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Effects of Escherichia coli Nissle 1917 
and Ciprofloxacin on small intestinal epithelial 
cell mRNA expression in the neonatal piglet 
model of human rotavirus infection
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Abstract 

We evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) and the antibiotic Ciprofloxacin (Cipro) on 
mRNA expression of intestinal epithelial cells (IEC) in gnotobiotic (Gn) piglets colonized with a defined commensal 
microflora (DMF) and inoculated with human rotavirus (HRV) that infects IECs. We analyzed mRNA levels of IEC genes 
for enteroendocrine cells [chromogranin A (CgA)], goblet cells [mucin 2 (MUC2)], transient amplifying progenitor cell 
[proliferating cell nuclear antigen (PCNA)], intestinal epithelial stem cell (SOX9) and enterocytes (villin). Cipro treat‑
ment enhanced HRV diarrhea and decreased the mRNA levels of MUC2 and villin but increased PCNA. These results 
suggest that Cipro alters the epithelial barrier, potentially decreasing the numbers of mature enterocytes (villin) 
and goblet cells secreting protective mucin (MUC2). These alterations may induce increased IEC proliferation (PCNA 
expression) to restore the integrity of the epithelial layer. Coincidental with decreased diarrhea severity in EcN treated 
groups, the expression of CgA and villin was increased, while SOX9 expression was decreased representing higher epi‑
thelial integrity indicative of inhibition of cellular proliferation. Thus, EcN protects the intestinal epithelium from dam‑
age by increasing the gene expression of enterocytes and enteroendocrine cells, maintaining the absorptive function 
and, consequently, decreasing the severity of diarrhea in HRV infection.
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Background
Rotavirus infects intestinal epithelial cells (IECs) caus-
ing villous atrophy and malabsorptive diarrhea [1] and is 
a major cause of gastroenteritis in children worldwide, 
leading to more than 500,000 deaths annually [2]. Gno-
tobiotic (Gn) piglets are used as a model to study viru-
lent human rotavirus (VirHRV) infection due to their 

susceptibility to diarrhea and similarities in gastroin-
testinal physiology, micro- and macronutrient metabo-
lism, and immunity when compared to human infants 
[3]. In developing countries, the two currently licensed 
live attenuated HRV vaccines show reduced efficacy due 
to multiple factors, including micronutrient deficien-
cies, intestinal dysbiosis, and genetic variability among 
dominant RV strains [4, 5]. Indiscriminate use of anti-
biotics aggravates intestinal dysbiosis and is frequently 
associated with persistence of HRV-induced diarrhea 
[6]. Therefore, alternative strategies are important to 
alleviate infectious diarrhea and/or enhance oral vaccine 
efficacy.

Open Access

Gut Pathogens

*Correspondence:  saif.2@osu.edu; vlasova.1@osu.edu 
1 Food Animal Health Research Program (FAHRP), The Ohio Agricultural 
Research and Development Center, Veterinary Preventive Medicine 
Department, The Ohio State University, 1680 Madison Avenue, Wooster, 
OH 44691, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13099-016-0148-7&domain=pdf


Page 2 of 7Paim et al. Gut Pathog  (2016) 8:66 

Commensal microbiota and probiotics interact with 
host metabolic activities and immune responses to pro-
tect the intestinal epithelium against enteric pathogens 
[7, 8]. Escherichia coli strain Nissle 1917 (EcN) is a Gram-
negative probiotic that acts as a potent immunostimulant 
of the host immune system [9], and its immunomodu-
latory and anti-inflammatory effects alleviate HRV-
induced diarrhea in Gn piglets [10, 11]. However, the 
effects of EcN on IEC dynamics during HRV infection 
have not been studied. It is well established that intestinal 
epithelial stem cells (IESCs) respond to intestinal dam-
age, maintaining a dynamic balance between the stem 
cell progenitors, secretory (goblet, enteroendocrine) 
cells and enterocytes [12]. Here, we evaluated the effects 
of EcN and/or Ciprofloxacin (Cipro), a fluoroquinolone 
antibiotic commonly used in infants and children to treat 
infectious diarrhea, on mRNA expression profiles of IEC 
specific genes for enteroendocrine cells [chromogra-
nin A (CgA)], goblet cells [mucin 2 (MUC2)], transient 
amplifying progenitor cell [proliferating cell nuclear anti-
gen (PCNA)], intestinal epithelial stem cell (SOX9) and 
enterocytes (villin) during HRV infection of Gn piglets 
colonized with a defined commensal microflora (DMF). 
The DMF, similar in composition to modified Schaedler’s 
flora used in mice, consists of seven bacterial species of 
swine origin (Bifidobacterium adolescentis, Bifidobacte-
rium longum, Bacteroides thetaiotaomicron, Enterococ-
cus faecalis, Lactobacillus brevis, Streptococcus bovis and 
Clostridium clostridioforme) [13].

