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Abstract

With the growth of high-throughput proteomic data, in particular time series gene expression data 

from various perturbations, a general question that has arisen is how to organize inherently 

heterogenous data into meaningful structures. Since biological systems such as breast cancer 

tumors respond differently to various treatments, little is known about exactly how these gene 

regulatory networks (GRNs) operate under different stimuli. Challenges due to the lack of 

knowledge not only occur in modeling the dynamics of a GRN but also cause bias or uncertainties 

in identifying parameters or inferring the GRN structure. This paper describes a new algorithm 

which enables us to estimate bias error due to the effect of perturbations and correctly identify the 

common graph structure among biased inferred graph structures. To do this, we retrieve common 

dynamics of the GRN subject to various perturbations. We refer to the task as “repairing” inspired 

by “image repairing” in computer vision. The method can automatically correctly repair the 

common graph structure across perturbed GRNs, even without precise information about the effect 

of the perturbations. We evaluate the method on synthetic data sets and demonstrate an application 

to the DREAM data sets and discuss its implications to experiment design.

1 Introduction

One of the most exciting trends and important themes in systems biology involves the use of 

high-throughput measurement data to construct models of complex systems. These 

approaches are also becoming increasingly important in other areas of biology. While 

mechanistic modeling approaches should be based on prior biological understanding of the 

molecular mechanisms involved, a data-driven model can help us to analyze large data sets 

by simplifying measurements or by acquiring insight from the data sets, without having to 

make any assumptions about the underlying mechanism [1].
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Among various data-driven modeling approaches, clustering methods are widely used on 

gene expression data to categorize genes with similar expression profiles [2]. In general, 

unraveling the complex coherent structure of the dynamics of gene regulatory network 

(GRN) is the goal of a high-throughput data analysis. Recently, much research has focused 

on time series gene expression data sets, for example, using functional data analysis 

techniques [3–5]. Analyzing these data sets has the advantage of being able to identify 

dynamic relationships between genes since the spatio-temporal gene expression pattern 

results from both the GRN structure and integration of regulatory signals. For example, 

drug-induced perturbation experimental data sets have been combined with temporal 

profiling which provides the distinct possibility of observing the cellular mechanisms in 

action [6]. In cancer cells, since signaling networks frequently become compromised, 

leading to abnormal behaviors and responses to external stimuli, monitoring the change of 

gene expression patterns over time provides a profoundly different type of information. 

More specifically, the breast cancer that we study is comprised of distinct subtypes that may 

respond differently to pathway-targeted therapies [7]. Hence, comparing expression levels in 

the perturbed system with those in the original system reveals extra information about the 

underlying network structure. However, since the outcome of data-driven clustering or 

classification only represents the categorized or clustered responses, they have limitations in 

inferring the GRN structure directly. As a result, we need extra efforts to infer the network 

structure from the data.

In the last years, many data-driven inference algorithms have been developed and applied to 

reconstruct graph structures of GRNs from data. These include Bayesian networks, 

regression, correlation, mutual information, system-based approaches and l1-penalized 

network inference [8–16]. Recent works [17, 18] provide a systematic method for inferring 

the direct dependencies in a network, corresponding to true interactions, and removing the 

effects of transitive relationships that result from indirect effects. Also, other works [19, 20] 

use systems biology approaches to model and reverse engineering gene regulatory networks 

from experimental data by performing successive perturbations to each modular component 

of the network. However, data-driven reconstruction of the network structure itself remains 

in general a difficult problem. Also, until recently, most studies on GRN inference have 

focused on exploiting a particular data set to identify the graph structure, and have applied 

the same method to other data sets independently. In addition, although many algorithms use 

time series gene expression data sets subject to drug-induced perturbations, these 

perturbations are either assumed to be known [21] [22] or simply ignored. However, such 

unknown perturbations can cause bias and/or variance in the outcome of the inference 

algorithm because these unknown perturbations can be considered as corruptions in the 

measurement and the algorithm is often sensitive to these corruptions. For example, consider 

a simple inhibition reaction: A ⊣ B (i.e., A inhibits B) and suppose that we perturb A and B by 

