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Abstract When stressed by ageing or disease, the adult
human heart is unable to regenerate, leading to scarring and
hypertrophy and eventually heart failure. As a result, stem
cell therapy has been proposed as an ultimate therapeutic
strategy, as stem cells could limit adverse remodelling and
give rise to new cardiomyocytes and vasculature. Unfor-
tunately, the results from clinical trials to date have been
largely disappointing. In this review, we discuss the current
status of the field and describe various limitations and how
future work may attempt to resolve these to make way to
successful clinical translation.
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RVEF Right ventricular ejection fraction
SCIPIO Stem Cell Infusion in Patients with Ischemic

cardiOmyopathy
SCT Stem cell therapy
SDF-1 Stromal cell-derived factor-1
SP Side population
TICAP Transcoronary infusion of cardiac progenitor

cells in patients with single ventricle physio-
logy

VEGF Vascular endothelial growth factor

Introduction

Heart disease is one of the leading causes of death world-
wide. The human heart, in contrast to various other organs
like the liver, skin and gut, is unable to cope with severe
tissue damage. Stem cells have been suggested as a tool to
regenerate damaged contractile and vascular tissue and/or
prevent adverse remodelling post-myocardial infarction
(MI).

Most life years lost due to death and disability in the
Western world arise from non-communicable diseases, such
as cancer and cardiovascular disease (CVD). While the risk
of death by CVD is decreasing in developed countries,
it is becoming more prevalent in developing and transi-
tional countries, with 80 % of CVD-related deaths occurring
in low- or middle-income countries, partly as a result of
increasing longevity, society and lifestyle changes [1–3].
Despite significant improvements in treatment strategies
and survival rates, acute coronary syndromes account for
half of all cardiovascular deaths, with 18 % of men and
23 % of women, older than forty, dying within a year of a
first MI [2, 4]. Moreover, over time compensatory mecha-
nisms may not be sufficient, leading to heart dilation and HF
in the majority of patients. This condition has a dire progno-
sis of approximately 50 % mortality 5-years post-diagnosis
[5].

Given the complex pathophysiology of heart failure and
adverse remodelling of the heart tissue, therapeutic strate-
gies should aim to both alleviate symptoms and attenuate
further adverse ventricular remodelling. Although there has
been considerable improvement in survival of some patient
groups suffering from HF, there is no curative treatment
available other than transplantation. However, donor organs
are sparse and transplanted patients are required to take
lifelong immunosuppressive drugs [6]. Alternatively, heart
pumping can be supported by implantation of a mechan-
ical ventricular assist device, either used as a bridge to
transplantation or as destination therapy [7, 8].

Since the loss of cardiomyocytes underpins the patho-
physiology of myocardial infarction (MI) and initiates the

transition to HF, stem cell therapy (SCT) has been proposed
as a potential therapeutic strategy, as these cells have the
potential to form new contractile tissue.

The Heart is not a Post-Mitotic Organ

Whether or not the heart is a terminally differentiated organ
or has a stem cell population has been a contentious issue
[9–11]. Many groups have tried to determine the cardiomy-
ocyte turnover rate in the heart, with rates around 1 % being
most commonly reported [12–14]. Bergmann et al. [13]
determined cardiomyocyte turnover using the incorporation
of carbon-14 (14C), from nuclear bomb tests, in genomic
DNA, and demonstrated that cardiomyocyte (CM) DNA
synthesis continues throughout life at annual rates ranging
from 0.5 to 2 %, decreasing with age. A follow-up study
by Senyo et al. [12], using 15N imaging mass spectrometry,
reported a similar annual rate of about 0.76 % per year in
the young adult mouse, and again the rate declined with age.
Interestingly, they also observed an increase after myocar-
dial injury in the border region, as was reported previously
[11]. In addition, Mollova et al. [14] also observed car-
diomyocyte cytokinesis in human infants, which decreased
with age and was absent in adults.

