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Abstract

The Agatston score, computed from ECG-gated computed tomography (CT), is a well established 

metric of coronary artery disease. It has been recently shown that the Agatston score computed 

from chest CT (non ECG-gated) studies is highly correlated with the Agatston score computed 

from cardiac CT scans. In this work we present an automated method to compute the Agatston 

score from chest CT images. Coronary arteries calcifications (CACs) are defined as voxels 

contained within the coronary arteries with a value greater or equal to 130 Hounsfield Units (HU). 

CACs are automatically detected in chest CT studies by locating the heart, generating a region of 

interest around it, thresholding the image in such region and applying a set of rules to discriminate 

CACs from calcifications in the main vessels or from metallic implants. We evaluate the 

methodology in a large cohort of 1500 patients for whom manual reference standard is available. 

Our results show that the Pearson correlation coefficient between manual and automated Agatston 

score is ρ = 0.86 (p < 0.0001)

Index Terms
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1. INTRODUCTION

Every year, 62 million CT scans are performed in the United States alone. One third of them 

(31%) are chest CT studies performed to inspect the lungs. Patients suffering from lung 

disease are also at risk of cardiovascular disease [1]. With the latest generations of CT 

scanners, the artifacts due to heart-movement are minimal, and the evaluation of coronary 

artery disease (CAD) in such patients is possible. The extent of CAD disease in ECG-gated 

CT studies is measured with a well established metric, the Agatston score [2]. This score is 

computed by finding the coronary artery calcifications (CACs) in the image, for each of 

them computing a score by multiplying their volume by a factor related to the maximum 

intensity of the CAC, and finally adding the individual scores. Recent studies have shown 

excellent correlation between the Agatston score computed in cardiac ECG-gated CT and in 

no ECG-gated chest CT [3].

There is a large interest in automating calcium scoring. Such automation is challenging due 

to several issues. First, the heart needs to be accurately located. Anatomy-based approaches 

[4] and atlas-based location strategies [5] have been previously used towards that end. 
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Second, CAC are defined as voxels within the coronary arteries with a value greater than 

130 Hounsfield Units (HU). There are many bright structures in the images, with values 

greater than 130 HUs, such as bones, calcifications in the greater vessels, calcifications in 

the heart valves, or even metallic implants. Only a small subset of bright structures should be 

included in the computation of the Agatston score. Several approaches exist to eliminate 

non-CAC bright structures: in [6] calcifications on the mitral and aortic valves are explicitly 

located and removed, [7] proposes a classification scheme using location, texture and size as 

features and [8, 9] combine atlas-based coronary artery segmentation with discriminative 

learning schemas for ECG-gated CT. These later methods exhibit excellent person 

correlation coefficients with the reference standard Agatston score. However, they require a 

large dataset of positive and negative calcifications in order to generate their discriminative 

models.

This study presents an automated CAC estimator for non ECG-gated chest CT that produces 

high correlation with manual reference standard in a large cohort of patients. The main 

difference with previous work is that our method uses the Agatston reference standard itself 

to optimize the parameters that control the acceptance or rejection of calcifications, instead 

of a dataset of positive and negative calcifications generated explicitly to train a CAC 

classifier. This difference is important, since the Agatston score can be obtained from routine 

clinical practice, while the labeled dataset of CAC requires expert input.

The presented algorithm could be used as an automated method that suggests CAC scores to 

the radiologists or to process large datasets to perform statistical analysis of the burden of 

disease and co-morbidities in the population covered by a healthcare organization.

2. MATERIALS AND METHODS

2.1. Evaluation Database

CT scans of non-hispanic White and African American individuals with a minimum history 

of at least 10 pack-years of smoking were acquired using multi-detector CT scanners with at 

least 16 detector channels. The data is a subset from the COPDGene study [10]. Volumetric 

data was reconstructed with sub-millimeter slice thickness. CACs were found using a CT 

threshold of 130 HUs, involving at least 3 contiguous voxels for identification, resulting in a 

minimum lesion area of 1.02 mm2. Only lesions in the coronary arteries were taken into 

account. For each lesion, a score was calculated using the area density method described in 

[2]: the lesion area is multiplied by a density factor derived from the maximal HU within the 

area. The density factor was assigned in the following manner: 1 for lesions whose maximal 

density was [130, 199] HU, 2 for lesions [200, 299] HU, 3 for lesions [300, 399] HU, and 4 

for lesions > 400 HU. A total coronary calcium score was determined by adding individual 

lesion scores.

2.2. Automated Agatston Score Computation

The automated computation of the CAC score is performed with the workflow shown in 

Figure 1. The input of the workflow is a chest CT scan and the output is a real value 

representing the Agatston score. The workflow is as follows: first, bone structures are 
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detected and removed to prevent them from being misidentified as CACs. Second, the 

beginning of the coronary arteries is found using a 2.5D machine-learning based object 

detector similar to the one presented in [11], but using as 2D detector the work of [12]. A 

region of interest is defined around the detected object, encompassing the heart, from the 

pulmonary artery to the appex. Calcified voxels, defined as voxels within the region of 

interest with intensity greater than > 130 HUs, are identified. Such voxels are grouped in 

connected components. Each connected component is analyzed by a set of rules to 

determine if it should be included in the Agatston score computation. Finally the score is 

computed. In the following subsections we present the method in detail.

