Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Feb;17(2):316–325. doi: 10.1128/jvi.17.2.316-325.1976

Isoaccepting species of serine tRNA coded by bacteriophage T5sto.

G Henckes, O Panayotakis, T Heyman
PMCID: PMC515423  PMID: 3665

Abstract

By aminoacyl-tRNA-DNA hybridization and chromatographic analysis, evidence was provided that the bacteriophage T5stO codes for two tRNAser species. Trinucleotide- or polynucleotide-stimulated binding experiments assigned the codons UCC or UCU to these two tRNAser species. They also suggested that the synthesis of these two tRNAser species does not modify the reading capacity for codons less used in Escherichia coli F and corresponds to a different situation compared with the T4-coded tRNA's.

Full text

PDF
316

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bujard H., Hendrickson H. E. Structure and function of the genome of coliphage T5. 1. The physical structure of the chromosome of T5 + . Eur J Biochem. 1973 Mar 15;33(3):517–528. doi: 10.1111/j.1432-1033.1973.tb02711.x. [DOI] [PubMed] [Google Scholar]
  2. Bujard H. Location of single-strand interruptions in the DNA of bacteriophage T5. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1167–1174. doi: 10.1073/pnas.62.4.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen M. J., Shiau R. P., Hwang L. T., Vaughan J., Weiss S. B. Methionine and formylmethionine specific tRNAs coded by bacteriophage T5. Proc Natl Acad Sci U S A. 1975 Feb;72(2):558–562. doi: 10.1073/pnas.72.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  5. Jacquemin-Sablon A., Richardson C. C. Analysis of the interruptions in bacteriophage T5 DNA. J Mol Biol. 1970 Feb 14;47(3):477–493. doi: 10.1016/0022-2836(70)90316-5. [DOI] [PubMed] [Google Scholar]
  6. Labedan B., Crochet M., Legault-Demare J., Stevens B. J. Location of the first step transfer fragment and single-strand interruptions in T5stO bacteriophage DNA. J Mol Biol. 1973 Apr 5;75(2):213–234. doi: 10.1016/0022-2836(73)90017-x. [DOI] [PubMed] [Google Scholar]
  7. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  8. Marsh J. L., McCarthy B. J. Analysis of DNA-RNA hybridization data using the Scatchard plot. Biochem Biophys Res Commun. 1973 Dec 10;55(3):805–811. doi: 10.1016/0006-291x(73)91215-1. [DOI] [PubMed] [Google Scholar]
  9. McClain W. H., Guthrie C., Barrell B. G. Eight transfer RNAs induced by infection of Escherichia coli with bacteriophage T4. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3703–3707. doi: 10.1073/pnas.69.12.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  12. Roy K. L., Söll D. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases. J Biol Chem. 1970 Mar 25;245(6):1394–1400. [PubMed] [Google Scholar]
  13. Rubenstein I. Heat-stable mutants of T5 phage. I. The physical properties of the phage and their DNA molecules. Virology. 1968 Nov;36(3):356–376. doi: 10.1016/0042-6822(68)90161-x. [DOI] [PubMed] [Google Scholar]
  14. Scherberg N. H., Weiss S. B. Detection of bacteriophage T4- and T5-coded transfer RNAs. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1164–1171. doi: 10.1073/pnas.67.3.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scherberg N. H., Weiss S. B. T4 transfer RNAs: codon recognition and translational properties. Proc Natl Acad Sci U S A. 1972 May;69(5):1114–1118. doi: 10.1073/pnas.69.5.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. THACH R. E., DOTY P. ENZYMATIC SYNTHESIS OF TRI- AND TETRANUCLEOTIDES OF DEFINED SEQUENCE. Science. 1965 Apr 30;148(3670):632–634. doi: 10.1126/science.148.3670.632. [DOI] [PubMed] [Google Scholar]
  17. THOMAS C. A., Jr, RUBENSTEIN I. THE ARRANGEMENTS OF NUCLEOTIDE SEQUENCES IN T2 AND T5 BACTERIOPHAGE DNA MOLECULES. Biophys J. 1964 Mar;4:93–106. doi: 10.1016/s0006-3495(64)86771-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. VON EHRENSTEIN G., LIPMANN F. Experiments on hemoglobin biosynthesis. Proc Natl Acad Sci U S A. 1961 Jul 15;47:941–950. doi: 10.1073/pnas.47.7.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weiss S. B., Hsu W. T., Foft J. W., Scherberg N. H. Transfer RNA coded by the T4 bacteriophage genome. Proc Natl Acad Sci U S A. 1968 Sep;61(1):114–121. doi: 10.1073/pnas.61.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson J. H. Function of the bacteriophage T4 transfer RNA's. J Mol Biol. 1973 Mar 15;74(4):753–757. doi: 10.1016/0022-2836(73)90065-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES