
Modeling a dynamic bi-layer contact network of injection drug 
users and the spread of blood-borne infections

Rui Fua, Alexander Gutfraindb, and Margaret L. Brandeaua

aDepartment of Management Science and Engineering, Stanford University

bDivision of Epidemiology and Biostatistics, University of Illinois at Chicago

Abstract

Injection drug users (IDUs) are at high risk of acquiring and spreading various blood-borne 

infections including human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B 

virus (HBV) and a number of sexually transmitted infections. These infections can spread among 

IDUs via risky sexual and needle-sharing contacts. To accurately model the spread of such 

contagions among IDUs, we build a bi-layer network that captures both types of risky contacts. 

We present methodology for inferring important model parameters, such as those governing 

network structure and dynamics, from readily available data sources (e.g., epidemiological 

surveys). Such a model can be used to evaluate the efficacy of various programs that aim to 

combat drug addiction and contain blood-borne diseases among IDUs. The model is especially 

useful for evaluating interventions that exploit the structure of the contact network. To illustrate, 

we instantiate a network model with data collected by a needle and syringe program in Chicago. 

We model sexual and needle-sharing contacts and the consequent spread of HIV and HCV. We use 

the model to evaluate the potential effects of a peer education (PE) program under different 

targeting strategies. We show that a targeted PE program would avert significantly more HIV and 

HCV infections than an untargeted program, highlighting the importance of reaching individuals 

who are centrally located in contact networks when instituting prevention programs.
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1. Introduction

Many injecting drug using populations experience high prevalence of communicable 

diseases that are spread via risky injection practices and risky sexual contacts [1, 2]. These 

include human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus 

(HBV) and a number of sexually transmitted infections (STIs). Such diseases lead to 

significant morbidity and mortality – and subsequent health care costs – among injection 
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drug users (IDUs). Controlling these diseases among IDUs is a key public health priority [3, 

4].

A variety of harm reduction measures aim to limit the spread of blood-borne diseases among 

IDUs [5]. These measures include infection screening and treatment, needle exchange 

programs, opioid replacement therapy and peer education programs. However, funds for 

such programs are limited. Thus, it is important to evaluate the effectiveness and cost-

effectiveness of these interventions so as to maximize the health impact of available 

resources.

Compartmental models are frequently used to evaluate the cost-effectiveness of disease 

control interventions (e.g., [6]). Such models divide the population into compartments 

corresponding to various combinations of infection status, awareness and treatment status. A 

key limitation of compartmental models is the assumption of homogeneous mixing, which is 

not likely to be the case for an IDU population [7].

Individual-based models such as network models do not require the assumption of 

homogeneous mixing. Such models simulate the transmission and progression of 

communicable diseases on an individual basis, and thus can capture features of the 

underlying contact network as well as biological and behavioral heterogeneity. Individual-

based models are thus well suited for assessing the effects of disease control efforts that 

exploit the underlying contact network. For example, efforts to curb the spread of HIV by 

reducing risky injection practices may have the greatest impact on reducing HIV spread if 

they are targeted to drug injectors who are centrally located in needle-sharing networks [8, 9, 

10].

However, determining the underlying contact networks in even the smallest populations can 

be complicated by a variety of factors. First, determination of actual network structure 

requires knowledge of every relationship between individuals – a time-consuming task. 

Second, individuals may not recall all of their contacts and, even if they do, may not want to 

report them. Third, relationships do not remain steady: contact networks are constantly 

reshaping and it is impractical to monitor their dynamics over time. For these reasons, 

researchers typically simulate the structure and evolution of contact networks [11, 12].

A number of network models have been introduced to model epidemics among IDUs (e.g., 

[13, 14, 15, 16]). For example, one study developed a model based on an empirical network 

of 258 IDUs in Melbourne, Australia [16]. The sample size was small due to the difficulty in 

contact tracing. The authors employed a static network, and thus only reported numerical 

results over one simulated year. These and other published network models of IDU 

populations consider only needle-sharing as the route of disease transmission, and do not 

consider sexual transmission of disease. However, sexual transmission of diseases among 

IDUs may be significant, so existing models may inaccurately estimate the effects of 

programs that aim to control blood-borne disease among IDUs.

In this paper we introduce a bi-layer network model that captures both sexual and needle-

sharing contacts (Figure 1). We present methodology for inferring important parameters, 

such as those governing network structure and dynamics, from readily available data. Using 
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this model, we can simulate the spread of one or more diseases among IDUs and evaluate 

the efficacy of different drug abuse and disease control interventions. We provide an 

illustrative example of HIV and HCV transmission among IDUs in a representative US 

urban center, and we estimate the relative effectiveness of peer education programs under 

different targeting strategies.

2. Methods

Our objective is to generate networks that capture important properties of real IDU 

networks. IDU behavioral surveillance systems often collect data on the total number of 

IDUs in a respondent’s social network, whether the respondent shares needles with each of 

these individuals and, if so, at what frequency. From this data, one can infer a population-

level degree distribution describing the proportion of individuals who have 0, 1, 2, or more 

needle-sharing partners during the survey period. Higher-order network features are usually 

not inferable from the data gathered by such surveys. Take clustering coefficient as an 

example: to compute this value for a needle-sharing network, each respondent has to identify 

the number of needle-sharing partnerships among his/her needle-sharing partners, yet many 

respondents may not possess such information. To avoid the difficulty in obtaining certain 

data, we create a needle-sharing network (and similarly a sexual contact network) that 

matches the empirical degree distributions of needle-sharing partnerships, while imposing 

no requirements on their higher-order properties.

