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Abstract

Large-scale population-based birth cohorts, which recruit women during pregnancy or at birth and
follow up their offspring through infancy and into childhood and adolescence, provide the
opportunity to monitor and model early life exposures in relation to developmental characteristics
and later life outcomes. However, due to confounding and other limitations, identification of
causal risk factors has proved challenging and published findings are often not reproducible. A
suite of methods has been developed in recent years to minimise problems afflicting observational
epidemiology, to strengthen causal inference and to provide greater insights into modifiable intra-
uterine and early life risk factors. The aim of this review is to describe these causal inference
methods and to suggest how they may be applied in the context of birth cohorts and extended
along with the development of birth cohort consortia and expansion of “omic” technologies.
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Introduction

Large-scale population-based birth cohorts recruit women during pregnancy or at birth over
a defined time period and follow up their offspring through infancy and into childhood and
adolescence. The longitudinal design of these cohorts is a key feature, providing the
opportunity to monitor and model early life exposures in relation to developmental
characteristics and later life outcomes, with prospective data collected at repeat follow-ups.
Data are often collected on both parents and offspring and include information on
demographic, socio-economic and lifestyle characteristics and environmental exposures
obtained from questionnaires, clinic data for assessing health and development, and data
from biological samples. Some cohorts have been designed as multipurpose resources,
whilst others focus on specific health or exposure-related research questions. The size of
birth cohorts varies considerably, from a few hundred individuals to over 100, 000 in
countries where population-based record linkage is possible.

A major focus of such studies is exposure to risk factors during early life developmental
periods which can have important consequences for health and disease. The “Developmental
Origins of Health and Disease” (DOHaD) hypothesis outlines how the risk of chronic
disease in adult life is initially induced through biological programming of the foetus or
infant in response to early environmental signals 1,2. These responses include molecular,
hormonal, metabolic or physiological changes which may have negative impacts on later
health. Of particular interest is the data captured on maternal exposures acting during
pregnancy, driven by the notion that the intra-uterine environment is a critical period for
influencing offspring development and programming events 3,4.

Studies have reported associations between foetal growth, maternal nutrition, exposure to
drugs, pollutants and hormones in-utero and a whole host of perinatal and later life offspring
traits. The influence of postnatal factors has also been explored, including early life growth 5
and breastfeeding 6. Of particular value are historical birth cohorts which can be used to
study the influence of early life exposures on later disease 7. As well as DOHaD, other
aspects of research within lifecourse epidemiology may be investigated within the context of
a birth cohort 8,9 and details of these can be found elsewhere 10.

An attractive feature of birth cohorts is the ability to obtain information on other family
members, not only the mothers of the offspring, but sometimes fathers, siblings and
grandparents. Family-based sampling can facilitate inter-generational studies of the
influence of parental characteristics on a range of offspring outcomes and may aid in
disentangling the genetic determinants of disease from environmental risk factors 11.

Increasingly, birth cohorts collect and store biosamples from their participants, which can be
used to obtain genetic, epigenetic and metabolic profiles, and to measure biomarkers of
environmental exposures such as smoking and pollutants. Biosampling allows the
exploration of how social and environmental factors leave biological imprints, independent
of or in combination with genetic background. The “‘omics’ revolution 12 offers the potential
to explore putative mechanisms by which specific exposures convey disease risk, whereby
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identified molecules provide robust biomarkers of early life exposure or may act as
intermediates in pathways between exposure and risk of later outcomes.

In addition to the wealth of data collected, longitudinal birth cohorts can offer more to
observational epidemiology than other study designs because they allow for prospective
time-ordering of the associations of interest i.e. with exposures preceding outcomes, which
is useful for establishing causality. However, a key limitation to causal inference in
epidemiological birth cohorts is potential confounding, leading to spurious observational
associations 13,14. Distinguishing causality from correlation is essential to identify key
early life modifiable causes of ill health and disease and to uncover new mechanistic
pathways for therapeutic intervention. A suite of methods has been developed in the last
decade to minimise problems afflicting observational epidemiology and to strengthen causal
inference. The aim of this review is to describe the causal inference methods that have been
used to provide greater insights into modifiable intra-uterine and early life risk factors in the
context of large epidemiological birth cohorts and to suggest how we may improve
methodological approaches, especially in relation to the expansion of “omics” technologies.