There is considerable confusion as to where these new
cardiomyocytes arise from, with at least three potential
sources: (a) pre-existing cardiomyocytes, (b) resident stem
or progenitor cells, or (c) circulating stem or progeni-
tor cells. Bergmann’s study did not determine the origin
of these newly derived cardiomyocytes [13]. In zebrafish,
existing cardiomyocytes were shown to contribute to regen-
eration post-myocardial injury [15]. Similarly, Senyo et al.
[12] demonstrated that new cardiomyocytes were generated
from pre-existing cardiomyocytes and that cardiac progeni-
tors played an insignificant role in myocardial homeostasis
in health and disease. In contrast, other studies identified
resident stem cell populations with the capability to give
rise to the cardiomyocyte lineages of the heart [16, 17] or
claimed that circulating cells contribute to myocytes and
blood vessels [18].

Stem Cell Therapy for Cardiovascular Disease

During development, stem cells form the organs and tissues
in the body, and by the time the foetus is fully formed most
of these more potent stem cells have disappeared. Adult
organisms contain adult progenitors to enable tissue home-
ostasis. The rationale for using stem cells for heart disease
treatment is that these cells might give rise to new car-
diomyocytes and blood vessels, to replace the tissue lost
post-MI.
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Embryonic stem cells and multiple sources of adult stem
cells have been suggested as suitable candidates for regener-
ation post-MI or HF and have been tested in animal models
and in the clinic, as discussed in the following sections.

Bone-Marrow Derived Cells

Historically, the first studies which tried to use stem cells
to repair damaged heart tissue involved skeletal myoblasts
or bone marrow (BM)-derived stem cells, because of
availability and existing experience in bone-marrow
transplantations.

Infusion or injection of BM cells was shown to regenerate
myocardium in vivo and had beneficial effects on cardiac
function [19, 20]. In addition, bone marrow-derived mes-
enchymal stem cells (BM-MSCs) were shown to be able
to differentiate in vitro to cardiomyocytes [20, 21]. How-
ever, later studies questioned the cardiomyogenic potential
of BM-derived cells [22], suggesting that the infused cells
either act through paracrine signalling, fuse with resident
CMs or differentiate to a mature haematopoietic lineage
[22–24]. There has now been more than a decade of clini-
cal experience with bone marrow cells for the treatment of
acute myocardial infarction (AMI), HF or angina. The latest
Cochrane review concluded that there is currently insuffi-
cient evidence for a beneficial effect of BM cell therapy for
AMI patients [25], whereas a recent trial sequential analysis
suggested that current randomised controlled trials which
administering autologous BM-derived cells to HF patients
offered a reduction of the risk of mortality and hospitali-
sation for HF [26]. The results of large phase-3 trials will
likely shed more light on the ability of BM-derived cells
to provide therapeutic benefits. Three phase-3 studies are
currently ongoing and may be expected to report results
within the next couple of years: BAMI (NCT01569178),
CHART-1 (NCT01768702) and the DREAM-HF trial
(NCT02032004).

Skeletal Myoblasts

Skeletal muscle is easily accessible and contains myoblasts
that are resistant to ischaemia and proliferate to repair or
replace damaged or old muscle tissue [27, 28]. This led var-
ious groups to explore the feasibility of applying skeletal
myoblasts for cardiac regeneration.

Myoblast transplantation improved cardiac function in
animal studies [28] and milieu-dependent differentiation of
myoblast satellite cells into cardiac-like muscle cells was
observed in some studies [29]; however, this observation
was heavily disputed by others [27]. Nonetheless, this tech-
nology was soon translated into clinical trials and, although
some patients developed ventricular arrhythmias, phase-I
studies demonstrated safety and promised hope for heart

failure patients. However, they failed to fulfil the promised
results in phase-II clinical studies [30, 31]. Since myoblasts
do not differentiate to form cardiomyocytes in significant
numbers, and the transplanted cells failed to gain electrome-
chanical coupling with the host tissue, interest in these cells
diminished [32].