Sexual partnerships may vary in many respects, such as duration, frequency, commercial or 

not, vaginal or anal, and consistency of condom use. Therefore it is reasonable to divide 

partnerships into subtypes based on differential characteristics. Here, we distinguish between 

regular versus casual sexual partnerships. A regular sex partner is defined as an individual’s 

main partner (spouse or girlfriend/boyfriend) with whom one has sex at regular intervals. We 

assume that individuals can have at most one regular sex partner at any point in time. Casual 

sex partners are those who fall outside the definition of regular partner, with whom one has 

casual sex (possibly more than once).

Similarly, we distinguish two types of needle-sharing partnerships: long-term and one-time 

sharing. The term ‘long-term sharing’ describes sharing needles on a regular basis; such 

sharing typically occurs between friends, family and sex partners. ‘One-time sharing’ is non-

repeating and is not restricted to intimate relationships.

Sex partners may share needles; thus the sexual contact network and needle-sharing network 

in our model are not independent. Many studies suggest that a significant proportion of 

regular sex partners are also injecting partners, due in part to greater trust and lower 

perceived risks of infection [9, 17, 18, 19]. To incorporate this correlation in our model, we 

further divide long-term needle-sharing relationships into two classes: sharing between 

regular sex partners and between other social dyads (e.g., casual partners, friends and 

family). We will use the term ‘steady needle-sharing partnership’ to refer to a long-term 

sharing relationship between other social dyads exclusively.
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Sexual and needle-sharing relationships may form and dissolve over time. To capture these 

dynamics we need to determine appropriate rules for updating the network at every time 

step. We assume that the degree distributions of the sexual contact network and needle-

sharing network remain steady over time, and we model the number of sexual/needle-

sharing partners of each IDU with a Markov chain whose steady state distribution 

corresponds to the degree distribution of sexual/needle-sharing network. As described in 

Section 2.1 and 2.2, we infer the values of transition probabilities of the Markov chains 

using a quadratic optimization approach. Specifically, we assume that the most likely values 

of the parameters are those that maintain a dynamic network whose degree structure best 

matches empirically observed degree distributions.

Notation—We represent the IDU sexual contact network as a graph  = (V, ES), where the 

vertices in V represent IDUs and the edges in ES represent sexual partnerships. ES comprises 

two subsets since we have defined two mutually exclusive types of edges, i.e. 

. Upon initialization of the network, V consists of Nm male and Nf 

female vertices. At each time step t = 1, 2, …, new vertices are added to V as individuals 

initiate drug injection. We denote by rm and rf the rates of men and women entering the 

population, respectively. Similarly, vertices are deleted from V when individuals stop 

injection behaviors as a result of either death or abstention.

Each vertex is described by a set of attributes. These could include, for example, age, 

gender, disease state (e.g., HIV positive/negative) and treatment status (e.g., receiving 

antiretroviral therapy (ART), receiving opiate replacement therapy (ORT)). At time t = 0, 

age and gender can be randomly generated to match demographic data of the IDU 

population, and number infected to match disease prevalence in IDUs. New individuals 

entering the population are assigned a gender drawn from the same demographic data, age 

from the distribution of initiating age, and disease state from the disease prevalence in the 

population.

Similarly, we represent the needle-sharing network as a graph  = (V, EN), with 

. Note that we do not include one-time needle-sharing relationships in 

EN. Instead we examine one-time sharing events in the disease transmission model, as 

described below in Section 2.3. This is because one-time sharing relationships form and then 

immediately dissolve; inclusion of these relationships would add needless complexity to the 

network model.

By definition, . Letting γ denote the proportion of IDUs who share 

needles with their regular sex partner, we have  in expectation. We refer 

to  ∪  as the risk network because all edges in this network are associated with potential 

risk of infection transmission.

2.1. Modeling the sexual contact network 

Network initialization—We consider sexual disease spread via heterosexual contacts. We 

denote the overall partnership distributions of men and women, respectively, by m(p) and 
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f(p) (p = 0, …, L where L is the maximum number of sex partners any individual can have at 

the same time). Since the network is comprised solely of IDUs, the distributions m(p) and 

f(p) reflect only the number of an IDU’s sex partners who are involved in injection drug use. 

We do not include an incidence rate to reflect the probability of an IDU being infected by 

his/her non- IDU sex partners, for two reasons. First, studies show a high level of 

preferential sexual mixing of IDUs with other IDUs [20, 21, 22, 23]. Second, the prevalence 

of diseases such as HIV and HCV in non-IDUs is relatively low, implying that the dominant 

mode of disease transmission is from IDUs to non-IDUs rather than the other way around.

At time t = 0, the overall number of partners men have must equal the overall number of 

partners women have; that is

(1)

This constraint is not always satisfied by reported values of m(p) and f(p), for a variety of 

reasons such as recall error, underrepresentation of sex workers, and sample bias [24, 25]. In 

our analysis we adjust Nf so as to maintain the reported gender differences in concurrent 

behaviors.

Since we distinguish between regular and casual sex partners, knowledge of the joint 

distribution over these two types of partnerships is required. We denote the joint distribution 

by πm(k1, k2) = πm(k) and πf(k1, k2) = πf(k), where k1 and k2 denote the number of regular 

and casual sexual partnerships, respectively, and k is the vector (k1, k2). To be consistent 

with the overall partnership distribution, the distributions πm and πf must satisfy

(2)

(3)

Suppose that the proportion of male and female IDUs having a regular sex partner is known, 

denoted by sm and sf, respectively. Then a second constraint for πm and πf is

(4)
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(5)

The total number of men involved in regular sexual partnerships should equal that of 

women. Thus sm and sf should satisfy,

(6)

If the above constraint is not met by the reported values of sm and sf, then we adjust the 

value of sf accordingly.