Challenges of establishing causality in birth cohorts

Key problems of observational epidemiology which limit its ability to establish causal
effects include: 1) reverse causation - where the outcome of interest affects the exposure; 2)
confounding — the presence of common causes of the risk factor of interest and the outcome;
3) selection bias — when the study participants are selected in a manner that biases the effect
estimate in an association; 4) measurement error in the exposure, confounding factors or
outcome. The characteristics of birth cohorts are such that some of these problems can be
minimised. For example, their prospective study design means that there is no biased
retrospective assessment and the likelihood of reverse causation is reduced due to the time-
ordering of the exposure-outcome associations. These studies also allow for repeated
measures to be taken at different time points and appropriate analytical techniques may be
used to account for missing data, reducing the role of measurement error and selection bias
15,16.

Observational epidemiology undertaken in the context of a birth cohort generally relies on
the assumption that all confounding characteristics have been identified and measured with
little or no error. However, confounders may be inadequately measured (residual
confounding) or there may be unobserved factors (unmeasured confounding) 17 which can
lead to spurious associations and conclusions about intra-uterine and early life risk factors
18,19. Inconsistent findings between cohorts and randomized controlled trials (RCTs)
highlight the methodological challenges in establishing robust causal links 13,20. For
example, in observational studies maternal vitamin C intake has been found to be associated
with higher birth weight in the offspring 21. However, large RCTs where pregnant women
have been randomized to vitamin C supplements 22—-24 have found no benefit of
supplementation on birth weight. These conflicting findings are likely due to confounding in
the observational association, as mothers with higher vitamin C intake tend to have lower
rates of smoking and are from a higher socioeconomic background, which influence birth
weight 25.
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Other limitations introduced by the very nature of birth cohorts include the long time gap
between outcomes and exposures, increasing the likelihood of confounding. Another
implication of this time gap is the relevance of early life exposures experienced when the
birth cohorts were established to contemporary cohorts. Finally, given the high correlation
between maternal exposures and behaviours in pregnancy with those postnatally it is often
difficult to tease apart intra-uterine from postnatal effects 26.

Classic epidemiological approaches for drawing causal inferences

Data collected on parents, offspring and other family members in epidemiological birth
cohorts may be integrated in a suite of methods which minimise problems of confounding,
strengthen causal inference and provide greater insights into modifiable early life risk
factors. Strength of evidence obtained from these methods can be placed between
observational associations and RCTs in the hierarchy of evidence for clinical guideline
production. Table 1 includes a selection of large, well-established cohorts and the data
available in these cohorts which may permit the application of the causal inference methods
described in this review. Table 2 outlines each of the main causal inference methods, with
examples and linked schematic diagrams in Figure 1.

Randomized Controlled Trials

Well-conducted, large RCTs are the gold standard for estimating causal effects in population
health and this is also the case in the setting of early life influences, for example with the
randomization of women to different interventions in pregnancy. A number of RCTs of
pregnancy and early life interventions originally set up to investigate short-term outcomes
have been extended to follow up offspring at multiple ages. One example of a birth cohort
nested within in an RCT is the PROBIT trial 27,28. This cluster-randomized controlled trial
involved randomization to a breastfeeding promotion intervention which resulted in longer
duration of any and exclusive breastfeeding and has been used to investigate the causal effect
of breastfeeding on later health outcomes, including obesity, blood pressure, cognitive
function and eating attitudes 29-33. RCTs require large investment and their experimental
nature means that they should be reserved for interventions that have strong support from
observational epidemiology. In addition, for some exposures it is not possible or would be
unethical to randomize participants and where RCTs are conducted, they are often done so
in selected populations and so findings may not be generalizable.