Comparative assessment of the expression levels of IEC 
genes should reflect intestinal crypt dynamics in response 
to Cipro and/or EcN treatments in the context of HRV 
infection of IECs. The complexity of the intestinal micro-
environment of conventional neonatal piglets compli-
cates delineation of the specific effects of probiotics and 
antibiotics. To establish a simplified model of commensal 
microbiota, we used the DMF bacterial cocktail derived 
from the gut of healthy pigs. Like individual probiotic 
strains, each DMF bacterial strain colonizes Gn pigs after 
a single dose and influences early maturation of neonatal 
immune responses [14–17] which otherwise are naïve and 
functionally immature compared to adults [18, 19].

Methods
Experimental design
This study was approved by the Institutional Animal Care 
and Use Committee at Ohio State University (protocol 
#2010A00000088). Cesarean-derived Gn piglets from 
sows (Landrace ×  Yorkshire ×  Duroc cross-bred) were 
maintained in sterile isolators as described previously 
[20]. All piglets were colonized orally at 7  days of age 
with DMF with 105 colony-forming units (CFU) of each 

bacteria/piglet. DMF were kindly provided by Dr. David 
Francis from South Dakota State University, USA.

Piglets were randomly assigned to 4 groups: 
DMF  +  VirHRV (n  =  6), DMF  +  Cipro  +  VirHRV 
(n  =  6), DMF  +  EcN  +  VirHRV (n  =  3) and 
DMF + Cipro + EcN + VirHRV (n = 4). The piglets were 
orally treated or untreated with Cipro (60 mg/day) and/
or EcN (105 CFU/piglet daily) at post bacterial coloniza-
tion days (PBCD) 8–13. EcN inoculum was prepared as 
described previously [10]. All piglets were challenged 
with VirHRV at a dose of 2 ×  106  fluorescent-forming 
units (FFU) per piglet at PBCD 14. Post-VirHRV chal-
lenge, rectal swabs were collected to assess HRV shed-
ding by cell culture immunofluorescence infectivity 
(CCIF) assay and record fecal scores to assess the sever-
ity of diarrhea as described previously [21]. All piglets 
were euthanized by electrocution following anesthesia at 
PBCD 35/post-VirHRV challenge day (PCD) 21 and mid-
jejunum (10 cm) was collected to isolate IECs.

Isolation of IECs
The IECs were isolated from jejune (middle gut) using a 
modified protocol adapted from Pan et  al. [22]. Briefly, 
jejunum was cut into small pieces (1  cm) and placed in 
a 50  ml tube with 20  ml of Hanks balanced salt solu-
tion (Gibco BRL, Gaithersburg, MD, USA) containing 
5% fecal bovine serum (FBS) (Sigma-Aldrich, St. Louis, 
MO, USA) and 2.5 mM EDTA (Sigma-Aldrich, St. Louis, 
MO, USA). The tissue was processed twice in an orbital 
shaker at 300 RPM for 15 min and the resulting cell sus-
pension was filtered through a metal cell strainer. The 
IECs were spun down at 500 × g for 10 min at 4  °C and 
the pellet was resuspended in RPMI1640 (Gibco BRL, 
Gaithersburg, MD, USA) enriched with 8% FBS (Sigma-
Aldrich, St. Louis, MO, USA), 2 mM l-glutamine (Gibco 
BRL, Gaithersburg, MD, USA), 0.1  mM nonessential 
amino acids (Gibco BRL, Gaithersburg, MD, USA), 1 mM 
sodium pyruvate (Gibco BRL, Gaithersburg, MD, USA), 
20  mM HEPES (Gibco BRL, Gaithersburg, MD, USA), 
100 g of gentamicin (VetOne, Boise, ID, USA) per ml, and 
10 g of ampicillin (Gibco BRL, Gaithersburg, MD, USA) 
per ml (E-RPMI). The viability and numbers of IECs were 
determined by the Trypan Blue exclusion method. IECs 
were stored at −80 °C in 500 ul of RNA later tissue col-
lection buffer (Life technologies, Carlsbad, CA, USA) 
until further analysis.

