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Energy Output from a Single Outer Hair Cell
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ABSTRACT Electromotility of outer hair cells (OHCs) has been extensively studied with in vitro experiments because of its
physiological significance to the cochlear amplifier, which provides the exquisite sensitivity and frequency selectivity of the
mammalian ear. However, these studies have been performed largely under load-free conditions or with static load, while these
cells function in vivo in a dynamic environment, receiving electrical energy to enhance mechanical oscillation in the inner ear.
This gap leaves uncertainties in addressing a key issue, how much mechanical energy an OHC provides. This study is an
attempt of bridging the gap by introducing a simple one-dimensional model for electromotility of OHC in a dynamic environment.
This model incorporates a feedback loop involving the receptor potential and the mechanical load on OHC, and leads to an
analytical expression for the membrane capacitance, which explicitly describes the dependence on the elastic load, viscous
drag, and the mass. The derived equation of motion was examined in a mass-less model system with realistic parameter values
for OHC. It was found that viscous drag is more effective than elastic load in enhancing the receptor potential that drives the cell.
For this reason, it is expected that OHCs are more effective in counteracting viscous drag than providing elastic energy to the
system.
INTRODUCTION
In recent years, considerable progress has been made in
understanding the mechanism of prestin-based somatic
motility, or ‘‘electromotility,’’ of outer hair cells (OHCs)
in the cochlea on both the cellular (1–3) and molecular
levels (4–6), clarifying its physical basis, which is electro-
mechanical coupling (7–9). For example, experiments on
isolated OHCs have determined load-free displacement
(1,2) and isometric force production (10,11). These exper-
imental observations can be described by static models
(9,12). Nonetheless, these are the conditions under which
those cells do not provide energy. Some theoretical works
have addressed energy production by OHCs (13,14) by
extrapolating from these in vitro conditions. However,
these analyses do not provide an equation of motion or
the dependence of nonlinear capacitance on external
mechanical load, the essential features to describe the pro-
duction of mechanical energy for amplifying acoustic
signal.

There are a number of issues to be addressed for
describing OHCs in a dynamic environment. One such issue
is the frequency dependence of the motile response. The
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amplitude of displacement in response to voltage changes
rolls off at ~15 kHz under load-free condition, whereas
force production near isometric condition remains flat up
to 60 kHz (15). This difference likely indicates that the fre-
quency response depends on the mechanical load, more spe-
cifically viscoelastic drag.

Another issue is attenuation of the receptor potential
by the membrane capacitance at operating frequencies
(16–18). The membrane capacitance consists of two main
components. One is structural and is proportional to the
membrane area. Another is a nonlinear component associ-
ated with the mobile charge of prestin, which flips in the
electric field on conformational changes. Nonlinear capaci-
tance has been described under load-free conditions, at
which it is expected to be the largest. Since constraint on
the membrane area almost eliminates the nonlinear com-
ponent (19), it could be expected that external load reduces
this component and thus reduces capacitive current, which
attenuates the receptor potential at higher frequencies.
This feedback would improve the performance of OHCs,
particularly at high frequencies. This effect still needs to
be described quantitatively. Previous treatments used either
load-free capacitance (16,20–22) or the linear capacitance
alone (17,18).

This study presents a model for describing the motion of a
single OHC under mechanical loads. In the following, the
basic equations are derived. That is followed by derivations
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Energy Output of an Outer Hair Cell
of the quantities that characterize the motile element. These
quantities are determined using experimental values for
OHC that operates at 4 kHz. Then the balance of energy
input and output is examined for those cells under mass-
free condition. The implications are discussed on those cells
that operate at higher frequencies.
The model

Here we consider a simple system, which consists of an
OHC, elastic load, drag, and a mass (Fig. 1). This is not to
approximate the organ of Corti, but to describe an OHC,
which is subjected to mechanical load. This system with a
single degree of freedom is described by writing down the
equations for the motile mechanism, the receptor potential,
and the equation of motion. These equations are interrelated
and constitute a set of simultaneous equations, which are
examined in the subsequent sections.
The motile mechanism

TheOHCs have amotilemechanismdriven by themembrane
potential based on mechanoelectric coupling. Here, a one-
A B

FIGURE 1 Mechanical connectivity and the equivalent electric circuit of

the system examined. The system is driven by changes in hair bundle

conductance Ra. Unlike in vivo condition, movement of the cell body

does not affect Ra. In the mechanical schematics (A), K is stiffness of the

external mechanical load, m is the mass, and positive force F and positive

displacement x of the cell are upward. The drag coefficient is h. The contri-

bution of the motile element to cell length is anP, where P, a, and n respec-

tively represent the fraction of the motile elements in the elongated state,

unitary length change, and the number of such units, the unitary change

of charge of which is q. The stiffness of the cell due to the material property

alone is k. The broken line indicates the border of the OHC. In the equiv-

alent circuit (B) of the hair cell, the membrane potential is V, the hair bundle

resistance is Ra, the basolateral resistance is Rm, and the total membrane

capacitance of the basolateral membrane is Cm, consisting of the structural

capacitance C0 and the contribution of charge movements in the motile

element, which depends on the load (described in the section on nonlinear

capacitance). The endocochlear potential is eec and the potential eK is due to

Kþ permeability of the basolateral membrane. The apical capacitance is

ignored in this model.
dimensional model is used instead of a membrane model
(9) for simplicity. We assume that the cell has n motile ele-
ments, which has two discrete states (compact and extended),
and, during a transition from the compact state to the
extended state, the cell length increases by a and the electric
charge q flips across the plasmamembrane. LetP be the frac-
tion of the motile units in the extended state. Its equilibrium
value PN follows the following Boltzmann distribution:

PN ¼ exp½�bDG�
1þ exp½�bDG�; (1)

with b ¼ 1=ðkBTÞ, where kB is Boltzmann’s constant, T is

the temperature, and

DG ¼ q
�
V � V1=2

�� aF (2)

represents the difference in the free energy in the two states,

referenced to the compact state. Here F is the force applied
in the direction of extending the cell and V is the membrane
potential. The quantity V1=2 is a constant that determines the
operating point. Here both q and a are positive because
rising membrane potential and decreasing extensive force
increases DG, and thus reduces the fraction PN of the
extended state.