Embryonic and Induced Pluripotent Stem Cells

Embryonic stem (ES) cells are typically derived from the
inner cell mass of pre- or peri-implantation mammalian
embryos. These cells can give rise to all three germ layers
and thus differentiate into all tissues. However, they have
considerable risk of rejection since they are not autologous
and entail ethical issues as they are derived from fertilised
eggs. Induced pluripotent stem (iPS) cells are ES cell-like
and can be derived from the somatic cells of patients, which
makes them a potential autologous source [33]. Reprogram-
ming to form iPS cells from somatic cells was originally
accomplished by overexpression of pluripotency-related
transcription factors: OCT4, SOX2, KLF4 and MYC using
a retroviral approach. More recently, significant improve-
ments have made the process more efficient and the use of
integrating vectors obsolete [34].

There are very few clinical trials using ES-derived ther-
apies for regeneration. For the heart, the feasibility of
using embryonic stem cell-derived cardiomyocytes (ES-
CMs) on a clinical scale was demonstrated in a non-human
primate model [35], making progress towards clinical trans-
lation. Recently, Menasché et al. [36] started a clinical
study with ES-derived cardiac progenitor cells embed-
ded in a fibrin scaffold. It is still too early to assess
the therapeutic benefit and safety, but the initial results
are promising. However, care should be taken in clinical
translation, as these stem cells have the potential to form
tumours.

Endogenous Cardiac Stem Cells

More recently, multiple ways to isolate or identify endoge-
nous or resident cardiac progenitor cells (CPCs) have been
reported (c-kit [16], Sca-1 [37], ALDH [38], Bmi1+ cells
[39], side population [40], epicardial [41] and cardiospheres
[42]), and the longstanding theory that the heart is a ter-
minally differentiated organ was abandoned [13]. Typically,
these cells express CM transcription factors, but lack con-
tractile protein expression which they may acquire after
differentiation to CMs [37].

C-kit cardiac stem cells (CSCs) are the most studied cell
type but are also the most disputed. Beltrami et al. [16]
identified a Lin- c-kit+ population which could give rise to
cardiomyocytes, smooth muscle and endothelial cells and
showed beneficial effects after injection in an experimental
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MI animal model. More recently, Ellison et al. [43] pos-
tulated that c-kit+ cells are both necessary and sufficient
for cardiac regeneration in a model of diffuse myocar-
dial damage, demonstrating both that the cells successfully
contributed to the regeneration post-injury and that abla-
tion of the resident cells abolished the functional recov-
ery, which could be rescued by application of exogenous
cells. The results were contested because of potential issues
with the experimental methods used [44]. Du et al. [45]
reported that c-kit+ cells contributed to the formation of
new CMs in the neonatal, but not the adult, heart whilst
van Berlo et al. [46] reported that endogenous c-kit+ cells
give rise to cardiomyocytes within the adult heart, at a
level of approximately 0.008 %, but contributed to the
development of cardiac endothelial cells. This was also
challenged, again citing issues with methodology [47],
but the findings were independently confirmed by Sultana
et al. [48].

Sca-1 is a cell surface protein involved in cell signalling
and adhesion and Sca-1+ resident cardiac stem cells were
first described by Oh et al. [37] in 2003, as small inter-
stitial cells adjacent to the basal lamina in mouse hearts.
Uchida et al. [17] demonstrated that Sca-1+ CSCs con-
tribute to the generation of CMs during normal ageing
and after injury and Sca-1 positive cells improved cardiac
function after administration post MI [49]. Similarly, Sca-1
deletion resulted in impaired cardiac function with ageing,
and hypertrophy [50] and interestingly, Sca-1 KO mice also
had reduced resident c-kit CPCs and reduced CPC migration
post-MI. Although Sca-1 is absent in humans, a ‘Sca-1 like’
population of cells can be isolated from the human heart by
selection using the murine antibody [51].

Closely related to the Sca-1 cells are the cardiac side
population (SP) cells which were identified based on their
ability to extrude Hoechst 33342 using the Abcg2 trans-
porter [40]. About 80−90 % of the SP are Sca-1+, whereas
only about 1 % of Sca-1+ cells are SP cells [52]. A recent
paper by Doyle et al. [53] suggested that the SP cells form
cardiomyocytes, endothelial cells and vascular smooth mus-
cle cells during cardiac embryogenesis and contribute to the
development of new vasculature, but not cardiomyocytes,
post-MI.