applying two different inhibition drugs respectively. If the effects of both perturbations are 

dominant, we may incorrectly infer the relation between A and B (i.e., we may infer A → B) 

since as A decreases, B decreases. Note that each time series response represents integration 

of both gene regulatory signal and effect of perturbations over time. Thus, in order to infer 

the GRN correctly, the effect of perturbations should be isolated.
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Moreover, since the effects of the targeted drug can be propagated through the (unknown) 

underlying network over time, the dynamic responses of gene expressions can be affected 

directly or indirectly by the drug. For instance, when we design targeted therapies, we 

obviously know that the response of the target protein is perturbed, so we may assume 

structured perturbations. However, since these drug-induced perturbations can be propagated 

and also may have an effect on the other proteins directly, we might only have partial 

information of these perturbations. In addition, missing and corrupted data are quite 

common in biological data sets, and should be properly addressed.

In this paper, we propose a new method to harness various perturbation experimental data 

sets together, to retrieve commonalities under the sparse low-rank representation, and to 

improve identifiability of dynamics of GRNs, without any a priori information about the 

GRN structure. Intuitively, without retrieving commonalities, the inferred graph structures 

from each experimental data set may be biased because each data set has an inherent bias 

through the perturbation. Thus, the inferred graph structures may not be consistent with each 

other. By exploiting commonalities across the inferred graph structures, we can estimate bias 

error due to different perturbations, and correctly identify the common graph structure. We 

refer to the task as “repairing” inspired by “image repairing” in computer vision [23].

To do this, we first pose the problem as a sparse low-rank representation problem, by 

formulating the network inference as finding a sparsely connected structure that has low 

rank over multiple experiments. Inspired by repairing sparse low-rank structure [23] in the 

computer vision literature, we design a novel convex optimization formulation which 

enables us to combine temporal data sets from various perturbation experiments. The 

method can automatically repair the common graph structure from the data sets of perturbed 

GRNs, even without precise information about the effect of the perturbations. Through 

numerical examples, we demonstrate the advantage of both dealing with estimation of the 

perturbation effects and using that information to correctly learn the underlying gene 

regulatory structure. Also, we demonstrate a possible application using a DREAM data set 

[24] [25] [26] and we are currently applying this method to biological data sets in HER2 

positive breast cancer [6] [7], in which the drugs perturb different parts of the network in 

each experiment.

The rest of this paper is organized as follows: Section 2 presents the image inpainting 

method in computer vision by which we inspire the method of repairing common GRNs. In 

Section 3, we pose the graph inference problem as repairing a sparse low-rank representation 

and we present the reconstruction of GRN in Section 4. Section 5 demonstrates an 

application of DREAM dataset and discusses the implications and limitations. Finally, 

conclusions are given.

2 Motivation

Although there are deep relationships between clustering and network inference, clustering 

gene expression data sets and inferring GRNs are tasks usually developed independently. We 

argue that clustering and network inference can potentially cover each other's shortcomings 

since spatio-temporal gene expression patterns result from both the network structure and 
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the integration of regulatory signals through the network [27]. For example, the seminal 

module networks study [28] and recent study [29] exploit the relationship between clustering 

and network inference. In this paper, since we want to reveal the common graph structure of 

GRN (not limited to module level), we would like to estimate different responses across 

various perturbations by comparing gene expression levels under the different perturbation 

conditions and then correctly identifying the common GRN structure.

In Figure 1A, we consider collections of time series gene expression of HER2 positive breast 

cancer cell lines [7] from pathway-targeted therapies involving drug-induced perturbation 

experiments ( LAP, mutant, Akti; for each drug-induced perturbation, we add a single 

influence for a targeted protein). When a specific protein is perturbed, there are immediate 

effects on the target protein and compensatory responses on other proteins over time. Thus, 

comparing gene expression levels in the perturbed system with those in the unperturbed 

system reveals the extra information about the different cellular mechanisms in action. A 

dynamical system of the GRN can be modeled as follows:

where x ∈ ℝn denotes the concentrations of the rate-limiting species, ẋ represents the 

change in concentration of the species, n is the number of genes, f(·) represents the vector 

field of the typical dynamical system (or wild-type) and g{·}(·) represents an additional 

perturbation or mutant-specific vector field (blue and red edges in Figure 1A and B). In 

other words, we have a unified model for wild-type cell line, ẋ = f(x) and in the perturbation 

case, we invoke a single change to the network topology or add a single influence for a 

specific gene by considering additional vector fields such as gLAP(·), gAKTi(·) and gM(·). 