Now consider a case, in which the motile mechanism is
connected to an external elastic element (Fig. 1, without
the mass or the dashpot). The force F applied to the cell
depends on the elastic elements as well as the conforma-
tional change of the motile element elicited to the voltage
change. The elastic elements include the material stiffness
k of the cell as well as an external elastic load K. Assume
that at the membrane potential V changed from its resting
value V0. The resulting displacement x of the cell
produces force F on the external spring. The same force is
applied to the cell reciprocally, producing a displacement
F=kð¼ �Kx=kÞ. Thus the displacement x is determined
from x ¼ anðP� P0Þ � Kx=k, where the fraction P of the
extended state, is changed from its resting value P0. This
change is expressed by

x ¼ ~K
�
KanðP� P0Þ; (3)

F ¼ �~KanðP� P0Þ; (4)
with effective spring constant ~K ¼ kK=ðk þ KÞ. Notice that

an increase in P, which increases x, generates force in the
contracting direction and that the maximal value of ~K is k.
This force F is applied to the motile element in the cell.
This leads to the following expression for the difference
DG in the free energy of the two states:

DG ¼ q
�
V � V1=2

�þ ~Ka2nðP� P0Þ: (5)

Notice here that an increase in P increases the energy
DG, making a further increase less favorable. If the
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system is in equilibrium, P ¼ PN and the equilibrium
value of PN is determined by combining Eq. 1 with
Eq. 5, in which P is substituted with PN. Under this con-
dition, all forces are balanced and no movement takes
place.

Here we notice that DG, and therefore PN, can be
determined for any set of V and P by combining Eqs. 1
and 5. Since P � PN ¼ 0 in equilibrium, the difference
P� PN quantifies the deviation from equilibrium that drives
the cell.

For this reason, it is useful to redefine the quantity PN

as the target value for the fraction P of the extended
state for a given set of values for P and V. In a special
case in which PN, as given by Eq. 1 with Eq. 5, happens
to be identical to P, the system is in equilibrium and no
changes take place. Otherwise the system continuously
undergoes changes to achieve P ¼ PN. That process is gov-
erned by an equation of motion as described in the next
section.
Equation of motion

Now we examine how to describe the movement of the cell,
which has mechanical loads (Fig. 1). The system has a sin-
gle degree of freedom and is described by using length
displacement x of the cell as the variable. What is the force
that drives the cell?

Let the displacement be fixed at x and the state of the
motile element be PN in the beginning. Suppose the mem-
brane potential suddenly changes at a certain moment. The
cell generates force that moves the cell. The force that drive
the cell is k � anðP� PNÞ if the stiffness of the cell is k and
if PN � P is small enough so that the linear term is domi-
nant. Even though the motile element contributes to reduce
the stiffness from the intrinsic stiffness k, we confirm below
that this is indeed a good approximation for a set of param-
eter values that we use. Then, the equation of motion
should be

m
d2x

dt2
þ h

dx

dt
¼ kanðPN � PÞ; (6)

where h is the drag coefficient, and m is the mass.
For a given displacement x, P can be given by Eq. 3. Since

P0 is a time-independent constant, its time derivatives does
not contribute. The equation of motion can then be
expressed,

m
d2P

dt2
þ h

dP

dt
¼ ðk þ KÞðPN � PÞ: (7)

Notice that a factor k � na drops out from the equation

because it is shared by all terms. In the special case of
m ¼ 0, Eq. 7 turns into a relaxation equation with a time
constant h=ðk þ KÞ, which is intuitive.
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Receptor potential

The motile response of the cell is driven by the receptor po-
tential, generated by the receptor current, which is, in turn,
elicited by changes in the hair bundle resistance by mechan-
ical stimulation. This current is driven by the sum of two
electromotive forces. One is eK, which is primarily deter-
mined by the Kþ conductance of the basolateral membrane
of the cell. The other is the endocochlear potential eec,
which is generated by the stria vascularis, a tissue that lines
a part of the scala media (Fig. 1 B).

The magnitude of the receptor potential is determined not
only by changes in the hair bundle conductance but also by
the basolateral conductance because the electric current
through the apical membrane must be equal to the current
through the basolateral membrane. Changes in the mem-
brane potential elicit not only ionic currents but also a
capacitive current proportional to the regular capacitance
in the basolateral membrane. In addition, they flip the
charge of the motile units, produces an additional current,
similar to the capacitive current. Thus, Kirchhoff’s law
leads to

eec � V

Ra

¼ V � eK
Rm

þ C0

dV

dt
� nq

dP

dt
: (8)

Here Ra is the apical membrane resistance, which is domi-

nated by mechanotransducer channels in the hair bundle.
The basolateral membrane has the resistance Rm and the
linear capacitance C0, which is determined by the mem-
brane area and the specific membrane capacitance of
~10�2 F/m2 for biological membranes (23,24). The apical
membrane capacitance is ignored for simplicity.

