PFL reaction, can be con-
verted to hydrogen gas whose electrons are then carried down
the electron transport chain. Using PFL the cell can make slightly
more ATP than if it used PDH (with NADH transferring electrons
to the electron transport chain). The network topology alone
cannot predict possible loss of hydrogen gas making PFL more
efficient. As another example, E. coli has two cytochrome oxi-
dases, one capable of translocating two protons and the other
capable of translocating 2.5 protons per electron pair donated to
oxygen. The enzymes have different affinities for oxygen, mak-
ing one better than the other at different oxygenation levels
(Gennis and Stewart 1996).

For the analysis presented in this paper, further sampling of
the alternate optima would not significantly affect the results.
From the flux variability analysis results, the set of fluxes that are
always used or never used across the mixed alternate optima
would not change; however, deviations could occur in the frac-
tion of mixed optima (fopt) that use a particular reaction for those
reactions in Figure 2 with fopt between 0 and 1. Investigation of
the correlated reaction sets, in conjunction with the flux vari-
ability analysis results, also indicated that these sets would not
change if more sampling of the optima took place. It should be
noted, however, that biases in the sampling could affect other
types of analysis of the resulting flux distributions, such as the
distribution of flux values through individual reactions (Wiback
et al. 2004).
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Taken together, these in silico results indicate that an opti-
mal E. coli growth phenotype might be achievable by a large
number of internal flux distributions; distinguishing the differ-
ences between these optima experimentally might prove diffi-
cult. In addition, studying the optimal and suboptimal utiliza-
tion of reactions in the network could lead to understanding why
enzymes are expressed under different conditions.

METHODS

Metabolic Network
A recently reconstructed E. coli metabolic network was used in
this study (Reed et al. 2003). Type III extreme pathways are ther-
modynamically infeasible combinations (Beard et al. 2002; Price
et al. 2002) of reactions with no net production or consumption
of metabolites. To avoid having flux distributions utilizing type
III pathways, 17 reactions in the network were removed by con-
straining the flux through these reactions to zero: CYTDt2,
ABUTt2, ACCOAL, GALUi, GLUt4, INSt2, LCADi, ADK1, ADNt2,
PROt4, SERt4, ALARi, THMDt2, THRt4, URAt2, URIt2, and
VPAMT [reaction abbreviations match those previously reported
(Reed et al. 2003) and can be found in the Supplemental mate-
rials].

Environmental Conditions Tested
All external metabolites were tested in silico for their ability to
support aerobic and/or anaerobic growth in minimal medium.
Exchange fluxes for ammonium, phosphate, sulfate, CO2, Fe2+,
K+, Na+, water, and protons were allowed to be free. Uptake rates
for oxygen were set to a maximum of 1000 and 0 mmole/g DW-h
for aerobic and anaerobic simulations, respectively. Substrate up-
take rates for the tested carbon sources were set to 10 mmole/g
DW-h. Of the 143 external metabolites in the model, 88 sup-
ported aerobic growth as the sole carbon source, and only 48 of
these also supported anaerobic growth with a biomass yield
greater than 0.005 (Table 1). A total of 136 conditions (88 aerobic
and 48 anaerobic) were then used to calculate sets of alternative
optima.

MILP Algorithm
A recursive algorithm for calculating alternate optima using
MILP has been published (Lee et al. 2000). These alternate optima
utilize different sets of reactions. This algorithm was used to
study a genome-scale metabolic network of E. coli. Some minor
alterations to the algorithm were implemented and are described
in more detail. The LP for this network is of the following form:

max Z = cT� (1a)
such that S� = 0 (1b)

� � �i � � (1c)

where S is the stoichiometric matrix, v is the steady-state flux
vector, and � and � are the upper and lower limits for the indi-
vidual flux values. In the prior algorithm (Lee et al. 2000), in-
equality constraints were transformed to standard form by intro-
duction of slack variables. This initial transformation was not
done in the present study, because the only inequality con-
straints were for the individual fluxes; instead the problem re-
mained in the form stated above. The following additional con-
straints were adopted to ensure that different solutions are cal-
culated (the ranges on the last set of constraints (2d) were
modified from the original version of the algorithm):

�
i∈NZJ−1

yi � 1 (2a)

�
i∈NZJ

wi ��NZk�−1, k = 1,2, . . . J − 1 (2b)

yi + wi � 1, for all i (2c)
� � wi � vi � � � wi for all i (2d)

At each iteration, J, at least one of the non-zero fluxes from the
previous solution (NZJ�1) must be set to zero, where the binary
variable yi is 1 if that flux is selected to be removed from the basis
at iteration J (equation 2a). The binary variable wi is subsequently
forced to zero if yi is one (equation 2c), and the upper and lower
bounds for that particular flux are then constrained to zero
(equation 2d). Equation 2b ensures that alternate bases are not
revisited by eliminating at least one non-zero variable found in
previous iterations. The cplex solver in GAMS (GAMS Develop-
ment) was used to enumerate the first 500 optima for each en-
vironmental condition.