There are 2L variables in Eq.2 and 4 (Eq.3 and 5). Hence we need additional constraints in 

order to obtain a unique solution for πm (πf). We assume that having a regular sex partner 

does not affect one’s concurrent partnership behavior; that is

(7)

(8)

where C and C′ are constants. This assumption can be easily relaxed if additional 

information on concurrent partnership behavior is available. Solving Eq.2, 4 and 7 (Eq.3, 5 

and 8) yields the desired distribution πm (πf).

To initialize the sexual contact network, each IDU is randomly assigned a vector (k1, k2), 

with values for (k1, k2) drawn from the empirical partnership distribution πm (πf). Next we 

randomly pair up men and women seeking the same type of partners. In cases of individuals 

being matched to the same partner more than once, the duplicate partnership is exchanged 

with another randomly chosen partnership until no duplication remains.

Network dynamics—The sexual contact network evolves as old partnerships dissolve and 

new partnerships form. We assume that in this evolution the joint partnership distribution is 

steady over time; that is, we assume that the distributions πm and πf we deduced from 

survey data (a snapshot of the network degree distribution over the survey period) 

approximate the true degree distribution throughout the time horizon of the simulation.

Using an approach similar to that of Enns et al. [26] (who considered only the sexual contact 

network), we model the degree of each individual as a Markov chain. Then πm (πf) is the 

stationary distribution of male (female) IDUs. We need to find a transition matrix Pm (Pf) 

that satisfies the steady-state equations:

Fu et al. Page 6

Math Biosci. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(9)

(10)

where Ω denotes the state space, i.e. the set of all possible partnership combinations. We 

modify the above equations to account for entry of new IDUs into the population, assuming 

that individuals have no IDU sex partners when they become IDUs. The adjusted steady-

state equations are

(11)

(12)

where δk = 1 if k = (0, 0) and δk = 0 otherwise.

We now consider the effect on the network degree distribution of individuals leaving the 

population. We assume that each IDU is equally likely to abstain from injecting drugs at 

each time step; hence every partnership state is affected by the same rate of individuals 

quitting drug use and no differential flows arise. Mortality also leads to exit from the 

population, yet its rate depends on age, gender, and disease and treatment state, so it is 

impossible to write down an explicit formula for the aggregated mortality rate of any state in 

the Markov chain. We make the simplifying assumption that the effect of mortality is 

minimal and thus can be neglected when solving the above equations.

We decompose each entry in the transition matrix, expressing the entries as

(13)

(14)
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where ℙm and ℙf are conditional probabilities.

We simulate partnership dissolution with a constant hazard model, where each regular 

(casual) sexual partnership is dissolved at a constant rate σr (σc) per incremental time step. 

The value of σr (σc) is chosen so that 1/σr (1/σc) matches the average duration of regular 

(casual) sexual partnerships. We assume that in a single time step neither of the following 

two situations can occur: loss and gain of the same type of partnership; gain of more than 

one of the same type of partnership. Then we have the probabilities below, given by a 

binomial probability mass function:

(15)

(16)

(17)

(18)

Eq.18 requires the probability of retaining the same number of casual sexual partners or 

gaining one more casual sexual partner to be (1 − σc)k2, which is the probability that none of 

the current k2 casual sexual partnerships dissolve.

For simplicity, we assume that the probability of gaining a regular sexual partnership is 

independent of the number of casual sexual partnerships that an individual currently has. 

That is,

(19)
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(20)

Now that the transition probability of k1 is independent of k2 and , the marginal transition 

matrix of k1 must satisfy the following constraint so as to maintain the marginal degree 

distribution of k1,

(21)

where  is the transition matrix of k1, and

(22)

With  being the only unknown variable, Eq.21 can be readily solved, 

yielding

(23)

Similarly,

(24)

At time t, the total number of regular sex partners of males in the population must equal that 

of females. Neglecting exit out of the population we have

(25)

which requires

(26)
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We denote by βm and βf the only unknown probabilities,

We need to find the values of βm and βf in order to calculate Pm (Pf). We do so by solving 

the following optimization problem, P:

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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(35)

(36)

(37)

(38)

where e1 is the unit vector with the first coordinate being 1. The objective is to minimize the 

mean squared error between the stationary distribution and the achieved distribution after 

one time step. Eq.38 requires that the overall number of new casual sexual partnerships 

gained by men equals that of women in expectation.

P is a convex optimization problem and can easily be solved via optimization software such 

as CVX [27]. Convexity is guaranteed because the objective function is quadratic in the 

optimization variables, and the constraints are linear.

Simulation—We now describe how sexual partnerships evolve in the simulation of the 

IDU population. At each time step, we first independently dissolve sexual partnerships 

according to their type-specific dissolution rates. We denote an intermediate degree by k ̃.

Then for each male (female) node with , we generate a Bernoulli random 

variable with success rate . If the trial succeeds then that node gains a 

new regular sexual partnership (i.e., k1(t + 1) = 1). We randomly pair up men and women 

who are to gain new regular sex partners at time t. If the two pools are of different sizes, we 

repeat the above procedure until no discrepancy remains.

We carry out a similar procedure for the evolution of casual sexual partnerships. For each 

male (female) node with , we generate a Bernoulli random variable with 

success probability . A successful trial indicates that the node 

gains a new casual sexual partnership (i.e., k2(t + 1) = k2(t) + 1). We randomly pair up men 

and women who are to gain new casual sex partners, being careful not to duplicate existing 

partnerships. If the two pools are of different sizes, we repeat the above procedure until no 

discrepancy remains.
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2.2. Modeling the needle-sharing network 

Network initialization—We denote by n(p) the distribution of total needle-sharing 

relationships (p = 0, …, M where M is the maximum number of allowable concurrent 

needle-sharing partners). Many surveys on needle-sharing patterns provide such information 

[28, 29].