Although these additional vector fields affect only a single gene expression at time t, their 

influence can be propagated through the network over time.

Since each time series data set reflects dynamic response of GRN (ẋ = f(x)) under drug 

perturbation (g{·} (x)), we want to reconstruct GRN by isolating these perturbation effects. 

By correctly infer bias or uncertainties (g{·}) as shown in Figure 1B, we can correctly repair 

the common graph structure (ẋ = f(x)) in Figure 1C. Intuitively, we can think of these 

collections of time series gene expression as corrupted graphical images (a) in Figure 1 

whose underlying texture shows regular pattern. In [23], by using the properties such as 

structured regular textures in images, the authors can correctly estimate the corrupted region 

(b) and deal with image completion (c) by repairing the corruption in Figure 1.

3 Problem Formulation

Inspired by repairing sparse low-rank representation in computer vision [23], first we define 

a dynamical system whose parameters are time invariant but unknown. This is a classic way 

to represent network inference problem [21, 22, 30]. By assuming sparsity of GRNs, we can 

rearrange the unknown GRN structure as a sparse signal. Then, we integrate different 

experiment data sets together and derive a sparse and low rank matrix to be inferred from 

Chang et al. Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple time-series assuming that some of the inputs are not known and that some of the 

outputs are corrupted by noise. In other words, we pose a graph inference problem by 

formulating the network inference as finding a sparsely connected structure that has low 

rank over various experiments. In this section, we will describe the methodological details.

3.1 Formulating Gene Regulatory Networks as a Dynamical System

We consider a dynamical system of GRN described by

(1)

where x ∈ ℝn denotes the concentrations of the rate-limiting species which can be measured 

in experiments;  is a vector whose elements are the change in 

concentrations of the n species over time which may not be measured directly in 

experiments but we could calculate these quantities by interpolating x and using numerical 

derivatives1; f(·) : ℝn → ℝn represents biochemical reactions, which typically include 

functions of known form such as product of monomials, monotonically increasing or 

decreasing Hill functions, simple linear terms and constant terms, since biochemical 

reactions are typically governed by mass action kinetics, Michaelis-Menten, or Hill kinetics 

[21, 30]. Since f(x) determines how the dynamics of ẋi of a protein i depends on the 

expression levels of all proteins, it contains the structural information of the network. u ∈ ℝn 

denotes the control input, for example, drug-induced inhibition or stimulation, for which we 

only have partial information. For instance, when we inhibit a target protein by drug-induced 

perturbation, we only know that the dynamics of the targeted gene response may be affected, 

but we do not know by how large the effect on the dynamics is and how long this effect 

continues. Moreover, this drug-induced perturbation might also directly affect other proteins 

in practice.

The nonlinear function f(x) can be decomposed into a linear sum of scalar basis functions 

fb,i(x) ∈ ℝ where we select the set of possible candidate basis functions that capture 

fundamental biochemical kinetic law [21, 30]:

(2)

1In [31], the authors pointed out that although data on time derivative can be difficult to obtain especially in the presence of noise, it is 
possible to estimate the gene expressions relatively accurately by repeating measurement with careful instrumentation and statistics [5] 
[32].
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where N is the number of possible candidate basis functions and qij is the coefficient of the i-
th basis function for the j-th protein response. The biochemical reactions (1) can be written 

as follows:

(3)

Where , 

and  is the vector field which includes possible 

candidate basis functions. Thus, the i-th row in Q determines the connectivity of the 

dynamics of the i-th protein, through the functional basis in Fb. In practice, we can construct 

Fb(x) by selecting the most commonly used candidate basis functions to model GRNs, for 

example, all monomials, binomials, other combinations or Hill function. Thus, any 

biochemical reactions can be represented by a linear map Q and Fb(x) where Q reflects the 

influence map of GRN structure and Fb(x) includes all possible candidate functions 

representing the underlying biochemical reactions. Thus, in order to infer the graph 

structure, we want to recover Q from the measured response x, ẋ with the chosen basis 

functions Fb(x).

