Table 2. 10-fold cross-validation on Yam08 dataset.
BLM-NII | CMF | KBMF2K | NetLapRLS | NRLMF | WNN-GIP | COSINE | |
---|---|---|---|---|---|---|---|
AUPR | |||||||
N. Recept. | 0.438 | 0.488 | 0.477 | 0.417 | 0.545 | 0.504 | 0.548 |
GPCR | 0.315 | 0.365 | 0.366 | 0.229 | 0.364 | 0.295 | 0.397 |
Ion Ch. | 0.302 | 0.286 | 0.308 | 0.200 | 0.344 | 0.258 | 0.359 |
Enzyme | 0.253 | 0.229 | 0.263 | 0.123 | 0.358 | 0.278 | 0.346 |
AVERAGE | 0.327 | 0.342 | 0.354 | 0.242 | 0.403 | 0.334 | 0.410 |
AUC | |||||||
N. Recept. | 0.799 | 0.818 | 0.844 | 0.789 | 0.900 | 0.890 | 0.914 |
GPCR | 0.838 | 0.857 | 0.839 | 0.817 | 0.895 | 0.891 | 0.902 |
Ion Ch. | 0.796 | 0.743 | 0.799 | 0.757 | 0.813 | 0.797 | 0.826 |
Enzyme | 0.813 | 0.829 | 0.713 | 0.786 | 0.871 | 0.882 | 0.888 |
AVERAGE | 0.812 | 0.812 | 0.799 | 0.787 | 0.870 | 0.865 | 0.883 |
The best results are underlined. Cases where COSINE significantly outperforms the competitor (t-test, p < 0.05) are shown in italic.
The results for other methods were taken from Liu et al.27.