Finally, Messina et al. [42] isolated and expanded another
population of cardiac stem cells, named cardiosphere-
derived stem cells (CDCs). These cells can be isolated from
patient biopsies and the effect of comorbidities on these
cells has been assessed [54–57]. CDCs were shown to dif-
ferentiate into cardiomyocytes and endothelial cells in vitro,
in response to 5’-azacytidine or transforming growth factor
stimulation [57, 58]. Additionally, CDCs have been shown
to have beneficial effects after transplantation in experimen-
tal infarction models [54, 59]. Most recently, Gallet et al.
[60] demonstrated that CDCs were able to ameliorate heart

failure with preserved ejection fraction in an experimental
rat model by decreasing fibrosis and inflammation.

Some effort has been made to assess how these popula-
tions differ and how they relate to the cells in the cardiac
stem cell niche. Dey et al. [61] applied microarray-based
transcriptional profiling on three CSCs populations (ckit+,
Sca-1+ and SP) in mice, which revealed that the ckit+ popu-
lation differed from Sca-1+ and SP cells, with Sca-1+ being
the most similar to CMs. In addition, based on transcrip-
tome data published by others, they concluded that CDCs
were most closely related to BM-MSCs. Noseda et al. [62]
performed single-cell qRT-PCR profiling on Sca-1 cells and
demonstrated that PDGFRα is superior to the SP pheno-
type for demarcating cardiac transcription factor expressing
cells.

Clinical trials have used or are using a range of endoge-
nous cardiac stem cells. In 2011, the Anversa group pub-
lished the promising results of the phase-I Stem Cell Infu-
sion in Patients with Ischemic cardiOmyopathy (SCIPIO)
trial using c-kit+ cells [63]. Patients with a history of post-
MI cardiac dysfunction were treated with either 0.5 or 1
million c-kit CSCs. However, in 2014, The Lancet published
an expression of concern with respect to the integrity of
the clinical trial [64]. CDCs also underwent phase-I test-
ing, in the CArdiosphere-Derived aUtologous stem CElls
to reverse ventricUlar dySfunction (CADUCEUS) trial, on
17 patients with left ventricle (LV) dysfunction post-MI
where 12.5 to 25 million cells were infused intracoro-
nary (IC). The initial results demonstrated safety, and a
reduction in scarring after myocardial infarction, although
without significant improvement in ejection fraction (EF)
[65]. HF patients were treated with CSCs enriched for ES
and mesenchymal stem cell (MSC) markers in the Autol-
ogous human cardiac-derived stem cell to treat ischemic
cardiomyopathy (ALCADIA) trial [66] and the injection
sites were covered by a biodegradable gelatin hydrogel sheet
containing 200 μm basic fibroblast growth factor (bFGF).
The ALCADIA trial demonstrated safety, but larger trials
will be required to assess the therapeutic potential of this
cell plus biomaterial approach.

CSCs have also been tested in the transcoronary infusion
of cardiac progenitor cells in patients with single (TICAP)
trial [67], where children with the congenital heart defect,
hypoplastic left heart syndrome (HLHS) were treated with
CDCs. Safety of the procedure was demonstrated, and the
stem cell-treated patients had improved right ventricular
ejection fraction (RVEF) at 18 months of follow-up, in
contrast to control patients.

In summary, current clinical trials using CSCs have
demonstrated safety and hope for therapeutic efficacy.
Larger randomized controlled trials will be required to
assess efficacy, ideal cell dose, time, frequency and route of
administration.
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Mechanism of Action

It remains unclear which mechanism(s) lead to the benefi-
cial effects seen in both animal models and clinical trials.
Three non-mutually exclusive mechanisms have been pro-
posed: (a) the transplanted cells and/or their progeny aid
in the regeneration, (b) factors produced by the infused
cells stimulate endogenous regeneration or alter the tissue’s
response to injury and (c) the death of the infused cells alters
the body’s response to injury (Fig. 1).