Extraction of RNA
Total RNA from IECs was extracted using Direct-Zol 
RNA Miniprep (Zymo Research, Irvine, CA, USA) 
according to the manufacturer’s instructions. The 
RNA concentrations and purity were measured using 
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NanoDrop 2000c spectrophotometer (Thermo Scientific, 
Wilmington, DE, USA).

Real‑time quantitative RT‑PCR (qRT‑PCR)
qRT-PCR was performed using equal amounts of total 
RNA (75 ng) with Power SYBR Green RNA-to-CT 1 step 
RT-PCR kit (Applied Biosystems, Foster, CA, USA). The 
primers for CgA, MUC2, PCNA, SOX9, villin and β-actin 
were based on previously published data [23–25]. Rela-
tive gene expression of CgA, MUC2, PCNA, SOX9 and 
villin were normalized to β-actin and expressed as fold 
change using the 2ΔΔCt method [26].

Statistical analyses
Mean days to onset of virus shedding, mean dura-
tion of virus shedding, average peak virus shedding 
titer and mean duration of diarrhea were analyzed 
by the Kruskal–Wallis rank-sum test. Mean cumula-
tive fecal scores were analyzed by the area under the 
curve method as described previously [10]. A nonpara-
metric t test was used to detect significant differences 
(P  <  0.05) in the relative mRNA levels between the 
treatments and control group. Statistical analyses were 
performed by using GraphPad Prism 5 software (Graph 
Pad Software) for relative mRNA levels and SAS 9.4 
(SAS Institute Inc. Cary, NC) for shedding titers and 
diarrhea scores.

Results
Cipro increases diarrhea severity, while EcN induces 
protection against HRV‑induced diarrhea in Cipro treated 
piglets
Fecal virus shedding was confirmed for all DMF-col-
onized, VirHRV-challenged piglets (Fig.  1a). Mean 
days to onset of shedding were significantly longer 

in DMF  +  Cipro  +  EcN  +  VirHRV compared to 
DMF +  Cipro +  VirHRV piglets (Fig.  1A). Mean dura-
tion of diarrhea was longer in DMF + Cipro + VirHRV 
compared with DMF + VirHV piglets (Fig. 1b).

Cipro treatment resulted in a 25% increase in the 
proportion of diarrheic piglets post-VirHRV chal-
lenge when compared to DMF-colonized, non-Cipro 
treated animals. Notably, EcN-treatment greatly 
reduced the percentage of piglets with diarrhea in 
both Cipro and non-Cipro-treated, DMF-colonized 
groups. Furthermore, DMF  +  EcN  +  VirHRV and 
DMF + Cipro + EcN + VirHRV groups had significantly 
lower mean cumulative fecal diarrhea scores compared 
to groups not treated with EcN (Fig. 2).

Contrasting effects of Cipro and EcN treatments 
on the gene expression by goblet cells, enterocytes, 
enteroendocrine, transient amplifying progenitor 
and IESCs of HRV infected piglets
Gene expression levels of CgA, MUC2, PCNA, SOX9 
and villin were assessed. The relative mRNA lev-
els of CgA were significantly increased in EcN groups 
with or without Cipro (DMF  +  EcN  +  VirHRV, 
DMF  +  Cipro  +  EcN  +  VirHRV) when compared 
with DMF +  VirHRV piglets (Fig.  3a). Cipro treatment 
(DMF +  Cipro +  VirHRV) significantly downregulated 
MUC2 while upregulating PCNA mRNA levels when 
compared with the DMF +  VirHRV group (Fig.  3b and 
c). Gene expression of SOX9 was downregulated in all 
groups in comparison with DMF +  VirHRV, but more 
so in the EcN-treated groups (DMF +  EcN +  VirHRV, 
DMF  +  Cipro  +  EcN  +  VirHRV, Fig.  3d). Cipro 
treatment decreased the relative mRNA levels of 
villin in DMF  +  Cipro  +  VirHRV animals; how-
ever, EcN-treatment (DMF  +  EcN  +  VirHRV, 