We need to derive the joint degree distribution of sharing with a regular sex partner and a 

steady needle-sharing partner. We denote the joint distribution by πn(j1, j2) = πn(j), where j1 

is the number of regular sex partners an individual shares needles with, and j2 the total 

number of steady needle-sharing partners. The marginal distribution of j1 is determined by 

sm, sf and γ:

(39)

Similar to the way we derived πm in the previous subsection, we assume that no difference 

in concurrent needle-sharing patterns exists between IDUs with j1 = 1 and IDUs with j1 = 0. 

Then πn is the solution to the following equations,

(40)

(41)

(42)

where C″ is a constant.

After initialization of the sexual contact network , we determine, with probability γ, for 

each regular sexual partnership whether it involves needle-sharing behavior. We then assign 

each IDU with a value of j2 according to the conditional distribution of j2 given j1, which 

can be calculated from the joint distribution π(n) and the marginal distribution of j1. We 

randomly pair up IDUs seeking needle-sharing partners, again being careful to avoid 

duplicate edges.

Network dynamics—Unlike the sexual contact network, where an edge links two nodes 

of opposite sex, needle-sharing relationships can be between any IDUs in the network. Once 

again we search for a transition matrix Pn that satisfies the steady-state equations,
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(43)

where Φ denotes the state space, i.e. the set of all possible needle-sharing relationship 

combinations, and δj = 1 if j = (0, 0) and δj = 0 otherwise. Similar to our approach for the 

sexual contact network, we write each transition probability as the product of two 

conditional probabilities,

(44)

We assume that long-term needle-sharing relationships with regular sex partners dissolve if 

and only if the corresponding regular sexual partnerships dissolve; and such relationships 

form with probability γ if new regular sexual partnerships form. Hence  is determined by 

j1, k1 and , and is independent of j2. The marginal transition matrix of j1, denoted as , 

can be deduced from ,

(45)

(46)

The dissolution rate of steady needle-sharing partnerships is σn. We assume that each IDU 

gains at most one new needle-sharing partner within a single time step. However, 

 no longer follows a binomial distribution. This is due to the random 

effect that dissolution of needle-sharing partnerships exerts on degree distribution. Thus we 

must calculate  at each time step.

We denote the only unknown probabilities as βn,

We find their values by solving the following convex optimization problem, Q:
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(47)

(48)

(49)

(50)

(51)

Simulation—We now describe how needle-sharing partnerships evolve in the simulation of 

the IDU population. At each time step, we first dissolve needle-sharing relationships with 

regular sex partners if the corresponding regular sexual partnership dissolves, and we form 

needle-sharing relationships with regular sex partners if the corresponding regular sexual 

partnership forms and a Bernoulli (γ) random trial succeeds. We then dissolve steady 

needle-sharing partnerships according to σn, and calculate the conditional probabilities 

 by solving Q. For nodes with no steady needle-sharing partnership 

dissolved, we simulate the gain of a partner with a Bernoulli ( ) 

random variable. We randomly pair up IDUs seeking new needle-sharing partners, avoiding 

duplicate edges. If an odd number of IDUs require new needle-sharing partners, we 

regenerate the pool until the total number is even.

2.3. Modeling disease transmission and progression

At each time step t, an edge in the contact network is associated with a probability of 

infection transmission, contingent on various factors, such as the type of pathogen, the type 

and frequency of risky contacts, infectivity of the host partner, vulnerability of the 

susceptible partner, and protective measures taken. Then for every susceptible node, we can 

compute a risk of infection acquisition as a function of the transmission probabilities of its 

edges, and simulate its contraction of infectious disease(s) according to the risk(s).
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As mentioned above, we do not represent one-time sharing relationships in the risk network. 

Instead, we model one-time sharing events at each time step. We assume that IDU i has a 

probability λi of participating in one-time needle sharing. This probability can vary over 

time, and can be modeled as a function of injections per day, fraction of injections shared 

with strangers, access to clean needles, and so on. We sample according to the probability λi 

to determine whether IDU i engages in one-time sharing at time t, then we randomly pair up 

those IDUs who do, and obtain a temporary edge list EO.

As for disease progression, individuals can progress through multiple disease stages, and at 

different rates, depending on their infection status (for example, mono or co-infected, under 

treatment or not) and individual characteristics (for example, responsive to treatment or not). 

Because network-based models allow one to simulate the trajectory of each individual 

separately, an essentially unlimited set of stochastic elements can be included in the model. 

In the illustrative example presented in Section 3, we examine the impact of a peer education 

program on averting new HIV and HCV infections in an IDU population; thus we develop a 

disease model that incorporates key elements relevant to those diseases (e.g., disease 

progression rates, proportion of treatment-eligible IDUs receiving treatment, mean time to 

treatment, responsiveness to treatment).

2.4. Model calibration

We verify model validity by calibration to empirical data. The general procedure is to first 

select target variables (e.g., disease prevalence and incidence, population growth), and then 

adjust input parameters so that model projections match the targets [30]. In our example 

below, the two model components –a network model that captures the potential routes of 

infection and a disease model that governs disease transmission and progression – interact 

with each other and cannot be disentangled when assigning credit to the resulting epidemics. 

For the example analysis, we take a simple yet intuitive approach which adjusts model 

parameters to yield disease prevalence trends that match observed trends.