Direct Regeneration

Given the significant loss of contractile tissue and the gener-
ation of scar tissue, de novo remuscularisation is considered
the magic bullet for HF treatment. Multiple studies have pre-
sented evidence in favour of exogenous or endogenous stem
cell contribution to the generation of new cardiomyocytes
[43, 59]. The study by Chong et al. [35] demonstrated that
a significant proportion of the infarcted monkey heart could
be remuscularized using ES-CMs after injection of one bil-
lion cells, suggesting that this similarly would be possible
in the human heart. However, in most cases, only a very few
de novo cardiomyocytes can be identified and cell retention
post injection or infusion is typically very low [68], sug-
gesting that direct remuscularisation likely only has a small
contribution to any beneficial effect.

Paracrine Effects

Paracrine signalling involves the release of effector agents
capable of inducing a regenerative or protective response.
These agents include inter alia cytokines, growth factors,

micro RNAs (miRNAs) and secreted extracellular vesi-
cles like exosomes which can contain proteins and RNA
molecules. The paracrine signalling molecules vary with
the type of stem cell, and their effects include preventing
death and adverse remodelling, maintaining cardiac con-
tractility and metabolism and promoting neovascularisation
and cardiac regeneration [69].

Chimenti et al. [70] quantified the relative contribution of
paracrine signalling and direct regeneration in the immune
deficiency mouse model after injection of human CDCs, by
quantifying the proportion of cells that were of human ori-
gin versus the overall improvement in cardiac parameters.
The study revealed that paracrine interactions significantly
outweighed direct regeneration, and even though the cap-
illary density doubled in CDC-treated mice, only 10 % of
new vessels were of human origin. Similarly, treated mice
had a higher proportion of viable myocardial tissue, but
only 12 % of the myosin heavy chain-positive cells in those
areas was of human origin. Interestingly, they reported the
development of foci of murine c-kit+ cells near human
CDCs, and the recruitment of nkx2.5+ cells in the infarcted
area.

MSCs have been shown to secrete anti-apoptotic fac-
tors and to modulate the immuno-inflammatory response
post-MI [71]. The phosphoinositide 3-kinase (PI3K)-Akt
pathway plays a central role in pro-survival signalling [72].
Insulin-like growth factor-1 (IGF-1) is a potent activa-
tor of the Akt pathway leading to survival of CMs and
is secreted by MSCs and endogenous CSCs [73]. In a
model of heart failure with preserved ejection fraction in
which CDC SCT reduced scaring and inflammation, it was
proposed that CDCs released exosomes containing miRNA
and modulated gene expression [60]. Du et al. [74] reported

Fig. 1 Mechanism of action of stem cell therapy post-MI. The trans-
planted cells and their progeny are activated by the local inflamed and
ischaemic milieu. The transplanted cells can exercise beneficial effects
on the heart directly by differentiation or indirectly by the secretion
of paracrine factors. Similarly, the transplanted cells may recruit and

activate endogeneous cells from the heart or from elsewhere within
the body, which may differentiate or induce further paracrine signal-
ing. In addition, the death of the transplanted cells may modulate the
inflammatory environment
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that transplantation of MSCs inhibited the activity of NF-
κB, attenuated the production of pro-inflammatory proteins
including tumor necrosis factor-α and interleukin-6 (IL-
6) and increased the expression of the anti-inflammatory
protein interleukin-10 (IL-10) in peri-infarct myocardium.
Furthermore, Ohnishi et al. [75] demonstrated that MSC-
conditioned medium upregulated the expression of anti-
proliferation genes and downregulated the expression of
collagen I and III in cardiac fibroblasts.

Paracrine induction of neovascularisation involves medi-
ators such as vascular endothelial growth factor (VEGF) and
bFGF which are secreted by a variety of cells, including
CDCs and MSCs [69, 76]. Exogenous stem cell trans-
plantation may also activate resident CSCs and stimulate
cardiomyocyte replication via paracrine signalling. Linke
et al. [77] found that intramyocardial injection of hepa-
tocyte growth factor (HGF) and IGF-l induced formation
of new myocytes and blood vessels. Similarly, Yoon et al.
[78] reported that a population of BM-derived stem cells
could induce endogenous and exogenous cardiomyogenesis.
The cytokine stromal cell-derived factor-1 (SDF-1) has also
been shown to promote cell survival, endogenous stem cell
recruitment, and vasculogenesis [79].