a b

Fig. 1  Virus shedding (a) determined by CCIF and expressed as FFU/ml and duration of diarrhea (b) determined by number of days with 
fecal score >1 (fecal consistency was scored as follows: 0 = normal, on diarrhea: 1 = pasty/semiliquid, 2 = liquid) in DMF + VirHRV (n = 6), 
DMF + Cipro + VirHRV (n = 6), DMF + EcN + VirHRV (n = 3) and DMF + Cipro + EcN + VirHRV (n = 4) groups
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DMF + Cipro + EcN + VirHR) upregulated villin when 
compared with the DMF + VirHRV piglets (Fig. 3e).

Additional effects of Cipro on IECs were observed. Rel-
ative mRNA levels of CgA, MUC2 and villin decreased, 
whereas gene expression of PCNA and SOX9 increased 

in DMF + Cipro + EcN + VirHRV in comparison with 
DMF + EcN + VirHRV piglets (Fig. 4a).

The modulatory effects of EcN on IEC gene expres-
sion levels were further demonstrated. Increased relative 
expression of all genes (with the exception of SOX9) was 
observed in DMF + Cipro + EcN + VirHRV compared 
with DMF + Cipro + VirHRV piglets (Fig. 4b).

Discussion
In this study, we investigated the effects of the probiotic 
EcN, the antibiotic Cipro and their combined effects on 
VirHRV infection and IEC dynamics in DMF-colonized, 
VirHRV-challenged piglets. Cipro treatment increased 
the severity of VirHRV diarrhea as demonstrated by an 
increased incidence of diarrhea and mean fecal cumula-
tive diarrhea score. Cipro treatment in healthy humans 
decreased the taxonomic richness, diversity, and evenness 
of gut microbiota [27] as well as decreasing these param-
eters in Gn pigs in our study (Huang et al., unpublished).

We observed a negative effect of Cipro on MUC2 
mRNA levels suggesting decreased mucin secretion from 
goblet cells. In agreement with our results, antibiotic 
metronidazole decreased MUC2 production from goblet 
cells suggesting a potential depletion of the mucus layer, 
predisposing the host to enteric infection [28]. In addi-
tion, our results are supported by other studies that noted 

Fig. 2  Mean cumulative fecal score (daily fecal scores from PCD 
1–7/n) to assess the severity of diarrhea and percentage of diar‑
rhea in DMF + VirHRV (n = 6), DMF + Cipro + VirHRV (n = 6), 
DMF + EcN + VirHRV (n = 3) and DMF + Cipro + EcN + VirHRV 
(n = 4) groups. Means with different letters (a, b) in the same column 
differ significantly (determined by the Kruskal–Wallis rank sum test, 
P ≤ 0.05)

a b c

d e

Fig. 3  Relative mRNA levels of CgA (a), MUC2 (b), PCNA (c), SOX9 (d) and villin (e) in DMF + Cipro + VirHRV (n = 6), DMF + EcN + VirHRV (n = 3), 
DMF + Cipro + EcN + VirHRV (n = 4) groups measured by RT-PCR, normalized to β-actin gene and expressed as fold change relative to the 
DMF + VirHRV group (n = 6), which was normalized as 1. Graphs represent means ± SEM. (*P < 0.05, **P < 0.01, relative to DMF + VirHRV group)
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changes in the gut microbiota composition and intestinal 
homeostasis leading to decreased MUC2 secretion [29].

We found that Cipro treatment during HRV infection 
significantly upregulated mRNA levels of PCNA. This is 
likely due to increased intestinal damage that stimulates 
increased epithelial proliferation. Furthermore, Cipro 
treatment decreased the gene expression of villin dur-
ing HRV infection. Similarly, other researchers observed 
downregulation of other enterocyte genes including 
lactase, liver fatty acid-binding (L-FABP) and sodium-
dependent glucose transporter 1 (SGLT1) in the small 
intestine of mice during murine RV infection [30]. Our 
results suggest a negative feedback mechanism between 
numbers of mature enterocytes and the levels of IEC pro-
liferation [31]. We conclude that HRV infection might 
induce apoptosis of mature enterocytes as observed by 
others for murine RV [30] and, consequently, stimu-
late IEC proliferation. However, these cells are replaced 
by less differentiated enterocytes, leading to defective 
absorptive function and increased secretory HRV diar-
rhea [30, 32].