Cross — cohort comparisons

Support for the initiation of the PROBIT trial came from observational studies which have
shown breastfeeding to be protective against a wide range of later outcomes. However, not
all of these associations persist in a randomized trial setting 29-31. This discordance can be
explained by the fact that the majority of observational studies have been conducted in
higher-income countries where breastfeeding is strongly related to higher socio-economic
circumstances, maternal non-smoking and healthy diet. The links between breastfeeding and
these factors would generate non-causal observational associations between breastfeeding
and health outcomes, and the ability to fully evaluate and statistically adjust for such
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confounding is limited. One way to circumvent this problem, without initiating an RCT,
would be to compare associations between two or more populations in which the underlying
confounding structures are markedly different. For example, if the associations found in
higher-income countries are causal then one would expect them to be found in lower-middle
income countries where breastfeeding is often not associated with socio-economic position
34. An analysis of a UK-based cohort study, ALSPAC, and a Brazilian-based cohort study,
Pelotas, showed that the inverse association of breastfeeding with later offspring body mass
index (BMI) and blood pressure found in higher income countries is not present in lower
middle-income countries. By contrast, a positive association with intelligence quotient (1Q)
was found in both settings 34. These findings have been validated by results of the PROBIT
study, based in the middle-income country of Belarus 27,28. The assumption about different
confounding structures in different cohorts may not be correct and has to be thoroughly
investigated. In addition, harmonisation of variables between cohorts is required in order to
minimise the influence of statistical heterogeneity.

Negative controls

It is also possible to infer a causal effect by comparing an observed association between a
particular exposure and an outcome with a negative control. A negative control situation is
one that cannot involve the hypothesised causal mechanism, but which is likely to involve
the same sources of bias or confounding as in the original association 18,35,36. For
example, the association of an exposure and outcome may be compared with that of another
exposure, which is equally socially patterned, and the same outcome. A study conducted in
the Norwegian Mother and Child cohort (MoBa) compared the magnitude of association
between maternal folic acid supplementation in pregnancy and children’s risk of autistic
disorders with the association between maternal fish oil supplementation and autistic
disorders. A reduced risk of autistic disorder in children of folic acid users was evident but
no such association was found with prenatal fish oil use, even though fish oil use was
associated with similar socio-economic characteristics as folic acid use 37.

Negative controls can also be used if one wishes to investigate whether an association
between a particular exposure and outcome arises in a proposed critical period, such as in-
utero. For example, maternal smoking after pregnancy would not be expected to have the
same influence on offspring outcomes as smoking during pregnancy if the mechanism of
influence is through the intra-uterine environment 38. However, the high correlation of pre-
and postnatal smoking makes it difficult to disentangle causal effects 26 and women who do
not smoke in pregnancy but do postnatally may be characteristically different from women
who continue to smoke, which may re-introduce confounding. This can be avoided through
the use of within-individual comparisons or when the influence on exposure patterns is
externally generated 18,19. For example, the Dutch Hunger Winter study demonstrates the
specific effect of imposed nutritional deprivation during early pregnancy on a number of
health outcomes, compared with women who experienced famine at other stages in
pregnancy 39.
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Parental comparisons

A negative control design primarily used for exploring the extent to which associations of
intra-uterine exposure might be causally related to offspring outcomes in later life is the
parental comparisons approach. If there is a causal intra-uterine effect, one would expect a
stronger maternal-offspring association than paternal-offspring association for the same
exposure assessed at the time of pregnancy. Where associations are similar for both parents
it is likely that there is confounding by genetic or shared environmental characteristics
11,18,36. Proof of concept has been illustrated with maternal smoking in pregnancy which is
strongly associated with lower offspring birth weight, whereas paternal smoking is only
weakly associated. When both maternal and paternal smoking during pregnancy are taken
into account, the former association is little attenuated whereas the latter association is
essentially abolished, arguing for a biological effect of maternal smoking in pregnancy on
offspring birth weight 18.