Correlated Reactions Sets
A binary matrix (B) was formed from the set of mixed optimal
solutions, where rows correspond to different reactions and col-
umns are different optima. Non-zero fluxes have an entry of 1 in
the binary matrix, and zero fluxes have an entry of zero. The
correlated reaction sets could be determined by studying the re-
sulting reaction participation matrix (BBT; Papin et al. 2002).

Transcriptional Regulatory Network Predictions
A previously developed transcriptional regulatory model
(iMC1010v2; Covert et al. 2004) was used to simulate what genes
are expressed under glucose minimal media conditions in the
presence and absence of oxygen. The model uses Boolean rules to
determine whether a gene is expressed or not expressed under
given environmental conditions (Covert et al. 2001).

Analysis of Expression Data
AffyMetrix expression data sets (20) were collected from the
ASAP database (Allen et al. 2003); replicates were averaged. The
estimated transcript copy number was used in the calculations
(for a description see https://asap.ahabs.wisc.edu/∼glasner/
Protocols/DataDefinitionDefinitions.txt). Gene-protein-reaction
(GPR) associations from the iJR904 model (Reed et al. 2003) were
used to translate reaction sets into gene sets. MATLAB (Math-
works) was used to calculate all pairwise correlation coefficients
between associated genes across different data sets. The indi-
vidual pairwise correlation coefficients for a given reaction set
were then averaged, yielding the reported average correlation
coefficient. When isozymes were available for a given reaction,
the average correlation coefficients were calculated separately us-
ing the different isozymes, and only the highest correlation co-
efficient was reported for the set. P-values were calculated using
100,000 randomly selected gene sets from the 904 genes included
in the model. The transcription units were downloaded from
EcoCyc (Karp et al. 2002); only the 321 transcription units con-
taining at least two genes with measured expression data were
used in the analysis. Average correlation coefficients and P-values
for transcription units were calculated as described above.

ACKNOWLEDGMENTS
This work was funded by research grants from NIH (GM57089)
and NSF (BES-01-20363). The authors and UCSD disclose poten-
tial conflicting financial interests.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Allen, T.E., Herrgard, M.J., Liu, M., Qiu, Y., Glasner, J.D., Blattner, F.R.,

and Palsson, B.Ø. 2003. Genome-scale analysis of the uses of the
Escherichia coli genome: Model-driven analysis of heterogeneous data
sets. J. Bacteriol. 185: 6392–6399.

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N., and Barabasi, A.L. 2004.
Global organization of metabolic fluxes in the bacterium Escherichia
coli. Nature 427: 839–843.

Beard, D.A., Liang, S.D., and Qian, H. 2002. Energy balance for analysis
of complex metabolic networks. Biophys. J. 83: 79–86.

Reed and Palsson

1804 Genome Research
www.genome.org



Burgard, A.P. and Maranas, C.D. 2001. Probing the performance limits
of the Escherichia coli metabolic network subject to gene additions or
deletions. Biotechnol. Bioeng. 74: 364–375.

Burgard, A.P., Vaidyaraman, S., and Maranas, C.D. 2001. Minimal
reaction sets for Escherichia coli metabolism under different growth
requirements and uptake environments. Biotechnol. Prog.
17: 791–797.

Burgard, A.P., Pharkya, P., and Maranas, C.D. 2003. Optknock: A bilevel
programming framework for identifying gene knockout strategies for
microbial strain optimization. Biotechnol. Bioeng. 84: 647–657.

Burgard, A.P., Nikolaev, E.V., Schilling, C.H., and Maranas, C.D. 2004.
Flux coupling analysis of genome-scale metabolic network
reconstructions. Genome Res. 14: 301–312.

Covert, M.W., Schilling, C.H., and Palsson, B. 2001. Regulation of gene
expression in flux balance models of metabolism. J. Theoret. Biol.
213: 73–88.

Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.Ø.
2004. Integrating high-throughput and computational data
elucidates bacterial networks. Nature 429: 92–96.

Edwards, J.S. and Palsson, B.Ø. 2000. The Escherichia coli MG1655 in
silico metabolic genotype: Its definition, characteristics, and
capabilities. Proc. Natl. Acad. Sci. 97: 5528–5533.

Fong, S.S., Marciniak, J.Y., and Palsson, B.Ø. 2003. Description and
interpretation of adaptive evolution of Escherichia coli K-12 MG1655
using a genome-scale in silico metabolic model. J. Bacteriol.
185: 6400–6408.

Forster, J., Famili, I., Palsson, B.Ø., and Nielsen, J. 2003. Large-scale
evaluation of in silico gene knockouts in Saccharomyces cerevisiae.
OMICS 7: 193–202.

Gennis, R.B. and Stewart, V. 1996. Respiration. In Escherichia coli and
salmonella (ed. F.C. Neidhardt), pp. 217–261. ASM Press,
Washington, DC.

Gerdes, S.Y., Scholle, M.D., Campbell, J.W., Balazsi, G., Ravasz, E.,
Daugherty, M.D., Somera, A.L., Kyrpides, N.C., Anderson, I.,
Gelfand, M.S., et al. 2003. Experimental determination and system
level analysis of essential genes in Escherichia coli MG1655. J.
Bacteriol. 185: 5673–5684.