By formulating the dynamics of GRN into Equation (3), we are able to extract the graph 

structure of GRN into Q. In the following section, we rearrange the dynamic equations of 

the GRN into the desired matrix form amenable for repairing sparse low-rank representation 

[23].

3.2 Organizing GRN Dynamic Equations into Sparse Low-rank Representation

Suppose the time series data are sampled from a real experimental system at discrete time 

points tj. By taking the transpose of equation (3) and vectorizing Q as s, we obtain

(4)
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where y(tj) ∈ ℝn, Φ(tj)2 ≜ (Fb(x)⊤ ⊗ In) ∈ ℝn×N·n (⊗ denotes Kronecker product) and u(tj) 

∈ ℝn. Note that we define  by vectorizing Q, 

which represents the unknown GRN structure and is assumed to be sparse.

Since we have partial information about u(tj), we want to exploit this information to 

reconstruct s. If we inhibit the k-th gene by a drug, for example, we know that

From Equation (4), we expect that the k-th component of y(tj) is corrupted due to unknown 

perturbation uk(tj). If we use this corrupted data to reconstruct s, the estimated qk 

corresponding to this corruption (uk(tj) ≠ 0) might be biased. However, we can simply 

consider the corrupted part as unmeasured and ignore it for reconstruction, possibly using 

another experimental data set for this part. Since we consider various perturbation 

experimental data sets, we denote Equation (4) as follows:

where the superscript i denotes the i-th experiment and the subscript j denotes the time step 

for each i-th experiment, and we have p different experiments and M time steps for each 

experiment. Then, we define ,  and  as follows:

where Yi represents the measured dynamic responses, 

represents the unknown GRNs structure for the i-th experiment over time and Ui ∈ ℝn×M 

represents partially known perturbation input over time for the i-th experiment.

Without loss of generality, since the GRN structure is assumed to be sparse and not to 

change over time, there are many zero rows in Si, and hence there are many zero rows in . 

2Φ(tj) is known as the sensing matrix in compressive sensing [21, 22]. Thus, for given sensing matrix Φ(tj) and measurement y(tj), we 
reconstruct s with penalizing sparsity (‖s‖1). In [21, 22], we assume that u(tj) is known. Since we can simply subtract u(tj) from y(tj), 
we may reconstruct unbiased s. However, if u(tj) is not assumed to be known, this causes bias or uncertainties in reconstructing s.
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For example, if parameters of the influence map do not change over time, Si ∈ ℝN·n×M can 

be represented by s̄i · 1⊤ (i.e., Si has rank 1 where s̄i ∈ ℝN·n×1 is assumed to be sparse and 

1T ∈ ℝ1×M). Moreover, although all treatments result in down-regulation or up-regulation of 

gene regulatory signals, they can be well represented by Φi(·) and the topology of the 

underlying influence map may not be changed. Therefore,  ∈ ℝN·n×M·p can be well 

represented by a sparse and low rank matrix. For instance, if the underlying graph structure 

is r-sparse, then  can be represented by  = S̄
N·n×r · T̄

r×M·p where r ≪ min(N · n, M · p). 

For , we have (partial) information on the structure of the corrupted region since we only 

have information about drug perturbations, even without precise information about these 

effects.

By formulating a dynamical system as a GRN, we can construct a sparse low-rank matrix , 

which enables us to use the sparse low-rank texture repairing method [23]. More precisely, 

we consider a model whose structure is the same across all the conditions but we allow 

parameter variations in . On the other hand, one may simply apply l1-penalized method to 

all experimental data sets together, i.e., a single interconnected matrix for all conditions. 