The last term on the right-hand side of Eq. 8 is an addi-
tional displacement current due to the charge movement
in the motile elements. It has the negative sign because a
voltage increase results in a decrease in P as mentioned
above. As we will see below, nonlinear capacitance appears
from this term.
RESULTS

Characterization of motile element

In the following, experimentally observable quantities are
derived from the model so that values for the cellular param-
eters can be determined from experimental data.

Load-free displacement

Length changes of OHCs have been quantified by changing
the membrane potential gradually or stepwise while mea-
suring cell length without load. That corresponds to
describing PN as a function of V under the condition of
K ¼ 0. Thus, Eq. 1 is accompanied by DG ¼ qðV � V1=2Þ
instead of Eq. 5. This equation has the same form as the
one that has been used for fit experimental data (1).



Energy Output of an Outer Hair Cell
Isometric force generation

Isometric force generation per voltage changes can be ob-
tained by evaluating dF=dV from the equation x ¼ F=kþ
anPN with Eq. 1 and DG ¼ qðV � V1=2Þ � aF for a given
displacement x. This leads to

dF

dV
¼ gaqnk

1þ ga2nk
; (9)

with g ¼ bPNð1� PNÞ. The dependence on length

displacement x enters through the value of PN. The
maximum value is baqnk=ð4þ ba2nkÞ at PN ¼ 1=2.
Axial stiffness

The effective compliance of the cell can be determined by
dx/dF for a given voltage V. If we introduce the effective
stiffness ~k, this leads to

1

~k
¼ ga2nþ 1

k
: (10)

Thus, the minimal value ~kmin of the effective stiffness is
2
4k=ðba nk þ 4Þ at PN ¼ 1=2.
Nonlinear capacitance

Another characteristic quantity that described the motile
element is a contribution of the motile element to the mem-
brane capacitance, which is often referred to as nonlinear
capacitance. We consider small periodic changes with
amplitude v in the membrane potential on top of a constant
value V

VðtÞ ¼ V þ v exp½iut�: (11)

Then the fraction P of the extended state and its target value

PN can be described by

PNðtÞ ¼ PN þ pNexp½iut�; (12)

PðtÞ ¼ Pþ p exp½iut�; (13)
where the variables expressed in lower case letters are small

and those marked with bars on top are time independent.
Under time-independent conditions, P ¼ PN and P are ex-
pressed by Eq. 1 with DG, in which P is replaced by P.

If the amplitude v is small, we can ignore second-order
terms, Eqs. 1 and 7, respectively, which leads to

pN ¼ �bP
�
1� P

��
qvþ a2n~Kp

�
; (14)

��u2mþ iuh
�
p ¼ ðk þ KÞðpN � pÞ: (15)
These equations then lead to
p ¼ �gq

1þ ga2n~K � ðu=urÞ2 þ iu=uh

� v; (16)
with constants uh, ur, and g, which respectively charac-
terize viscoelasticity, resonance, and the operating point:

uh ¼ ðk þ KÞ=h;

u2
r ¼ ðk þ KÞ=m;
g ¼ bP
�
1� P

�
:

The capacitive current due to voltage changes is

iuqp exp½iut�, which also should be expressed as
iuCnlv exp½iut� using a component Cnl of the membrane
capacitance. Hence, Cnl ¼ ðqn=vÞ<½p� because conforma-
tional change p of each motile element carries charge q
and the cell has n such elements. The membrane capacitance
Cm is the sum of Cnl and the structural capacitance C0 due
primarily to lipid bilayer of the plasma membrane.

In the following, the contribution to the capacitance is
examined. The order is from the most restricted case, where
this quantity is better studied, to more general cases.

Mass-free and drag-free condition: m ¼ 0, h ¼ 0

Let us start with the simplest case, wherem/ 0 and h/ 0.
This leads to the total membrane capacitance Cm,
expressed by

Cm ¼ C0 þ gnq2

1þ ga2n~K
: (17)

Letting ~K/0 or a / 0, we recover the familiar expression

for the membrane capacitance of outer hair cells Cm ¼ C0 þ
gnq2 under load-free condition (2,25). In addition, this
expression shows that nonlinear capacitance decreases
with increasing elastic load. That is consistent with intui-
tion that constraints on the cell length reduce nonlinear
capacitance. In an extreme limit in which a rigid load
does not allow transitions of the motor elements, the
nonlinear component diminishes. This expectation is con-
sistent with greatly diminished nonlinear capacitance ob-
served in rounded OHCs with a constrained membrane
area (19).

Mass-free condition: m ¼ 0

We now proceed to a more general case in which the viscous
term does not disappear. The total membrane capacitance
Cm is expressed as

Cm ¼ C0 þ
gnq2

�
1þ ga2n~K

�
�
1þ ga2n~K

�2 þ ðu=uhÞ2
: (18)

As expected, in the limit of low frequency, this expression

turns into Eq. 17. In the limit of a / 0, it leads to the
expression of the frequency dependence of nonlinear capac-
itance that was previously derived based on an assumption
that transition rates between the states are intrinsic (26).
This functional dependence supports the interpretation that
Biophysical Journal 111, 2500–2511, December 6, 2016 2503
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the experimentally observed frequency roll-off (27,28) of
the membrane capacitance is indeed the result of visco-
elastic relaxation (25,28). It should be noted that the imag-
inary part of p contributes to the conductance. However, it
diminishes in both low frequency limit and high frequency
limit.