Herrgard, M.J., Covert, M.W., and Palsson, B.Ø. 2003. Reconciling gene
expression data with known genome-scale regulatory network
structures. Genome Res. 13: 2423–2434.

Ibarra, R.U., Edwards, J.S., and Palsson, B.Ø. 2002. Escherichia coli K-12
undergoes adaptive evolution to achieve in silico predicted optimal
growth. Nature 420: 186–189.

Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Collado-Vides, J., Paley,
S.M., Pellegrini-Toole, A., Bonavides, C., and Gama-Castro, S. 2002.
The EcoCyc Database. Nucleic Acids Res. 30: 56–58.

Kauffman, K.J., Prakash, P., and Edwards, J.S. 2003. Advances in flux
balance analysis. Curr. Opin. Biotechnol. 14: 491–496.

Lee, S., Phalakornkule, C., Domach, M.M., and Grossmann, I.E. 2000.
Recursive MILP model for finding all the alternate optima in LP
models for metabolic networks. Comp. Chem. Eng. 24: 711–716.

Mahadevan, R. and Schilling, C.H. 2003. The effects of alternate optimal
solutions in constraint-based genome-scale metabolic models. Metab.
Eng. 5: 264–276.

Papin, J.A., Price, N.D., and Palsson, B.Ø. 2002. Extreme pathway
lengths and reaction participation in genome-scale metabolic
networks. Genome Res. 12: 1889–1900.

Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., and Palsson, B.Ø. 2003.

Metabolic pathways in the post-genome era. Trends Biochem. Sci.
28: 250–258.

Phalakornkule, C., Lee, S., Zhu, T., Koepsel, R., Ataai, M.M., Grossmann,
I.E., and Domach, M.M. 2001. A MILP-based flux alternative
generation and NMR experimental design strategy for metabolic
engineering. Metab. Eng. 3: 124–137.

Price, N.D., Famili, I., Beard, D.A., and Palsson, B.Ø. 2002. Extreme
pathways and Kirchhoff’s second law. Biophys. J. 83: 2879–2882.

Price, N.D., Papin, J.A., Schilling, C.H., and Palsson, B. 2003.
Genome-scale microbial in silico models: The constraints-based
approach. Trends Biotechnol. 21: 162–169.

Price, N.D., Schellenberger, J., and Palsson, B.Ø. 2004. Uniform
sampling of steady state flux spaces: Means to design experiments
and to interpret enzymopathies. J. Biol. Chem. (in press).

Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A.,
Walsh, M.C., Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., et
al. 2001. A functional genomics strategy that uses metabolome data
to reveal the phenotype of silent mutations. Nat. Biotechnol.
19: 45–50.

Reed, J.L. and Palsson, B.Ø. 2003. Thirteen years of building
constraint-based in silico models of Escherichia coli. J. Bacteriol.
185: 2692–2699.

Reed, J.L., Vo, T.D., Schilling, C.H., and Palsson, B.Ø. 2003. An
expanded genome-scale model of Escherichia coli K-12 (iJR904
GSM/GPR). Genome Biol. 4: R54.51–R54.12.

Salgado, H., Gama-Castro, S., Martinez-Antonio, A., Diaz-Peredo, E.,
Sanchez-Solano, F., Peralta-Gil, M., Garcia-Alonso, D.,
Jimenez-Jacinto, V., Santos-Zavaleta, A., Bonavides-Martinez, C., et
al. 2004. RegulonDB (version 4.0): Transcriptional regulation,
operon organization and growth conditions in Escherichia coli K-12.
Nucleic Acids Res. 32: D303–306.

Schilling, C.H., Covert, M.W., Famili, I., Church, G.M., Edwards, J.S.,
and Palsson, B.Ø. 2002. Genome-scale metabolic model of
Helicobacter pylori 26695. J. Bacteriol. 184: 4582–4593.

Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., and Pfeiffer, T.
2002. Use of network analysis of metabolic systems in
bioengineering. Bioprocess Biosyst. Eng. 24: 363–372.

Segre, D., Vitkup, D., and Church, G.M. 2002. Analysis of optimality in
natural and perturbed metabolic networks. Proc. Natl. Acad. Sci.
99: 15112–15117.

Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E.D. 2002.
Metabolic network structure determines key aspects of functionality
and regulation. Nature 420: 190–193.

Varma, A. and Palsson, B.Ø. 1994. Metabolic flux balancing: Basic
concepts, scientific and practical use. Bio/Technology 12: 994–998.

Wiback, S.J., Famili, I., Greenberg, H.J., and Palsson, B.Ø. 2004. Monte
Carlo sampling can be used to determine the size and shape of the
steady state flux space. J. Theor. Biol. 228: 437–447.

WEB SITE REFERENCES
https://asap.ahabs.wisc.edu/∼glasner/Protocols/DataDefinitionDefinitions.txt;

Web site describes how the estimated transcript copy number is
calculated from the gene expression data.

Received March 5, 2004; accepted in revised form July 8, 2004.

Systemic Analysis of E. col i Metabolism

Genome Research 1805
www.genome.org