Taken together, transplanted cells have the potential to
secrete a large variety of paracrine factors, and these affect
multiple pathways with overlapping effects leading to pro-
tection post-MI simultanuously.

The Dying Stem Cell Hypothesis

Thum et al. [80] hypothesized that the beneficial effect of
stem cell transplantation could be explained by the modula-
tion of local immune reactions in response to apoptosis of
the infused cells. Dying cells release danger signals which
may trigger immune responses, but the mode of cell death
differs between the native heart cells and the injected stem
cells. Necrotic cell death is the major contributor to cell
death in the infarcted heart [81], whereas apoptotic cells
inhibit inflammation [82].

Stressed peripheral blood mononuclear cells have been
shown to enhance angiogenesis and wound healing, result-
ing in tissue repair through paracrine signalling pathways
[83]. Burt et al. [84] demonstrated that irradiated and
mitotically inactivated ES cells were capable of improving
myocardial function after injection into the infarcted heart,
to the same extent as non-irradiated ES cells. They saw
minimal cell engraftment and no improvement in cardiac
function after injection of conditioned medium, suggesting
that the beneficial effect was most probably dependent on
the transitory presence of the cells. Interestingly, injection
of mouse embryonic fibroblasts cells did not ameliorate car-
diac function post-MI, suggesting that the type of dying cell
might be pivotal to the beneficial effect observed.

In conclusion, although the underlying mechanisms of
cardiac cell therapy are still unclear, current data sug-
gests that paracrine mechanisms, either as a result of factor
secretion or stem cell death, contribute the most.

Strategies for Improving the Therapeutic Efficacy
of Cell Therapy

Cellular retention directly relates to the beneficial therapeu-
tic outcomes observed [85]. Cells are typically delivered
to the damaged area by either vascular infusion or direct
myocardial injection, neither of which is particularly effi-
cient. Indeed, Pons et al. [86] reported that 90 % of the
injected stem cells were lost within the first day, and 99 % in
the first week. There are many mechanisms leading to poor
cell survival and retention [87] including cell death or lim-
ited self-renewal in the harsh microenvironment of hypoxia,
inflammation, oxidative stress and as a result of the continu-
ous compressive mechanical stress in the heart which pushes
cells outwards from the injection sites. Hence, strategies
aimed at improving retention of infused stem cells within
the the heart are currently being investigated [87].

Devices for Delivery

Cells can be delivered into the heart via different routes: IC,
intramyocardial (IM) and intravenous (IV) [88] (Fig. 2). In
preclinical studies, IV delivery or epicardial injections into
the infarct border zone are more common. In large animal
studies or clinical trials, cells can also be injected into the
endocardial surface of the myocardium or infused directly
into the coronary arteries. IM injection has been shown
to be superior to IV infusion, although more invasive and
technically challenging [89].

Fig. 2 Cell or paracrine factor delivery methods. Cells or paracrine
factors may be delivered via the coronary vasculature or injected
directly into the heart muscle. They may be immobilized in an
injectable hydrogel or in a scaffold attached onto the epicardium
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Regardless, cell retention remains very low within the
heart, and hence, additional research for alternative devices
is necessary. Dib et al. [90] investigated the effect of bal-
loon inflation on the viability of the infused cells, and
suggested that multi-lumen catheters are superior. Behfar
et al. [91] modelled alternative needle designs to the con-
ventional straight or helical needles with an end-hole. Their
optimum design of a curved needle with side holes gave a
3-fold increase in retention compared with a straight nee-
dle with end-hole. Soubihe et al. [92] also proposed a novel
injection needle, with a blunt tip and multiple 0.5 mm diam-
eter holes and with a brush-mandrill to make micro-lesions
and prime the cardiac tissue to receive the cells.