2.2.1. Bone segmentation—Bone structures are large structures, in close proximity to 

each other, with high HUs. To detect them, we first downsample the image to a voxel size of 

2.5mm × 2.5mm × 2.5mm. We threshold the downsampled image at a value of 200 HU and 

perform a closing operation. Connected component analysis is performed. Bone structures 

are identified as the largest connected component. The bone mask is up-scaled to the size of 

the original image and closed to eliminate up-sampling artifacts. Since CACs are far from 

bone structures, they are not be included in the bone mask. An example of the bone mask 

can be found in Fig. 3.

2.2.2. Heart Detection—We define heart detection as a standard classification problem 

where the input is the 3D CT image and the output is a 3D region of interest encompassing 

the heart. To this end, we adopted the 2.5D methodology presented in [12], adapting it to the 

context of chest CT scans. We trained the 2D classifier to detect the area of the great vessels 

of the heart, centered at the axial plane of the beginning of the coronary arteries. Such 

structures at that plane have very particular image properties: the pulmonary artery and the 

aorta have elliptical shapes and the coronary arteries form a clear winding path. Further 

changes to the methodology of [12] are the use of Haar wavelets as features instead of 

histograms of oriented gradients, the use of AdaBoost as a classifier instead of Support 

Vector Machines and the use of DBSCAN as a clustering algorithm instead of MeanShift. 

Such design choices were motivated by implementation and speed of execution constraints. 

Once the great vessels at the beginning of the coronary arteries structure are located, a 

volume surrounding them is defined. The volume width is equal to 1.5 times the width of the 

detection, the height is 1.5 times the height of the detection and the depth is 2 times the 

mean of the width and height of the detection. Such region of interest, encompassing the 

heart, part of the lungs and some bone structures is analyzed to find CACs.

As for any machine learning-based method, our heart detector requires positive and negative 

training samples. We separated 40 cases from the evaluation dataset to generate such training 

samples. In each case, we annotated the structure of interest, resulting in 40 positive training 

images. The positive training set was augmented by applying random affine transforms to 

the positive samples, resulting in a total of 2000 positive training images. Negative training 

images were defined as axial slices of the training CT cases where the structure of interest is 

not present, resulting in 16, 131 2D images.

2.2.3. Coronary Artery Calcification Detection—The region of interest obtained by 

the heart detector is analyzed to find CACs. Calcification candidates are defined as 
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connected components whose voxels’ HUs are greater than 130 and their size is greater than 

three. Calcifications candidates can appear in several places of the heart, such as the heart 

valves, the main vessels and the coronary arteries. Furthermore, other structures such as 

stents or pacemakers have high HU units and can be easily confused with calcifications. We 

use a set of heuristics to differentiate CAC from the rest of calcifications or artifacts. The 

heuristics are based on four observations:

O1 CACs are surrounded primarily by muscle. Calcifications on the main vessels 

or on the cardiac valves are surrounded by blood or by blood and cardiac 

muscle. Blood has a standard HU range of [0, 130], while muscle is in the 

range [−500, 0].

O2 CACs have lower HU than metallic implants.

O3 CACs do not neighbor the lungs directly, but have some cardiac muscle 

surrounding them.

O4 CACs are small in comparison to calcifications found on the great vessels of 

the heart.

We analyze each calcification candidate to evaluate if it as a CAC. First, for each candidate, 

we analyze the voxels that are not part of the candidate and are less than 3 mm from the 

candidate’s border. The mean intensity value is computed for those voxels. If the mean value 

is greater than a threshold thBorder, the component is excluded from further analysis. 

Observation 2 is honored by computing the mean and maximum HU in the component. If 

the mean value is greater than thMean or the maximum value is greater than thMax, the 

component is excluded. The third observation is put into practice by generating a mask of 

the lungs and dilating it by 3mm. Such mask is generated by thresholding the image at a 

value of −500 HU. If the calcification candidate has more than thLung percent of its voxels 

in such mask, it is excluded from further analysis. The fourth observation implemented by 

defining a maximum allowed size thSize and eliminating candidates above such size.

The Agatston score is computed for all remaining calcifications by finding the maximum 

value in the calcification, associating a factor to it following the same equation as defined in 

Section 2.1, and multiplying such factor by the volume of the calcification.

Parameter optimization: The exclusion criteria depends on five different parameters:

The optimal parameter set is found by maximizing the correlation coefficient between the 

computed Agatston score and the reference standard on the first 452 cases of the evaluation 

dataset for whom the heart detector produces a valid detection using a grid search algorithm. 