Mechanical resonance

A similar evaluation of nonlinear capacitance can be per-
formed for a system with nonzero mass, which has
mechanical resonance. The quantity p is expressed by

Cm ¼ C0 þ
gnq2

�
1þ ga2n~K � ðu=urÞ2

�
�
1þ ga2n~K � ðu=urÞ2

�2 þ ðu=uhÞ2
: (19)

Under the condition ur [ u, Eq. 18 can be obtained. It

should be noted that nonlinear capacitance disappears and
Cm¼ C0 at u=ur ¼ 1þ ga2n~K. In addition, the capacitance
becomes quite singular near this resonance frequency as the
characteristic frequency uh of viscoelasticity exceeds the
resonance frequency ur (Fig. 2). A reduction in the capaci-
tance Cm near resonance leads to an increase in the receptor
potential because it reduces the attenuation due to the resis-
tance-capacitance (RC) circuit in the cell. That is analogous
to piezoelectric resonance.
TABLE 1 A Set of Parameter Values for Outer Hair Cells with

12 pF Linear Capacitance C0

Parameter Experimental Used (Unit) Remarks

eec ~90 90 (mV) a

eK �90 �90 (mV) a

C0 12 12 (pF) (38)

Rm 10 10 (MU) (17)

Ra ~40 42 (MU) (17)
b

Parameter values

Now we determine the parameters using experimental data.
Those quantities important for determining the parameters
are the amplitude an of the load-free mechanical displace-
ment, which is between 4% and 5% of the cell length:
the steepness of load-free mechanical displacement and
nonlinear capacitance, both of which are characterized by
= 0.25 0.5 1 1.5

0

r

FIGURE 2 Contribution Cnl to the membrane capacitance in the presence

of mechanical resonance. The capacitance normalized to its maximum

value gnq2 is plotted against the ratio of the frequency u to the resonance

frequency ur. The plots correspond, respectively, to uh=ur ¼ 0.25, 0.5, 1,

and 1.5 by changing either the drag coefficient h or the mass m, while keep-

ing the elastic load K constant. The value for gnq2 ~K is assumed to be 0.05.

To see this figure in color, go online.
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q, and the number n of the motile elements in the cell, which
is obtained by dividing the total charge movement Q divided
by q. In addition, experimental values are available for the
maximal value of nonlinear capacitance bnq2=4, the axial
stiffness of the cell ~k, and isometric force production
dF/dV. The parameter values are listed in Table 1.

For numerical examination, we assume that the cell
length of the OHC is 30 mm and that the motor is
40% in the elongated state in the natural length and the re-
ceptor potential is generated by 10% change in the resting
hair bundle resistance Ra, which corresponds to the condi-
tion where 30% of the mechanotransducer channels are
open.

Here we now examine the consistency with an assump-
tion, which we made for deriving the equation of motion
(Eq. 7). Recall that the minimal value of the stiffness of
the motile element is 4=ðba2nÞ at PN ¼ 1=2 (Eq. 10). For
this set of the parameter values, the value for this stiffness
is 0.27 N/m, larger than 0.016 N/m for the intrinsic stiffness
k. Thus this set of parameter values is consistent with the
assumption made above.

The consistency of the one-dimensional model is tested
by comparing its predicted values and experimental values
for force generation dF/dVand the stiffness ~k. The predicted
values are within experimental errors (Table 1).
Q ~0.8 0.8 (e)

n ~15 � 106 15 � 106 b

An 1.2 5 0.1 0.96 (mm) c

a 6.4 � 10�5 (nm)

k 0.016 (N/m)

Predicted

df/dV 0.1 5 0.04 0.11 (nN/V) d

~k 0.017 5 0.005 0.015 (N/m) d

These values corresponds to OHCs from the region with best frequency of

4 kHz for rats and gerbils (17). The quantities in the five upper rows are

electric circuit properties and those in the rest characterize the motile

element. The values for resistances are from rats and values of motility-

related parameters are from guinea pigs.
aThe sum of the endocochlear potential (eec ~ 90 mV) (39) and the reversal

potential (eK) of the basolateral membrane (~�90 mV).
bThe unit mobile charge q (in the electronic charge e), and its number n

have been determined by nonlinear component of the membrane capaci-

tance.
cThe amplitude of load free displacement an is between 4% and 5% of the

total length.
dBoth force generation and the elastic modulus do not show length

dependence (11). The stiffness value corresponds the elastic modulus of

0.51 mN per unit strain for a 30 mm-long cell.
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Response to small periodic stimulation

Here we assume small periodic changes with an angular fre-
quency uð¼ 2pf Þ from a resting resistance Ra of the
following hair bundle resistance:

RaðtÞ ¼ Ra þ r exp½iut�;

leads to the receptor potential VðtÞ ¼ V þ v exp½iut�. Eq. 8

leads to

�eec � V

Ra

r

Ra

¼
�
1

Ra

þ 1

Rm

�
vþ iuðC0v� nqpÞ; (20)

with V ¼ ðeecRm þ eKRaÞ=ðRm þ RaÞ. The amplitude v of

the potential leads to motile responses as described by p
and pN in Eqs. 12–15.