Improvement of Cell Homing to the Heart

Methods that make infused cells home more efficiently to
the area of need could make direct injection obsolete. Cell
adhesion markers, signal molecules such as chemokines,
growth factors or hormones play prominent roles in the
recruitment of cells to target tissues [93]. To improve hom-
ing, either the therapeutic cells could be modulated to be
more responsive to the endogenous signals, or the target
tissue could be encouraged to produce more signal. One
of the most thoroughly studied chemo-attractants is SDF-
l which has been shown to attract circulating progenitor
cells to injured or ischaemic tissues via its receptor C-X-C
chemokine receptor 4 (CXCR4) [94].

Cell Homing Strategies

The therapeutic cell population can be primed for more
effective homing by conditioning, chemical treatment or
genetic modification. Exposure of MSCs to 1 % oxygen
upregulated CXCR4 expression in a hypoxia-inducible fac-
tor (HIF)-dependent manner and increased the in vitro
migration to SDF-l [95]. Similarly, BM-MSC treatment
with hypoxia-mimetics upregulated CXCR4 expression
[96]. However, human MSCs overexpressing CXCR4 did
not have improved cell migration, suggesting that additional
mechanisms might be required for effective homing [97].

Glycoengineering of the cell surface of the infused stem
cells with physiological selectin-ligands has also been sug-
gested as a method to enhance engraftment. Lo et al.
[98] validated two glycoengineering protocols in a porcine
ischaemia/reperfusion (I/R) model and demonstrated hom-
ing of the modified stem cells to sites of I/R in the heart.

Tissue Recruitment Strategies

Tissue-specific recruitment strategies, for example using
biomaterials carrying signaling molecules, are considered
in situ tissue engineering strategies [99]. The delivered

signalling molecules could either target the endogenous
stem cells or stimulate stem cells in the BM. SDF-l can
be delivered to increase cell homing to the tissue, but it
is rapidly degraded. Segers et al. [100] delivered protease-
resistant SDF-l into the infarct border area, using self-
assembling peptide nanofibers, and noted improved cardiac
function after MI. Similarly, delivery of MSCs overexpress-
ing SDF-l to the ischemic myocardium facilitated repair by
the recruitment of progenitor cells [101]. However, a recent
phase-II trial using a single dose of SDF-l gene therapy
failed to meet its primary endpoint, although it did show
beneficial effects in one of the patient subgroups [102]. Ery-
thropoietin (EPO) supplementation prevented LV-dilatation
and deterioration of cardiac function post-MI, attributed to
increased capillary growth as a result of VEGF expres-
sion by the myocardium and EPO-induced mobilisation
of endothelial progenitor cells (EPCs) from the BM with
homing to the cardiac microvasculature [103].

Improvement of Cell Survival and Potency

In vivo after MI, cells are exposed to harsh conditions, such
as ischaemia, oxidative stress and inflammation, which limit
their survival. Environmental preconditioning regimes, such
as hypoxia [76, 104], heat shock [105] and hydrogen perox-
ide [106] treatment, have been proposed to prepare the cells
for the harsh conditions present in the infarcted area or to
improve their therapeutic potential [107]. Direct application
of radical scavengers to the heart resulted in improved adhe-
sion of MSCs and consequently reduced fibrosis and infarct
area [108].

The molecular mechanisms of preconditioning regimes
comprise anti-apoptotic signalling, reduction of reactive
oxygen species (ROS) generation and survival signalling
via, amongst others, the Akt pathway [109]. Overexpres-
sion of Akt in transplanted MSCs improved their post-
transplantation viability and therapeutic efficacy, leading
to improved LV function by paracrine protection of the
cardiomyocytes [110]. Similarly, overexpression of an Akt
activator, periostin, in MSCs improved MSC and CM sur-
vival post-implantation, maintained cardiac function and
limited infarct size [111].

Strategies to manipulate the inflammatory environment
post-MI have been proposed, as the local inflammatory
milieu affects both the survival of transplanted cells and the
adverse remodeling of the myocardium. Kang et al. [112]
demonstrated that priming peripheral blood mononuclear
cells (PBMCs) with the supernatant of activated platelets
resulted in M2 polarization of macrophages, induced angio-
genesis and exerted beneficial effects post-MI.