Probiotics provide a physical barrier to block 
pathogen entry into IECs [8], thereby reducing 
diarrhea duration and enhancing enterocyte prolif-
eration and villus repopulation [33]. In this study, the 
DMF +  Cipro +  EcN +  VirHRV piglets had decreased 
mean cumulative fecal diarrhea scores and diarrhea 
prevalence compared with DMF + Cipro + VirHRV pig-
lets. Our results suggest that EcN protects the intestinal 
epithelium from damage as confirmed by an increase in 
mRNA levels of CgA, and villin in addition to decreased 
diarrhea severity. Similarly, in a double-blind trial, EcN 
conferred beneficial effects by reducing diarrhea in 
young children [34]. EcN has also been used to alleviate 

the severity of diarrhea in gastrointestinal diseases such 
as ulcerative colitis [35], inflammatory bowel disease 
[36] and Crohn’s disease [37]. Our study corroborated 
our previous findings that demonstrated EcN protective 
effects against HRV [10, 11]. However, from our results 
we can only suggest a beneficial effect of EcN on IEC 
gene profile expression during HRV infection. Further 
evaluation of the intestinal epithelial layer and total cell 
numbers need to be confirmed by histopathological 
examination and/or immunohistochemistry.

The upregulation of CgA in EcN-treated piglets could 
be reflective of enhanced protection of the intestinal bar-
rier. Other studies have shown that enteroendocrine cells 
are activated after treatment with probiotics [38]. Enter-
oendocrine cells are regulated by Notch signaling and 
produce hormones that control various functions such 
as glucose metabolism, exocrine pancreatic secretion 
and repair of intestinal epithelium [39]. In addition, we 
observed a decrease in expression of the stem-cell spe-
cific-gene SOX9 in the EcN-treated groups. SOX9 plays 
an important role in control of the proliferative capacity 
of stem cells to replenish different lineages of IECs [40]. A 
decrease in SOX9 gene expression could be explained by 
the ability of probiotics to modulate cellular proliferation 
by Wnt signaling inhibition [41]. However, further stud-
ies are needed to elucidate the numbers of intestinal stem 
cells before and after treatment to clarify this question.

Our study demonstrated that EcN increases the mRNA 
levels of the enterocyte-specific gene villin. These results 
suggest that EcN modulates the effects of HRV and Cipro 
by increasing the villin gene expression of enterocytes 
and repairing/restoring functional enterocytes, result-
ing in increased barrier and absorptive functions during 
HRV-induced diarrhea. Additionally, treatment with the 

a b

Fig. 4  Effects of Cipro (a) on mRNA levels of CgA, MUC2, PCNA, SOX9 and villin in DMF + Cipro + EcN + VirHRV (n = 4) expressed as 
fold change relative to DMF + EcN + ViHRV (n = 3) piglets. Effects of EcN (b) on mRNA levels of CgA, MUC2, PCNA, SOX9 and villin in 
DMF + Cipro + EcN + VirHRV (n = 4) piglets expressed as fold change relative to DMF + Cipro + ViHRV (n = 6) group. Graphs represent means ± 
SEM
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probiotic LGG increased the number of villus cells in the 
jejunum of gnotobiotic rats [42].

In conclusion, our findings suggest that Cipro can 
enhance RV pathogenesis by disrupting intestinal home-
ostasis, affecting the IEC dynamics and potentiating 
the severity of diarrhea. To our knowledge, our current 
study is the first to demonstrate the beneficial effect of 
EcN in increasing the expression of the villin gene dur-
ing HRV infection. Thus administration of the probiotic 
EcN protects the intestinal epithelium and alleviates 
diarrhea during VirHRV infection of DMF-colonized Gn 
piglets. Further studies are necessary to investigate the 
role of EcN in enhancing rotavirus vaccines efficacy in 
conditions where children are exposed to antibiotics and 
malnutrition.
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