3. Illustrative Example

3.1. Model instantiation

We instantiated the model for the case of HIV and HCV spreading in an open IDU 

population in a representative US urban center. We obtained sexual and needle-sharing data 

from a needle and syringe program operated by Community Outreach Intervention Projects 

(COIP) at the University of Illinois at Chicago [35]. In particular, we obtained data for the 

proportion of IDUs having a regular sex partner, concurrent sexual partnership distribution, 

and needle-sharing relationship distribution. We then adjusted these values in model 

calibration to compensate for the fact that IDUs who enroll in a needle and syringe program 

are potentially more risk-aware and less prone to risky behaviors than those who do not. 

Table A1 shows the values for parameters of the network model after calibration. Using 

these parameters as an input and following the method described in Section 2, we inferred 

the joint degree distribution over regular and casual sexual partnerships, the joint degree 

distribution over regular and steady needle-sharing partnerships, and the transitional 

matrices Pm and Pf, as shown in Table 1.
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We employed a disease model that allows for varying infectivity dependent on disease state 

and treatment status, and interplay between HIV and HCV. A detailed description of the 

disease model can be found in Appendix A, and values for related parameters are shown in 

Table A2.

We developed the model in Mathworks Matlab R2014b. We simulated the population over a 

ten-year time horizon. We modeled one-time needle-sharing and disease acquisition and 

progression with weekly events. We modeled the dynamics of  and  with monthly 

events, because sexual relationships and long-term needle-sharing relationships typically last 

for months and a finer resolution adds little accuracy at significant computational cost. 

Because the model is stochastic, we ran the model 100 times for each scenario considered 

and then calculated quartiles which roughly depict the distribution of the numerical results 

(e.g., the number of new HIV/HCV infections).

By varying parameters with uncertainty (i.e., average duration of casual sexual partnerships, 

the degree distributions of concurrent partnerships and needle-sharing relationships, fraction 

of injections shared with strangers), we manually calibrated the model to match projections 

of HIV and HCV incidence [31, 34] over the next 10 years under the status quo (Figure 2).

3.2. Example analysis

We illustrate our model by evaluating the impact of scaling up peer education (PE) 

programs. Such programs hire community members (in this case, mostly former and current 

drug users) to provide information and resources to their peers, who are generally hard to 

reach. PE leverages the power of peer pressure and role modeling, and has been proven to be 

an effective means of disseminating risk-reduction messages and promoting behavior change 

in IDU communities [36]. PE can be operated at comparatively low cost and thus is 

particularly suitable in resource-constrained settings.

In our simulation, we assumed that IDUs reached by PE are motivated to reduce sharing 

frequency with their long-term needle-sharing partners and to use condoms consistently with 

their sex partners. We considered two extreme cases regarding implementation of the 

program: 1) untargeted PE that reaches random IDUs in the population, 2) targeted PE that 

reaches IDUs with the greatest number of sexual and needle-sharing partners (i.e., the 

highest degree centrality in the risk network). While there are various definitions of node 

centrality in a network, it makes intuitive sense to consider degree centrality: an IDU with 

more risky partners faces a higher chance of contracting contagion(s) if not yet infected and 

has a higher chance of spreading contagion(s) if already infected. Such IDUs serve as hubs 

that facilitate the spread of diseases in the population. To simulate targeted PE, we ranked 

IDUs by their degree in the risk network and then enrolled the top IDUs into PE. Because 

the risk network is evolving over time, we re-selected IDUs according to their degrees every 

6 months. We assumed that IDUs who are not in PE resume their risky behaviors at the same 

level as before participating in the program (a conservative assumption).

Besides the extreme cases, we examined a third scenario in which IDUs are identified for 

enrollment in PE via contact tracing. We start by randomly selecting 100 IDUs to enroll in 

PE. We then trace their sexual and needle-sharing contacts, enroll these IDUs, and then trace 
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their contacts in turn. We repeat this procedure until we have enrolled a prespecified 

proportion of the population. Note that each IDU can only be enrolled once.

Figure 3 shows that untargeted PE is effective in averting new HIV and HCV infections. For 

example, an untargeted PE program that reaches 10% of IDUs could reduce new HIV 

infections by approximately 11% and new HCV infections by 9% by the end of the 10-year 

horizon. The benefits of targeted PE are approximately three times as high as the benefits of 

untargeted PE. For example, when the top 10% of centrally located IDUs are reached by 

peer educators, new HIV infections decrease by approximately 28% and new HCV 

infections decrease by 35%. The effect of PE when IDUs are identified for enrollment by 

contact tracing lies between that of untargeted and targeted PE. This can be explained by the 

fact that individuals with higher degree are more likely to be enrolled by contact tracing than 

those with lower degree, since there are more paths leading to them, but contact tracing only 

imperfectly finds IDUs at highest risk and thus is not as effective as the targeted program.

Our analysis highlights the importance of targeting – and reaching – key groups of 

individuals when instituting prevention programs. Of course, targeted PE is an idealized 

strategy that requires perfect knowledge of the risk network, information that is usually 

unavailable. However, it is likely that the peer educators – ‘insiders’ of IDU communities – 

possess partial knowledge of the risk network and thus can identify the relatively high-risk 

IDUs. A practical way to circumvent the difficulty in obtaining degree information for every 

node in the network is by contact tracing. As shown in Figure 3, contact tracing to identify 

IDUs to enroll in PE achieves a significant portion of the benefits of targeted PE.