The same 452 samples are used to perform a linear calibration between the automated score 

and the reference standard.
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3. RESULTS

The proposed workflow is evaluated in the databased described in Section 2.1. The 

parameters obtained are: Θ = [10, 2100, 475, 0, 15, 2500]. The computation time per case 

was of 126 ± 10 seconds.

3.1. Heart Detection

The software detected the heart in 1452 of the 1500 in which the code was run (96.8%). 

From the 48 wrong detections, three were in the mandible of the patient, one in the liver, and 

the object detector did not produce an output in the other 44 cases. Examples of correct 

detections are shown in Fig. 2 (top row).

3.2. Agatston Calcium Score Computation

Fig. 2 (bottom row) shows examples of the evaluation of calcification candidates by the rule-

based system in four cases of the dataset. Rejected candidates are shown in red and accepted 

candidates are shown in green.

Fig. 3 shows the correlation between the automatically computed Agatston score and the 

reference standard. The pearson correlation coefficient, computed using 1000 cases, is 0.86 

(p < 0.0001).

Following the same evaluation methodology performed in [13], we stratify the patients in 

five groups according to their Agatston score. Group I is defined as patients with Agatston 

score in the range [0, 10), Group II in range [10, 100), Group III in range [100, 400), Group 

IV in range [400, 1000) and Group V if the Agatston score is > 1000 units. Table. 1 shows 

the confusion matrix between the different groups, 67.7% of patients are classified correctly, 

28% of patients are misclassified in a group one level above or below their correct group and 

4.3% of the patients are misclassified with two or more distance groups. The risk group is 

over-estimated in 23.4% of the cases and under-estimated in 8.9%.

The main reason for underestimation is a false negative CAC, and is specially visible in 

cases classified as Group I automatically while they belong to Group II (116 cases). The 

reasons for large over-estimation of risk group are the following: presence of stents (n=8), 

detection of calcifications in the aorta (n=5), inclusion of the sternum (n=7) or the vertebrae 

(n=2), other bright artifacts (n=4) and wrong heart detection (n=1).

4. DISCUSION

We have presented an automated method to estimate the Agatston calcium score in chest CT 

images that yields high pearson correlation coefficient (ρ = 0.86) against manual reference 

standard in a large cohort of 1000 patients. The evaluation of the method is performed in the 

largest dataset of Agatston score computation reported in the literature.

The correlation coefficient reported in this study is lower than the coefficients reported in [8] 

ρ = 0.96 and [9] ρ = 0.94. However, please note that we have evaluated the proposed 

algorithm in a much larger dataset (1000 cases vs. 101 and 164), and that we have not 
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excluded patients with stents or pacemakers. To compare our results against the previous 

work, we selected randomly 150 cases from the 1000 test cases and computed the 

correlation coefficient on them. We repeated the process 1000 times. The mean correlation 

coefficient is ρ̂ = 0.85, and its variance is σρ = 0.063, suggesting that the result is highly 

variable with the selection of the 150 training samples. Furthermore, for a complete fair 

comparison with [9], an evaluation of the proposed method excluding patients with stents or 

other metallic implants is required. However, such information is not available at the time of 

this writing.

Several limitations exist on this study. First, one can argue that a truly 3D approach towards 

finding the heart in the CT images will outperform the 2.5D approach used in this paper. 

While such affirmation is very likely true, the 2.5D approach has shown excellent 

performance, is extremely fast, and leaves little margin for improvement. Second, the set of 

heuristics designed to eliminate calcification candidates, as well as the optimization method 

of the thresholds, can be considered naïve. However, we have shown slightly worse 

performance to state-of-the-art statistical classification methods with a much simpler and 

easy to reproduce method

The largest reasons for over-estimation of the Agatston score by our method is the presence 

of stents, calcifications in the aorta or the inclusion of the bone structures as part of the 

calcifications. Patients with stents can be excluded from the database, since they are known 

to be at risk of a cardiac event. The calcifications on the aorta could be removed by using an 

aorta detection method, such as the work of [14]. The inclusion of bone structures as CACs 

suggests the need of a better bone segmentation method.

The main advantage of the proposed method with respect to the work of [8, 9] is that the 

proposed method does not require labeled calcification maps, instead, we learn inclusion and 

exclusion rules directly from the Agatston score. This work is an example of a framework 

whose parameters can be inferred directly from data obtained clinically, without the need of 

extra labeling.
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Fig. 1. 
Method overview.
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Fig. 2. 
Left: bone segmentation. The main structures are detected. Right-top: Correct heart 

detections in four different cases of the evaluation database. Right-bottom: Examples of 

accepted (green) and rejected (red) CAC candidates in four cases of the dataset. Rejected 

calcifications are in the ascending aorta, the aortic valve, the pulmonary artery, metallic 

implants, and in the great vessels due to noise.
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Fig. 3. 
Correlation plot between the reference standard and the automatically computed score.
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