The receptor potential with amplitude v, which is elicited
by small periodic changes in the hair bundle resistance, in-
duces changes in the amplitude p of changes in the fraction
of the extended state of the motile element, resulting in dis-
placements and force generation of the cell. Because of me-
chanoelectric coupling, the load on the motile element
reciprocally affects p, which, in turn, attenuates the receptor
potential v.
Examination of energy output

From here on, energy balance is examined for small peri-
odic stimulation at the hair bundle in a mass-free system
(m ¼ 0) using the parameter values in Table 1, which cor-
responds to a best frequency of 4 kHz. The independent
variables of the equations are r, the amplitude, and u, the
frequency of small periodic changes in the hair bundle
resistance Ra. However, the receptor potential and energy
output will be examined for a fixed small amplitude r
because the focus of this study is the effect of mechanical
load.

Nonzero mass introduces an additional time constant,
requiring examining a larger number of cases. In addition,
the mass may depends on the frequency because it may
include fluid mass (29), and hair cell mass may not consti-
tute a major part of the mass in vivo.
Dependence on elastic load

Before evaluating energy, it is useful to examine the mem-
brane capacitance, which is the attenuating factor of the re-
ceptor potential. An external elastic load K affects the
membrane capacitance through ga2n~K (see Eqs. 17 and
18). Since ~Kð¼ kK=ðk þ KÞÞ/k for K / N, the
maximum value of this factor is ð1=4Þba2nk at P ¼ 1=2.
For our set of parameter values, the maximum value
of this factor is 0.11, indicating that this factor is rather
small even though it is not negligible at low frequencies
(u � uh). For u [ uh, nonlinear capacitance diminishes
and so does the effect of an elastic load on the membrane
capacitance.

In the range where u is comparable with the viscoelastic
characteristic frequency uh, however, the effect of the
elastic load K appears mainly through the characteristic
viscoelastic frequency uhð¼ ~K=hÞ. For a given frequency
u, an increase in the elastic load K increases uh through
~K and thus increases the capacitance Cm.

Energy output

In the following, energy output from OHC is examined
assuming that the hair bundle is stimulated at a level
at which hair bundle conductance undergoes changes
with an amplitude 10% of the resting value, where the me-
chanochannels are assumed to be 30% open. Thus, the
change is 3% of its maximal value. Parameter values are
given in Table 1. This amplitude allows linearized
approximation, Eqs. 14, 15, and 20. In this regime, energy
output increases with the second power of the receptor
potential.

The system has two characteristic frequencies, the fre-
quency uh of viscoelastic roll-off and the roll-off frequency
uRCðz1=RmCmÞ of the RC circuit. Here the effect of the
elastic load K is examined. The stiffness k of the cell has
been determined by experiments (Table 1). Two character-
istic frequencies of the system leads to two cases, which
are examined here: uh [ uRC and uh ~ uRC. It should
be noticed, whereas uRC is independent of K, uh goes up
as K increases. The energy Ee conveyed to the external
elastic load K per half cycle can be obtained by evaluat-
ing ð1=2ÞKjx j 2 ¼ ð1=2ÞK		ð~K=KÞnap 		 2 and the work Ed

against viscous drag per half cycle is ð1=2Þhujx j 2 ¼
ð1=2Þhu		ð~K=KÞnap 		 2.
Small viscous drag (u � uh)

Here we examine a case in which the drag coefficient h
is extremely small and viscous loss is negligible. Let
h ¼ 10�10 kg/s. This value satisfies the condition uh [
uRC except for diminishing K. This condition is satis-
fied even with increasing external elastic load K to ~10k.
At a given frequency, an increase in the amplitude of
the receptor potential with increasing external elastic load
K is too small to notice in the plot (Fig. 3 A). With a
given elastic load, the amplitude of the receptor poten-
tial monotonically decreases with increasing frequency
(Fig. 3 A).

The work against the elastic load is evaluated for a half
cycle. For a given frequency, elastic energy output per
half cycle has a maximum with respect to the external
elastic load K at the load ratio K/k z 1 (Fig. 3 B). The
optimal ratio is not significantly affected by the frequency.
Work output monotonically decreases with the frequency
(Fig. 3 B). The plot also shows that decrease of energy
with frequency is less steep at larger load. Asymmetry
Biophysical Journal 111, 2500–2511, December 6, 2016 2505
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FIGURE 3 The effect of elastic load for small

viscous drag (uh [ uRC). The dependences on

the elastic load (the horizontal axis) and the fre-

quency (the vertical axis) are shown as color-coded

contour plots. Darker colors indicate lower values.

Elastic load is described by the ratio K/k, where k is

the intrinsic stiffness of the cell. Frequency is rep-

resented by the ratio f/f0, with f0 ¼ 4 kHz, which

corresponds to the parameter values of the cell

given in Table 1. (A) The amplitude of the receptor

potential. The values (in mV) are given in the plot.

(B) The work against elastic load during a half

cycle. The values (in zJ ¼ 10–21 J) are given in

the plot. h ¼ 10–10 kg/s. To see this figure in color,

go online.
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increases with increasing frequency, while the peak ratio
K/k remains virtually unchanged.

Larger viscous drag: u ~ uh

If the viscous drag is larger, the receptor potential decreases
with increasing stiffness ratio K/k for a given frequency
(Fig. 4 A). This result may appear counterintuitive because
it is the opposite of an increase, be it rather small, under
the condition of small drag. This reversal is due to a change
in the time constant. The membrane capacitance increases
with increasing elastic load, owing to decreasing u=uh in
A B

C D
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Eq. 18. An increase in the membrane capacitance increases
RC attenuation, resulting in a reduction of the receptor po-
tential. The frequency dependence of the receptor potential
is monotonic. However, smallest elastic load makes the
slope steeper at higher frequencies (Fig. 4 A).