It has been hypothesised that maternal obesity and metabolic profiles related to this may,
during pregnancy, programme the offspring for greater risk of obesity in later life 40,41.
This could result in intergenerational acceleration, with ever-increasing levels of obesity in
the population 42. Some parental comparison studies find stronger associations of maternal
BMI than paternal BMI with offspring BMI 43-45, although these have often been of small
sample size, with different sources and degrees of validity for BMI measures, and non-
paternity for biological measures has generally not been taken into account 46. Subsequent
studies addressing these issues have found that maternal and paternal BMI relate very
similarly to offspring adiposity 46-50, arguing against a major specific effect of the intra-
uterine environment and suggesting that the associations are driven by shared familial
genetic or lifestyle characteristics.

Some evidence has been found which supports potential male-line transgenerational
responses, invoking parent of origin, imprinting and epigenetic phenomena 51,52. Maternal
and paternal associations of similar magnitude may therefore be interpreted as showing
intra-uterine maternal influences which are offset by these paternal pathways. However, it
has been posited that the likelihood of such perfectly matched effects being produced by
mechanistically distinct processes is low 18,53.

Sibling comparisons

It may be possible to compare outcomes within siblings who are concordant or discordant
for early life exposures. Since familial background will generally be similar for siblings,
comparing outcome differences in relation to discordant exposures within sibships
effectively “matches” on family characteristics, providing a stronger means of controlling
for certain confounding factors 11. Such study designs have been used to show that
gestational diabetes 54,55, gestational weight gain 56 and extreme BMI 57,58 are likely to
be causally related to later offspring obesity and other metabolic outcomes 41, with findings
being translated into long-term follow-up of participants in randomized controlled trials
59,60.
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Again there are instances where this causal analysis method has provided contrasting results
in different studies. For example, sibling studies have been used to explore whether the
positive association between birth weight and later 1Q 61 is causal. While some studies
suggest that birth weight differences within sibships are related to differences in intelligence,
implying an intrauterine effect 62,63, others show no evidence of association 64,65, arguing
that the association observed in the population may be explained by factors such as family
socioeconomic background.

It is important to bear in mind that, although sibling comparison estimates will not be
influenced by unmeasured familial confounders, there are notable limitations to this study
design which may explain the discrepancy in findings 66. Such estimates are more severely
biased by non-shared confounders than population-level comparisons 67 and are more
sensitive to misclassification of the exposure and measurement error 66,68. Use of a sibling
comparison design also limits the population included, affecting power and demonstrating
the need for large sample sizes to obtain robust causal evidence.

Mendelian randomization

Mendelian randomization (MR) is a method that utilises genetic variants robustly associated
with modifiable exposures to infer causality 69. The MR design is analogous to an RCT,
where study participants are randomly allocated to a treatment to avoid potential
confounding between treatment and outcome 70. MR creates a similar scenario by
exploiting Mendel’s laws (segregation and independent assortment). Given these laws, at a
population level genetic variants should not be associated with genetic or environmental
confounding factors that can distort conventional observational studies. Analysing data
according to genotype will therefore compare groups that differ by an on-average level of a
modifiable exposure, but not by a myriad of behavioural, social and physiological variables
that may confound observational associations 71,72. In addition, in a genetic association the
direction of causation is from genetic variation to the outcome, and not vice versa as disease
processes do not alter germline genotype. Genetic variants are also subject to relatively little
measurement error or bias and variants will generally be related to a modifiable exposure
throughout life, avoiding attenuation by errors 73.

Where maternal genotype is taken to be a proxy for environmentally-modifiable exposures
in pregnancy, this may provide unique insights into the causal nature of intra-uterine
environment influences on later offspring outcomes 18. For example, variation in MTHFR is
associated with methyltetrahydrofolate reductase activity and hence with circulating folate
and homocysteine levels. Maternal MTHFR variants have been found to influence risk of
neural tube defects (NTD) in offspring 74, implying a causal effect of low maternal folate.
These findings are consistent with the results of RCTs of maternal folate supplementation
which is associated with reduced risk of offspring congenital abnormalities 75,76. In this
example, the effect of maternal genotype on risk of NTD was greater than paternal or
offspring genetic estimates, implying an independent maternal effect 74 which is consistent
with the hypothesis that maternal folate intake is the exposure of importance.
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Limitations of the Mendelian randomization approach have been outlined in detail elsewhere
77,78, and include low statistical power due to the small amount of variance in a trait
explained by the genetic variant; population stratification, which may induce confounding
when allele frequencies and disease risk differ according to the genetic ancestry of
populations within the study; and pleiotropy, where the genetic variant influences more than
one post-transcriptional process and may affect the outcome via a pathway that is
independent of the exposure. Methods may be implemented to address these limitations and
extensions of the MR approach applied to avoid them 77,78.

Non-genetic instrumental variable analysis

The use of genotype in MR studies is an application of instrumental variable (1) analysis
79,80, which may be used to obtain an estimate for the magnitude of a causal effect. An IV
is a variable that is associated with the outcome only through its robust association with the
exposure, and therefore an 1V will typically not be associated with factors that confound the
association of exposure and outcome. Examples of non-genetic instrumental variables
include external factors which influence a population largely at random, such as the famine
experienced in the Dutch Hunger Winter 39, climate conditions 81, or cigarette taxation 82.
However, in these cases the external or “exogenous” factor is generally rare or of small
effect. Another non-genetic IV which is more commonplace is the phenotype of a family
member in family-based studies, which may be used to proxy for own phenotype. For
example, offspring anthropometry has been used as an IV for examining the causal effect of
own anthropometry on mortality 83,84. As offspring anthropometry is likely influenced by
the same socio-economic, lifestyle and genetic confounders as parental anthropometry, this
method is used primarily to deal with reverse causation, under the assumption that
offspring’s anthropometry will not be influenced by parent’s illness.

Triangulation

The above causal inference methods have different underlying assumptions, strengths and
limitations and an integration of different approaches to the same research question may be
used to improve the identification and estimation of causal effects through the
“triangulation” of findings. This may be done under the supposition that independent biases
are unlikely to lead to the same result across a range of methodological approaches. If causal
effects are consistently estimated, the likelihood that they are unbiased is high. If they differ
between the approaches, there is a further need to investigate whether the underlying
assumptions for each approach have been violated. One example of triangulation has already
been alluded to, which is the similarity in findings between a cross-cohort comparison study
34 and a randomized controlled trial investigating the effect of breastfeeding on offspring
BMI, blood pressure and 1Q 29-32. Conventional multiple regression, parental comparison,
between-sibling analyses, Mendelian randomization, non-genetic instrumental variable and
RCT studies have all been consistent in their findings of a causal effect of maternal smoking
in pregnancy on offspring birth weight 85. “Triangulation” methods have also been
exemplified within single studies where two complementary approaches have shown
consensus on early life causal effects 45,54. The approach of privileging a hypothesis which
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fits with the overall pattern of findings and knowledge across all informative sources is
within the tradition of “inference to the best explanation” approaches to causal reasoning 86.

Consortia

One characteristic which all of the described causal inference methods have in common is
that they are often underpowered and generally require large sample sizes. Therefore, as well
as using triangulation, there is a need for independent replication of findings in order to
avoid spurious conclusions in causal inference analysis. Cross-cohort analysis can improve
power and statistical precision, and can provide high quality evidence on the causal effects
of early life exposures on later health and disease. Collaboration is already evident in some
instances, with the pooling and harmonising of data to address research questions on
environmental exposures 87,88 and genetic associations 89-91. There are several examples
of birth cohort collaborations, including CHICOS (http://www.chicosproject.eu/the-project/
management/), EAGLE (http://www.copsac.com/content/eagle-consortium), EGG (http://
egg-consortium.org/) and ENRIECO (http://www.enrieco.org/) 92 and a tool for accessing
information on each birth cohort has been made available at http://www.birthcohorts.net/ 93.
Also of importance in this field is the inclusion of birth cohort studies from low- and middle-
income countries 94,95, where variation in environmental exposures, health outcomes and
confounding structures may be used to improve causal inference 34. To date, collaborations
have been used to replicate findings from causal inference analysis in multiple cohorts,
including parental comparisons 96 and Mendelian randomization 97.

New data

An attribute of many birth cohorts is their biological sampling which includes the collection
of blood, urine and hair samples. New technologies permit genotyping and profiling of
methylation, metabolites and biomarkers of environmental exposures, and open up new
avenues for exploring underlying causal pathways. Of particular value is the collection of
serial samples from the same individuals in some birth cohorts, which allows assessment of
change in molecular measures over time.

As shown in Table 1, many birth cohorts now have genome-wide data available on a large
number of individuals, including both offspring and parents. These may be used in Genome
Wide Association Studies (GWAS), where associations between a wide range of phenotypes
and genetic variants across the genome are determined in a hypothesis-free approach. More
recently, an innovative method utilising genome-wide data in mothers and offspring has been
developed which allows the delineation of maternal-specific influences on offspring
outcomes98 . The ability to identify many robust genotype-phenotype associations is of
merit for Mendelian randomization analysis which has classically involved the use of a
single variant to proxy for a particular modifiable exposure. GWAS has uncovered a host of
genetic variants which explain an increasing proportion of the variance in a trait and may act
as a stronger instrument for improving the precision of causal estimates 99. The use of
genetic scores, created by adding up the total number of risk alleles a person has, offers
particular promise in this regard 100,101. However, as the function of a variant identified in
GWAS is often unknown, the assumption that it will only influence the outcome through its

Early Hum Dev. Author manuscript; available in PMC 2016 December 13.


http://www.chicosproject.eu/the-project/management/
http://www.chicosproject.eu/the-project/management/
http://www.copsac.com/content/eagle-consortium
http://egg-consortium.org/
http://egg-consortium.org/
http://www.enrieco.org/
http://www.birthcohorts.net/

s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Richmond et al.

Page 10

direct effect on the exposure is difficult to assert. Nonetheless strategies exist for assessing
potential pleiotropy 72,99.

Building on the success of GWAS and the availability of cost effective and robust
technologies is the use of “omics” within population health science. This is largely
concerned with understanding how gene regulatory mechanisms or gene products interact
with the environment to influence health-related outcomes and is useful for investigating the
molecular pathways that may underpin causal effects. Of particular utility are large-scale
epigenetic and metabolomic scans for formulating novel hypotheses on biological processes.
However, in contrast to germ-line genetic variation, epigenetic and metabolomic signatures
are largely phenotypic, and are subject to the same problems of confounding and reverse
causation which afflict conventional epidemiology 53,102,103 (Figure 2). The extension of
causal inference approaches is therefore of particular utility in determining causal
associations between “omic” markers and a range of exposures and outcomes 77.

Epigenetics

Epigenetic mechanisms are involved in regulating gene activity which creates phenotypic
variation without altering the underlying DNA code. Epigenetics is a potentially major
mechanism by which environmental factors can affect physiological function and disease
risk. In particular, DNA methylation has become increasingly integrated into population-
based studies as a potential modifiable indicator of the underlying biological changes.

Epidemiological approaches can be used to identify whether epigenetic processes are
involved in mediating the association between various risk factors and common complex
disease 104,105. Longitudinal cohort studies that make use of multiple time points are useful
for investigating how the epigenome changes over time, as a result of varying exposures, and
how this contributes to disease development 106. In particular, there is considerable interest
in the role of epigenetic mechanisms in DOHaD as epigenetic states are often established in
early development 107-109. This makes birth cohorts with sample collection from pregnant
women and offspring at birth of particular value for providing insights into the temporal
relationship between early life exposures and epigenetic changes 110-112, which may then
predict later health-related outcomes 113-115.

It is important to bear in mind that epigenetic profiles can be influenced by technical or
genetic factors, cellular and tissue heterogeneity, time-varying artefacts and stochastic
changes. These sources of noise threaten the detection of biological signals and the ability to
infer causality from associations 53,103. Careful study design, data collection and control of
sources of variability are therefore required, as are methods which will contribute to the
identification of predictive epigenetic biomarkers and modifiable targets for intervention
102,116,117.

Many of the approaches already listed to address causality in conventional epidemiological
settings can also be used to interrogate causality in associations involving epigenetic
changes. For example, maternal smoking in pregnancy has been shown to be associated with
DNA methylation in newborns 118 and the finding of no paternal associations highlights the
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prominent intra-uterine influence of maternal smoking on offspring DNA methylation at
birth 119 and at later ages in the offspring 120. Mendelian randomization analysis has also
been used in the context of epigenetic epidemiology to investigate the causal effect of
maternal red blood cell folate on genome-wide methylation in infant cord blood 121, using
the previously described MTHFR genotype as an instrument. However, further work is
needed to investigate whether the identified methylation changes mediate the influence of
intra-uterine exposures on developmental outcomes, for example in a “two-step Mendelian
randomization” framework 77,102,116,117.

Metabolomics

Metabolomics is an emerging technology involving the measurement of metabolites which
likely act as intermediates in biological pathways. An advantage of using metabolites as
intermediate phenotypes is that they are more proximal to biological pathways than
downstream phenotypes or clinical endpoints 122, boosting the statistical power to detect
associations 123,124. Metabolites are also useful in birth cohorts when disease endpoints
have not yet been reached.

However, as metabolites are influenced by both genetic and environmental factors and by
disease processes, they too are prone to the limitations of observational study. Once an
association between a metabolite and a trait has been observed, the next challenge is to
distinguish causal effects, with potential implications for clinical outcomes and disease
pathogenesis, from non-causal associations, which may have potential implications for
biomarker discovery 12,125. Different statistical methodologies may be used to construct a
causal framework involving metabolites, and to dissect causal relationships 126. This
framework also suggests the usefulness of “triangulating” causal inference methods in the
domain of high-dimensional molecular data as an exploratory tool to infer causal
relationships.

Summary

This review has outlined a suite of causal inference methods including cross-cohort
comparisons, negative control studies, sibling studies, Mendelian randomization analysis
and instrumental variable techniques. These methods make use of the wide range of data
available in epidemiological birth cohorts in order to establish causal links between early life
influences and a range of developmental and health outcomes. Such methods have often
been shown to produce the same conclusions regarding causal effects as randomized
controlled trials, which are not always feasible or ethical, and may be used to inform on
interventions. Strengthening causal inference is also an important step in “omics” research
for distinguishing causal molecular pathways that may underpin causal effects of early life
exposures on complex traits and diseases.

The methods for causal inference described enhance capability to interpret conventional
observational associations, though some discrepancies in findings between studies highlight
their limitations, in particular their lack of power in small samples. An integration or
“triangulation” of different approaches to the same research question may be used to
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improve the identification and estimation of causal effects in observational data. In addition,
cross-cohort analysis and the independent replication of findings can improve power and
statistical precision and provide more high-quality evidence for causality. This may be
enabled with collaboration among different birth cohorts and the dissemination and
harmonisation of techniques through the established consortia.
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Figure 1.
Schematic diagrams outlining the main causal inference methods
MR = Mendelian randomization
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Figure2.

Diagram outlining the interplay between genomics, other “omics” and environmental factors
in relation to disease or health-related outcomes

GWAS = Genome-wide association study
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