Finally, miRNA molecules have also been suggested for
ameliorating the stem cell survival and retention limitation.
Hu et al. [113] treated CPCs with pro-survival miRNAs
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(miR-21, miR-24 and miR-221) and reported increased sur-
vival in vitro under serum starvation and increased retention
and reduced adverse cardiac remodelling post-MI in vivo. In
addition, upregulation of miRNA-21 in Sca-1 positive CSCs
resulted in increased migration and proliferation [114].

Combinations of Cells

Since different cell types may have different mechanisms of
action, the use of a combination of cells has been proposed.
For example, CPCs may be superior for the formation of
new CMs, whereas MSCs are known to secrete a variety
of paracrine factors and have immunomodulatory potential
[115], and EPCs contribute to blood vessel development and
maturation [116].

Williams et al. [117] applied a combination of human
MSCs and c-kit positive CSCs by transepicardial injection
in a swine MI model. The combination of both cell types
resulted in a 2-fold-greater reduction in scar size compared
with either cell type administered alone. This was paral-
leled by an enhanced recovery of both systolic and diastolic
function.

Alternatively, 3D CardioClusters comprising CPCs,
MSCs and EPCs and stem cell hybrids of MSCs and
CPCs—CardioChimeras—have also been proposed [118].

Alternative Therapeutic Strategies

Direct regeneration of the myocardium in the clinical set-
ting remains elusive. Manipulation of paracrine interactions
may be more feasible although this has been limited by
poor control of delivery, wash-out or degradation. Thera-
peutic angiogenesis by application of growth factors such
as VEGF may have failed to demonstrate clinical benefit
due to the difficulty of maintaining the local VEGF con-
centration at an effective level [119]. Biomaterials could be
devised for cardiac delivery of angiogenic and cardiopro-
tective agents with controllable release kinetics. In addition,
local stem cell pools could be activated or recruited by appli-
cation of paracrine agents, such as IGF-l [120] and Fstl1
[121].

Cardiomyocytes or progenitors can be delivered within
a scaffold such as in situ polymerizable hydrogels and pre-
cast scaffolds, to immobilize cells in the area in which
they are required [122] (Fig. 2). Indeed, Araña et al. [123]
could recover 25.3 ± 7.0 % of cells seeded in scaffolds,
1 week after cell transplantation, whereas in cell-injected
control animals, no cells could be recovered. Material and
chemical properties of the scaffolds play dominant roles in
biocompatibility, engraftment/rejection and cardiac remod-
elling. This is beyond the scope of this review and has been
covered elsewhere [124].

Finally, as a novel therapeutic strategy, the adult heart
contains a significant proportion of cardiac fibroblasts,
which can be targeted for direct reprogramming to car-
diomyocytes or to cardiac progenitor cells without the need
of the intermediate iPS step [125]. However, further opti-
mization is required given the low efficacy and technical
difficulty of this technique [126].

Conclusions

SCT in the heart is at a crucial standpoint; do we continue
to persist with cell therapy despite the barrage of diffi-
culties that arise or is it time to concentrate our efforts
towards alternative approaches? It can be said that the emer-
gence of the paracrine hypothesis fuels the latter argument,
if stem cells merely offer a means to enhance endogenous
repair and regenerative mechanisms. Notwithstanding, SCT
clearly has benefits beyond this narrow view including (a)
stem cells have homing properties enabling them to target
sites of injury more efficiently than protein based or genetic
approaches; (b) the release of cytokines and growth fac-
tors from stem cells is a controlled process dependent on
feedback and paracrine relationships with other cells, which
ensures that specific factors in specific combinations target
specific cells at specific times, a feat difficult to achieve
with other therapies; and crucially, (c) the potential of more
pluripotent stem cells to form new cardiomyocytes that can
replace and regenerate large areas of the myocardium con-
tinues to offer a curative solution for end-stage HF. With
this more holistic approach in mind, sustained interest and
attention to overcome the current limitations of cell therapy
will continue to be the priority of research in this field.
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