The value of 2 � 10�6 g/s for the drag coefficient used in
the plots is chosen to examine a condition, which nearly
maximizes the work against viscous drag, as shown below.
For each given frequency, the work against the elastic
load has a maximum with respect to the stiffness ratio
(Fig. 4 B). The load ratio K/k that maximizes the work is
FIGURE 4 The effect of elastic load for a larger

drag (uh ~ uRC). The dependences on the elastic

load (the horizontal axis) and the frequency (the

vertical axis) are shown as color-coded contour

plots. Darker colors indicate lower values. Elastic

load is described by the ratio K/k, where k is the

intrinsic stiffness of the cell. Frequency is repre-

sented by the ratio f/f0, with f0 ¼ 4 kHz, which cor-

responds to the parameter values of the cell given

in Table 1. (A) Amplitude (in mV) of the receptor

potential. (B) The work against the elastic load

during a half cycle. The values are given in zJ

(¼ 10–21 J). (C) The work (in zJ) against the

viscous load during a half cycle. (D) Power output

in fW (¼ 10–15 W) working against the viscous

load. h ¼ 2 � 10�6 kg/s.kg/s. To see this figure

in color, go online.
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close to two for low frequencies, unlike with lower viscous
drag. In addition, for higher frequencies the ratio that max-
imizes energy output increases significantly (Fig. 4 B).
The maximal value at the frequency f0 (¼ 4 kHz) is ~2 zJ
(¼ 2 � 10�21 J) at K/k ¼ 1.5.

The work against viscous drag per half cycle decreases
with increasing frequency (Fig. 4 C). It also decreases
monotonically with increasing stiffness ratio K/k unlike
the work against the elastic load. For this reason, the com-
parison of magnitude with elastic work heavily depends
on the ratio K/k. The work against viscous drag is much
larger than the work against elastic load if the elastic load
is small. At K/k ¼ 1.5, the value at the frequency f0 is
6 zJ, still larger than the value 2 zJ for the elastic work.

Power output can be obtained by multiplying the work
against drag per half cycle by twice the frequency 2f. It is
less frequency dependent, even though it still decreases
with increasing frequency (Fig. 4 D).
Dependence on viscous load

Here we examine the effect of the viscous load for fixed
values of the elastic load. Two values of the external load
would be of interest: one of them is the case in which the
stiffness of the external elastic load is similar to the internal
stiffness of the cell. The other is the case without an external
A B

C D
elastic load. The former condition is presumably close to the
physiological condition and the output in the form of elastic
energy would be appreciable. The latter case is also of inter-
est because it provides the maximal work against the viscous
drag. Here we use h0 ¼ 10�6 kg/s as the unit of drag
coefficient.

With elastic load: K ¼ k

The receptor potential significantly increases with in-
creasing viscous drag (Fig. 5 A). A higher drag coefficient
leads to less steep decline of the membrane potential with
increasing frequency in the middle range of the plot
(Fig. 5 A).

The work against the elastic load per half cycle decreases
with increasing drag as well as frequency (Fig. 5 B), as intu-
itively expected. At frequency f0, it is up to ~3.4 zJ for low
drag. At h ¼ 2h0, the value is ~1.8 zJ.

The work against the viscous drag per half cycle mono-
tonically decreases with the frequency. However, it has a
maximum with respect to viscosity at a given frequency
(Fig. 5 C). At f0, the maximal value is ~6 zJ at h ¼ 2h0.

Power output due to the work against viscous drag (ob-
tained by multiplying the dissipative energy output per
half cycle by 2f, twice the frequency) has a less steep fre-
quency dependence (Fig. 5 D). The maximal output at the
frequency f0 is 0.05 fW.
FIGURE 5 The effect of drag in the presence of

elastic load K (¼ k). The dependences on drag (the

horizontal axis) and the frequency (the vertical

axis) are shown as color-coded contour plots.

Darker colors indicate lower values. Drag is

described by the ratio h=h0, where h0 ¼ 1.0 �
10�6 kg/s. Frequency is represented by the ratio

f/f0, with f0 ¼ 4 kHz, which corresponds to the

parameter values of the cell given in Table 1.

(A) The amplitude (in mV) of the receptor

potential. (B) The work (in zJ ¼ 10�21 J) against

the elastic load during a half cycle. (C) The work

(in zJ) against the viscous drag during a half cycle.

(D) Power output (in fW ¼ 10�15 W) working

against the viscous drag. To see this figure in color,

go online.
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Without elastic load

At a given frequency, work against viscous drag is
maximal at K ¼ 0, i.e., in the absence of an external
elastic load (Fig. 4). For this reason it is interesting to
examine the system without external elastic load to evaluate
the limit even though such a condition may not be
physiological.

The receptor potential increases with increasing viscous
load and decreases with increasing frequency (Fig. 6 A).
At a given frequency, the work against the viscous drag
per half cycle has a maximum (Fig. 6 B). The peak position
shifts to at smaller drag with increasing frequency. The
maximal work per half cycle is ~12 zJ for f0(¼ 4 kHz).
The power output shows dependence on the drag and fre-
quency similar to the work per half cycle does, even though
the frequency dependence is less steep (Fig. 6 C). The
maximal power output is ~0.1 fW.
DISCUSSION

Here we discuss energy balance in an OHC that operates at
4 kHz in the absence of mechanical resonance by examining
the elastic load and viscous drag, to which the cell is likely
subjected. This is followed by discussion on cells that oper-
ate at higher frequencies.
B

A

C
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Internal drag

Of the internal mechanical load, there is no need to
discuss the stiffness of the OHC because it has been deter-
mined experimentally. Some discussion would be needed
regarding the internal drag of an OHC. For that purpose,
the cell body is approximated by a cylinder. The velocity
of the fluid is null in the middle of the cell and linearly in-
creases toward the two ends, exactly the same as the plasma
membrane. For this reason, Poiseuille’s law, for example,
does not apply and viscous drag must be very small.