4. Discussion

We have described a methodology to infer the network structure and network dynamics of an 

injecting drug-using population based on readily available data. The contact network 

captures multiple types of sexual partnerships and needle-sharing relationships, all with the 

potential to spread blood-borne infectious diseases such as HIV, HCV and STIs. We applied 

this modeling framework to evaluate the effectiveness of a PE program under various forms 

of targeting to illustrate the benefits of exploiting the contact network.

Our analysis has several limitations. We modeled the needle-sharing network as an 

undirected network, and assumed that in any sharing event partners are equally likely to use 

the needle first. But this assumption does not always hold. For example, studies show that 

IDUs with fewer resources to share are more often engaged in receptive needle sharing than 

distributive needle sharing [37]. Our model can be extended to incorporate this power 

imbalance by specifying a direction for each edge in . An edge from individual i to j 
means that i has a higher status than j in their relationship, and i injects first for Δ percent of 

the time (0.5 < Δ ≤ 1). Note that status is transitive: if i is superior to j and j superior to l, 
then naturally we would expect l to be inferior to i. To put it in terms of edge direction, given 

two edges i → j and j → l, if an edge ever forms between i and l, it should go from i to l to 

guarantee consistency. The theory of status has been studied extensively in social network 

settings [38] and can be applied in constructing (inferring) a directed needle-sharing 

network.

Fu et al. Page 17

Math Biosci. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We did not address gender differences in injecting risk behaviors. Some studies have found 

that female IDUs have more sharing partners than male IDUs [19, 84] and tend to form more 

dense and homogeneous injecting groups [85, 86]. The former distinction can be included in 

the model by constructing a needle-sharing network that matches the gender-specific degree 

distributions. This would be an easy extension: analogous to our approach for the sexual 

contact network, we would now solve Qm and Qf to maintain a steady nm(p) and nf(p). It is 

not immediately clear how to capture the phenomenon of denser and more homogeneous 

injecting groups; this is an area for future work.

We did not model risk behavior as a function of disease status (e.g., individuals with 

symptomatic infection may be less likely to engage in risky behaviors than individuals with 

asymptomatic infection). Modeling such differences in behavior is a straightforward 

extension of our analysis.

Our model incorporates a parameter γ that reflects the tendency of regular sex partners to 

share needles with each other. Thus the sexual and needle-sharing contact networks are not 

independent. Another type of correlation between the two networks could occur if IDUs who 

have a high number of needle-sharing partners also have a high number of sexual partners. 

For the COIP data, the correlation coefficient between the number of needle-sharing partners 

and the number of sexual partners is 0.008, so we did not incorporate such correlation in our 

model. However, our model can be readily extended to reflect a population in which the 

numbers of sexual and needle-sharing contacts are correlated. To do so, we would compute 

the joint degree distribution of regular sex partners, casual sex partners and needle-sharing 

partners, and then use a method similar to that we have presented to infer network 

parameters and dynamics.

Our model of the sexual contact network can be extended in a variety of ways. While we 

assumed heterosexual contacts only, one could easily combine a heterosexual network with a 

homosexual network to account for disease transmission among IDUs who are men who 

have sex with men (MSM). The two networks are disjoint if we assume that no individuals 

are bisexual; in this case, we can infer the structure and dynamic parameters for each 

network independently. Currently there is no representation of sex workers in our model, 

though they constitute a non-negligible proportion of the IDU population. A survey of IDUs 

in San Francisco found that 15% of female IDUs and 13% of male IDUs had ever engaged 

in sex for money [19]. One could simulate commercial sex as one-time events each week 

(similar to the way we modeled one-time needle sharing). By modeling the IDU population 

exclusively, we made the implicit assumption that the sex partners of an IDU also inject 

drugs. This assumption can be relaxed by bringing non-IDUs into the model. Non-IDU – 

IDU partnerships will then serve as the bridge for disease transmission from the IDU 

population to the general population and vice versa (though less likely).

Despite these limitations, our framework is a significant step forward in modeling the spread 

of blood-borne contagions among injecting drug-using populations, capturing both sexual 

and needle-sharing transmission in a dynamic network model, and allowing for accurate 

assessment of the effects of interventions targeted to individuals in such networks.
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Appendix A. Details of Illustrative Example

Population dynamics

We initialized the model with 5,000 male and 3,503 female IDUs. The number of female 

IDUs is calculated so as to maintain the reported sexual partnership distribution. The 

resulting female-to-male ratio is less than 1, consistent with the fact that males usually 

outnumber females in IDU populations. Each month, individuals enter the model due to 

initiation of injection drug use and leave the model due to death. We assumed that the 

population size would remain constant over the 10-year time horizon, and calibrated the 

monthly entry rate to balance mortality. We did not include abstinence from injection drug 

use because of its low probability and subsequent high relapse rate.

Disease progression

We employed a discrete HIV disease model with four stages: susceptible, acute infection, 

asymptomatic infection and symptomatic infection. We obtained monthly progression rates 

from the literature. Consistent with US statistics [45], we assumed that 69% of treatment-

eligible IDUs receive antiretroviral therapy (ART).

The HCV disease model has three stages: susceptible, acute and chronic. We do not 

distinguish chronic HCV infection stages (typically characterized by the progression of 

hepatic fibrosis) because we find no evidence suggesting that patient infectivity varies in the 
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chronic disease stages. If we wished to estimate the total number of quality-adjusted life 

years (QALYs) accumulated over time or the cost of treating HCV infection, a more detailed 

model of HCV infection would be appropriate. We assumed that 25% of HCV-infected IDUs 

receive treatment [46, 47].

Disease transmission

In each week, every susceptible node is investigated by examining its edges shared with 

infected nodes.

First consider transmission via sexual contacts. We assumed that all sexual partnerships 

involve a frequency of coital acts of once per week, regardless of the type of partnership. 