The magnitude of the drag on the outer surface could be
estimated by Stokes’ law for a sphere, 6pmRv, where R is the
radius. The resulting drag coefficient is 6.6 � 10�8 kg/s,
assuming R ¼ 5mm and 0.7 � 10�3 kg/(m s) of water for
the viscosity m. Since this value is smaller than the value
~10�6 that maximizes dissipative energy output, the
assumed drag coefficient h in Fig. 4 and h0 in Figs. 5 and
6, are dominated by the external viscous load and are not
intrinsic to the cell.
Receptor potential

The numerical examination shows that the receptor poten-
tial is affected by an increase of elastic load and that of
drag quite differently. Whereas an increase in drag always
FIGURE 6 The effect of drag in the absence of

elastic load. The dependences on drag (the horizon-

tal axis) and the frequency (the vertical axis) are

shown as color-coded contour plots. Darker colors

indicate lower values. Drag is described by the ra-

tio h=h0, where h0¼ 1.0� 10�6 kg/s. Frequency is

represented by the ratio f/f0, with f0¼ 4 kHz, which

corresponds to the parameter values of the cell

given in Table 1. (A) The amplitude (in mV)

of the receptor potential. (B) The work (in

zJ¼ 10�21 J) against viscous drag during a half cy-

cle. (C) Power output (in fW ¼ 10�15 W) working

against the viscous drag. To see this figure in color,

go online.
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increases the receptor potential (Fig. 5 A), an increase in the
elastic load increases the receptor potential only slightly if
drag is small (Fig. 3 A) but it decreases the receptor potential
if drag is larger (Fig. 4 A). These observations suggest that
drag is more effective than elastic load in enhancing the re-
ceptor potential that powers the cell’s motility.
Amplifier gain

The functional significance of OHCs as the cochlear ampli-
fier depends on the balance between energy input and
output. Energy output from the cell body has been evaluated
in sections above. Energy input required for stimulating the
hair bundle to generate the receptor potential consists of two
components. One is elastic and the other is dissipative. The
elastic component is recovered in the next cycle of stimula-
tion during sustained oscillation. The work against viscous
drag cannot be recovered. Therefore the balance of the latter
energy has been considered critical for the sensitivity and
sharp tuning of the ear (30).

This model allows an evaluation of OHC’s output, which
compensates for the dissipated energy for hair bundle stim-
ulation. Examination of force or energy balance in the co-
chlea, however, cannot be made without a certain set of
assumptions including the mode of motion in the cochlea
(14,20).

In the following, energy balance of a single OHC is exam-
ined. For this comparison, output values obtained under the
condition Kz k and hz 2h0 are used so that the two kinds
of outputs can be realized at the same time.

Amplifier gain: dissipative energy

The hair bundle drag, which gives rise to the dissipative en-
ergy required for input has been evaluated for bull frog
saccular hair bundles (31,32. It consists of external friction
between the hair bundle and the bulk fluid and internal fric-
tion due to relative motion between the stereocilia. The
former is dominant when a hair bundle is stimulated by
force applied to the kinocilium: the drag coefficient of a
whole hair bundle is only ~5 times as large as a single ster-
eocilia (31). If we consider a sphere with a diameter of
8.5 mm, which is the hair bundle height, Stokes’ law gives
A B

red full lines indicate upper bounds of energy loss due to internal drag of the hai

viscous drag equivalent to a sphere of 4 mm diameter. h0 ¼ 1.0 � 10�6 kg/s. T
the drag coefficient of 80 nNs/m, about the same as the
drag coefficient calculated for the bundle in the frequency
range higher than 2 kHz, where stereocilia moves in syn-
chrony in response to force applied to the kinocilium
(31,32). This value can be even larger if the thickness of
boundary layer is added to the diameter. Therefore, the in-
ternal drag must be smaller than the total drag at least by
an order of magnitude. Here we set 1/10 of the total friction
coefficient as an upper bound of the contribution of internal
friction.

In the physiological conditions for OHCs, unlike a frog
hair bundle stimulated by holding kinocilium, the hair
bundle is in the subtectorial space between the tectorial
membrane and the reticular lamina and hair bundles are
stimulated by the shear in the gap. Under this condition,
the external drag disappears because there is no relative mo-
tion between the bulk fluid and the hair bundle. The energy
loss in that system is due to the shear between the two places
and the internal drag of the hair bundle is negligible. This
analysis is indeed consistent with earlier reports (20,33,34).

Assuming that the internal drag is less than 1/10 of the to-
tal, experimental data on frog saccular hair bundles (32) can
be used to estimate an upper bound of energy dissipation.
Full gating of frog hair bundle stimulated at 100 mm/s
with amplitude ~100 nm generates viscous force ~20 pN
(32). This value is about twice as large as 80 nNs/m for
frequencies higher than 2 kHz (31). Energy dissipation
based on this observed force is 10�19 J/half cycle for
f ¼ 500 Hz for full gating. Thus 3% gating corresponds to
3 � 10�21 J/half cycle. If we extrapolate for higher fre-
quencies, 2.4 � 10�20 J/half cycle for frequency of 4 kHz.
Since the drag coefficient at 4 kHz is less than that at
500 Hz (31), this value is an overestimate. A 10-fold reduc-
tion of this value leads to 2.4 zJ, which is given as an upper
bound of energy dissipation due to internal friction of a frog
hair bundle. This value is smaller than 6 zJ (¼ 6 � 10�21 J)
with elastic load K¼ k (Figs. 5 C and 7 A), and 12 zJ without
elastic load (Figs. 6 B and 7 A).

The internal friction coefficient of a OHC hair bundle is
likely much smaller than that of the frog hair bundle, given
the difference in their geometries. If we assume that internal
friction is due to the shear between the stereocilia, the
FIGURE 7 Energy balance of an OHC (A) pre-

dicted at 4 kHz with the parameter values in

Table 1; and (B) extrapolated to 12 kHz by

reducing the linear capacitance C0 in half and

increasing the internal stiffness k twice to account

for shorter cell length of basal OHCs, without ac-

counting for the larger hair bundle conductance,

which increases the efficiency. Production of dissi-

pative energy in zJ (¼ 10�21 J) per half cycle for

3% of full opening of its MET channels is plotted

against drag coefficient h. The traces correspond,

respectively, to K/k ¼ 0, 1, 2 from the top. The

r bundle. The dashed line indicates energy loss of hair bundle with external

o see this figure in color, go online.
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internal friction of an OHC is ~1/4 of that of a frog hair
bundle (see Supporting Material). Thus an upper bound of
energy loss is ~0.6 zJ, less than 1/10 of the energy output
of an OHC. Even if we assume that the OHC is isolated
and subjected to an external drag equivalent to Stokes
drag for a sphere with the diameter of 4 mm, the maximal
height of a hair bundle that operates at 4 kHz (35) in vivo,
the comparison indicates that energy output exceeds energy
loss by hair bundle drag (Fig. 7 A).

Amplifier gain: elastic energy

The observed stiffness of the hair bundle of OHCs is be-
tween 1 and 3 mN/m (36). The hair bundle displacement
required for a 3% change in the bundle conductance (or
resistance) is ~0.03 nm (36). Thus the energy required for
changing the conductance by 3% is 1.5 aJ in the most effi-
cient condition based on 1 mN/m bundle stiffness. The
elastic energy output obtained from the model is ~2 zJ at
4 kHz (Fig. 4 B). It is 3.6 zJ, even for small viscous drag
(Fig. 3 B). This indicates that output energy is a fraction
of input energy.

Outer hair cells have, therefore, a minor effect in the
elastic energy involved in the oscillation of the system.
Since elastic energy is conserved it is unnecessary for the
output of an amplifier to match the input.
Energy balance in more basal cells

The analysis described above shows that energy output ex-
ceeds energy input for an OHC that operates at 4 kHz
even without mechanical resonance. More basal cells that
operate at higher frequencies are more labile and it is diffi-
cult to obtain reliable experimental data from them. How-
ever, the energy balance in more basal cells, which
operate at higher frequencies, is of great interest because
it is harder to achieve a favorable energy balance at higher
frequencies; therefore, it is important for understanding
the effectiveness of OHC electromotility as the basis of
the cochlear amplifier (14,16,18,20–22,37).

If we stimulate the same cell, for example, at 12 kHz, a
frequency three times higher, the energy output is signifi-
cantly less. However, the OHCs that operate at higher fre-
quencies are shorter, with a lower linear membrane
capacitance C0 and larger axial stiffness k. In addition, the
hair bundle conductance is more sensitive to the strain
(17). If C0 is halved and k is doubled, the energy balance
is still favorable (Fig. 7 B), even without considering the
higher sensitivity of the hair bundle transducer.

Notice that these comparisons are made without consid-
ering mechanical resonance. The reason for excluding reso-
nance in this study is the sharp sensitivity of the membrane
capacitance on the resonance frequency ur as well as the
characteristic viscoelastic frequency uh (Fig. 2). Because
OHCs in the cochlea work close to mechanical resonance
frequencies, it is possible that the membrane capacitance
2510 Biophysical Journal 111, 2500–2511, December 6, 2016
in the operating condition is much smaller, enabling more
efficient use of electrical energy (37). This issue, however,
cannot be addressed quantitatively without precise informa-
tion, such as the values for ur and uh as well as the sensi-
tivity of the hair bundle.
CONCLUSIONS

This article proposes a simple model for the electromotility
of OHCs to describe its behavior in a dynamic environment.
The model is consistent with the experimental data obtained
from isolated OHCs so far. The model also extends the
expression for the membrane capacitance, incorporating
the effects of frequency, drag, elastic load, and an associated
mass. Monitoring the membrane capacitance could be the
easiest means of testing the predictions. The effect of
mass will be described in more detail elsewhere.

This model enables the description of the receptor poten-
tial and energy production of an OHC while its hair bundle
is mechanically stimulated by a sinusoidal waveform. It was
found that the receptor potential was more significantly
affected by viscous drag than elastic load. The model pre-
dicts that the output of elastic energy is less than the input
at the hair bundle. However, the output of dissipative energy
is greater than the input. Because negative drag is a usual
amplifying mechanism, these results are consistent with
the biological role of OHCs as an amplifier.
SUPPORTING MATERIAL

Supporting Material and one figure are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(16)30948-1.
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