HIV transmission rate per coital act is determined by the viral load of the infected 

individual: a host in the acute/symptomatic phase is much more infectious than an 

asymptomatic host, and a host on ART is much less infectious since treatment suppresses 

HIV viral load. We also accounted for levels of condom use and assumed that 20% of 

regular partners and 50% of casual partners use condoms consistently. We did not include a 

sexual transmission risk of HCV, as HCV rarely spreads via heterosexual sex.

The probability that a susceptible individual i acquires HIV in a given week, , can be 

computed as,

(A1)

where pij denotes the per-act transmission risk between individuals i and j.

Next consider transmission via needle sharing. We assigned each edge in  with an 

attribute that describes the frequency of sharing behaviors. We made a simple generalization 

of three sharing patterns – monthly, weekly and daily – to incorporate behavioral variability 

in the population. This attribute remains the same throughout the simulation unless one of 

the sharing partners is reached by peer educators. Similar to the way in which we modeled 

the chance of transmission per coital act, the chance of HIV/HCV transmission per injection 

with an infected syringe depends on the disease and treatment status of the infected 

individual. Since HIV-infected individuals are more vulnerable to viruses, we assumed that 

the risk of acquiring HCV infection increases if the HCV-susceptible individual is HIV-

infected [81]. We found no evidence suggesting that infection with HCV makes an 

individual more susceptible to HIV, so we assumed no increased risk of acquiring HIV 

among HCV-infected individuals.

We assumed that IDUs inject twice per day and 1% of the injections involve one-time 

sharing, resulting in an average of 0.14 one-time needle shares per week, i.e. λi = 0.14, ∀i ∈ 
V.

The probability that a susceptible individual i contracts HIV/HCV via needle sharing is
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(A2)

(A3)

where  denote HIV, HCV transmission risk along the edge between i and j, 
respectively. We set fij = Ber(0.5 × 0.25)/Ber(0.5)/Binomial(0.5, 7) if the sharing frequency 

between i and j is monthly/weekly/daily. The constant 0.5 takes into account the order of 

needle use: an individual cannot ac-quire the contagion if injecting first with a clean needle, 

and we assume an equal probability of injecting first.

Combining the risks of transmission via the two routes, the weekly probabilities of an IDU 

becoming infected with HIV and HCV, respectively, are

(A4)

(A5)
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Highlights

• A bilayer network model of injection drug users (IDUs) is developed.

• The model incorporates sexual and needle-sharing contacts.

• The model can capture diseases spreading among IDUs (e.g., HIV, 

HCV).

• The model can evaluate efficacy of drug abuse and disease 

interventions among IDUs.
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Figure 1. 
Model schematic. We consider a population of male and female IDUs. At each time step t = 

1, 2, … individuals can join or leave the population through initiating or abstaining from 

injection drug use. Each IDU can be associated with a number of characteristics including 

gender, age, disease status, disease awareness and treatment status, and drug abuse treatment 

status. We consider heterosexual and needle-sharing relationships, and one or more diseases 

(e.g., HIV, HCV) being spread via risky sexual and/or needle-sharing contacts. We 

distinguish two types of sexual partnerships: regular and casual partnerships. We distinguish 

two types of needle-sharing relationships: long-term needle-sharing and one-time needle-

sharing (not represented in the risk network). We allow relationships to dissolve and form 

dynamically; thus the disease(s) can spread to any individuals who ever engage in risky 

behaviors.
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Figure 2. 
Results of calibration. A: Across the US, HIV prevalence in the IDU population remained 

relatively constant around 7% for the past decade [31, 32, 33]. We assumed this trend would 

carry into the next 10 years and defined a target interval of 5–10% HIV prevalence. After 

calibration, the projection of HIV prevalence simulated by our model (averaged over 100 

runs) lies within the target interval. B: HCV prevalence in the IDU population in the US 

increased slightly in the past decade [34]; thus we assumed an increasing trend in the future 

and defined a target interval of 34–38% HCV prevalence. The simulated HCV prevalence 

(averaged over 100 runs) falls within the target interval.
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Figure 3. 
Number of new HIV infections and new HCV infections over 10 simulated years for a peer 

education (PE) program that promotes condom use and discourages needle-sharing. 

Quartiles of the 100 simulation runs are indicated with the Tukey boxplot. We compare three 

scenarios: 1) untargeted PE (dark blue boxes) in which peer educators reach random IDUs in 

the population; 2) PE in which IDUs are identified for enrollment via contact tracing (light 

blue boxes); 3) targeted PE (red boxes) in which peer educators reach IDUs with the greatest 

number of partners (both sexual and needle-sharing).
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Table 1

Inferred parameters of the network model.

Parameter name Value

Sexual contact network

Stationary distributions of sexual partnership, πm and πf, (%)

 0 regular, 0 casual partners 26.00, 15.00

 0 regular, 1 casual partners 11.03, 1.25

 0 regular, 2 casual partners 3.68, 0.31

 0 regular, 3 casual partners 1.30, 0.65

 1 regular, 0 casual partners 39.97, 46.75

 1 regular, 1 casual partners 13.32, 11.69

 1 regular, 2 casual partners 4.70, 24.35

Monthly partnership formation probabilities, Pm and Pf, (%)

 Gain a regular and a casual partnership with

  0 regular, 0 casual partners 2.19, 6.98

  0 regular, 1 casual partners 2.06, 8.09

 Gain a regular and no casual partnership with

  0 regular, 0 casual partners 3.26, 12.00

  0 regular, 1 casual partners 3.39, 10.89

  0 regular, 2 casual partners 5.45, 18.98

 Gain no regular and a casual partnership with

  0 regular, 0 casual partners 6.00, 0

  0 regular, 1 casual partners 10.47, 0

  0 regular, 2 casual partners 17.00, 0

 Lose no regular partnership and gain a casual partnership with

  1 regular, 0 casual partners 4.15, 4.90

  1 regular, 1 casual partners 8.70, 65.27

 Lose a regular partnership and gain a casual partnership with

  1 regular, 0 casual partners 1.51, 0

  1 regular, 1 casual partners 1.48, 0

  1 regular, 2 casual partners 0, 2.14

Needle-sharing network

Stationary distributions of long-term needle-sharing partnership, πn (%)

 0 regular, 0 steady partners 63.90

 0 regular, 1 steady partners 12.88

 0 regular, 2 steady partners 7.09

 0 regular, 3 steady partners 1.56

 0 regular, 4 steady partners 0.93

 1 regular, 0 casual partners 7.82

 1 regular, 1 casual partners 4.31

 1 regular, 2 casual partners 0.94

 1 regular, 3 casual partners 0.57
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Table A1

Input parameters of the network model.

Parameter name Value Source

Demographic parameters

Population size

 Number of men, Nm 5,000 Assumed

 Number of women, Nf 3,503 Calculated

 Female-to-Male Ratio 1.43 Calculated§

Monthly entry rate, rm and rf(%) 0.10, 0.10 [39]

Non-HIV, Non-HCV annual mortality rate (%) 1.10 [40, 41]

HIV prevalence (%)

 IDU 7.39 [31]

 Non-IDU 0.40 [39, 42]

HCV prevalence (%)

 IDU 35 [43]

 Non-IDU 1.30 [39, 44]

Access to treatment (%)

 HIV 69 [45]

 HCV 25 [46, 47]

Sexual partnership characteristics

Have a regular partner (%)

 Male IDU, sm 58 [35]

 Female IDU, sf 82 Calculated

Partnership duration (months)

 Regular, σr 24 [20]

 Casual, σc 6 Estimated*

Concurrent partnership distributions, m(p) and f(p) (%) Estimated*†, [35]

 0 partners 26, 15

 1 partner 51, 48

 2 partners 17, 12

 3 partners 6, 25

Needle-sharing relationship characteristics

Share needles with regular partner (%) 20 [35]

Steady needle-sharing relationship duration, σn (months) 36 [48]

Sharing relationship distribution, n(p) (%) Estimated*†, [35]

 0 partners 64

 1 partner 21

 2 partners 11

 3 partners 3

 4 partners 1

§
Close to the figure reported in [42].
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*
Estimated through calibration.

†
Adjustment through calibration was minimal; thus these values closely reflect the Community Outreach Intervention Project (COIP) data.
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Table A2

Input parameters of the disease model.

Parameter name Value Source

HIV progression

Duration of acute phase (weeks) 12 [49]

Monthly transition rate

 CD4>500 → CD4<500 cells/mm3

  ART− 0.011 [50]

  ART+ HR 1 [51, 52]

 CD4<500 cells/mm3 → death

  ART− 0.014 [50]

  ART+ HR 0.22 [53, 54]

  HCV+ HR 1.35 [55]

HCV progression

Duration of acute phase (weeks) 26 [56]

Mean time to treatment (weeks) 520 [57]

Treatment response (%) 80 [58, 59, 60]

Duration of treatment (weeks) 24 [61, 62]

Sexual behavior

Coital acts per week 1 [35]

Fraction that use condom consistently (%)

 Regular partnership 16 [20, 21, 63]

 Casual partnership 50 [64]

HIV transmission via sex

HIV transmission rate per coital act

 Asymptomatic phase (CD4>500 cells/mm3) (%) 0.06 [65]

 Acute phase HR 12 [66, 67]

 Symptomatic phase (CD4<500 cells/mm3) HR 6 [66, 67, 68]

Effect of treatment (ART+) on infection risk HR 0.10 [69, 70, 71]

Effect of condom use on infection risk RR 0.20 [69, 72]

Needle-sharing behavior

Number of injections per week 14 [73, 74, 75]

Fraction of injections shared with strangers (%) 1 Estimated*

Distribution of long-term-sharing frequency (%) [76]

 0.25 times/week (monthly) 38

 1 time/week (weekly) 45

 7 times/week (daily) 17

HIV transmission via needle

Transmission rate per injection with a contaminated syringe (%)

 Acute phase 1.00 [39]

 Asymptomatic phase (CD4>500 cells/mm3) 0.12 [77, 78]

 Symptomatic phase (CD4<500 cells/mm3) 0.30 [77, 78]

Math Biosci. Author manuscript; available in PMC 2017 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fu et al. Page 34

Parameter name Value Source

Effect of treatment on infection risk HR 0.50 [68]

HCV transmission via needle

Transmission rate per injection with a contaminated syringe

 HIV− (%) 0.40 [79, 80]

 HIV+ HR 2 [81]

Effect of treatment on infection risk HR 0.50 [82, 83]

HR, hazard ratio; RR, relative risk.

*
Estimated through calibration.
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 = (V, EN), with . Note that we do not include one-time needle-sharing relationships in EN. Instead we examine one-time sharing events in the disease transmission model, as described below in Section 2.3. This is because one-time sharing relationships form and then immediately dissolve; inclusion of these relationships would add needless complexity to the network model.By definition, . Letting γ denote the proportion of IDUs who share needles with their regular sex partner, we have  in expectation. We refer to 
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 as the risk network because all edges in this network are associated with potential risk of infection transmission.
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