However, it cannot handle the direct input perturbations properly. Also, since each 

experimental condition may affect the system dynamics differently, one model with fixed 

parameter may not be able to represent all the experiment data, while the proposed method is 

able to handle even partially triggered GRN, for example, we could simply make the 

corresponding parameters be zero for the non-triggered part of GRN.

Then, we ought to prefer the lower rank solution in  because we want to encourage 

common GRN structure across various conditions. By doing this, we can infer the direct 

effects of these perturbations . Note that in many GRN inference problem settings [21, 22, 

30], each experiment data set is applied independently but this may lead inferred GRN to be 

biased, since we do not know the effect of direct perturbation exactly and GRN may 

response differently under various conditions. For instance, if a certain experimental data set 

reflects network dynamics partially, then the inferred GRN can be biased or inconsistent 

with other inferred GRNs. In other words, we cannot expect to observe or infer the same 

GRN across various conditions by applying each data set independently or without handling 

the direct input properly. However, since each inferred GRN still reflects the common 

uncorrupted part of GRN, we can repair the entire GRN by integrating all experiment data 

sets together and estimating  simultaneously. In order to do this, we make the following 

assumptions:

Assumption 1  can be represented by a matrix of sparse and low rank. More precisely, 

parameters of the influence map are assumed to be fixed over time for each experiment.

Assumption 2  is (partially) block-sparse and these nonzero blocks can be distributed 

uniformly by designing experiments. Also, we have partial information about the position of 

these blocks.

Assumption 1 asserts that  can be represented by a sparse low-rank matrix, so that we can 

correctly repair the common graph structure from various perturbation experimental data 

sets. Without loss of generality, since GRNs are assumed to be sparse and  denotes the 
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underlying GRNs over time and across different experiments, the structure of  has very low 

intrinsic dimensionality (sparse low-rank). Assumption 2 then states that our perturbations 

should excite the network uniformly, in order to retrieve the common structural and temporal 

information from which we can correctly repair the common GRN structure. Intuitively, if 

we corrupt or block entire rows of the image (a) in Figure 1, there is no way to correctly 

repair these rows. Similarly, if the responses of a specific protein are always corrupted 

directly by drug-induced perturbation across the entire experiments, there is no way to repair 

the corresponding structure. With this notion, as the size of network increases, we may need 

more experiments, i.e., perturbations should excite the network uniformly well. Thus, the 

method can be scalable for larger networks under these assumptions.

4 Reconstruction of GRNs via Repairing 

Since we construct the desired matrix form in the previous section, we will show how to 

harness both sparse and low-rank structure for inferring the common graph structure from 

various perturbation experimental data sets.

4.1 Repairing  by Refining Support Estimation

We consider the following optimization problem:

(5)

where λ and α are weighting parameters which trade off the rank and sparsity of the 

recovered graph structure, and the influence of the drug-induced perturbation respectively. In 

practice, we can use these parameters as tuning parameters to extract meaningful graph 

structure and recover the common graph structure which can be represented by sparse low-

rank matrix  from various drug-induced perturbation data sets. For example, if we want to 

find the common core structure of GRN, we may set both λ and α small values in order to 

penalize the commonalities (i.e., rank properties). Thus, by adjusting these parameters, we 

can also narrow down the key components of GRN structure. Also, here we define a linear 

operator PΩi(·) that restricts the equality only on the entries belong to Ωi and we could 

consider a simple set in ℝn [23]:

(6)

for some threshold ε > 0. Thus, . Since 

the support needs not to be so precise, the proposed method is inherently robust with respect 

to noise in the data sets. By doing this, we cannot only obtain the support of the corrupted 

regions but also can reduce noise effect in the integrated datasets. Since missing and 
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corrupted data are quite common in biological data sets, we can address these uncertainties 

properly. For example, if the model (2) cannot fully capture the complexities of a underlying 

biological system, it can still handle these uncertainties such as hidden node's effect, noise 

and deficiencies in the model properly by set Ωi and an addition input term . Also, we 

could estimate the support of ui using a more sophisticated model to encourage additional 

structures such as spatial or temporal continuity [23] or to incorporate a priori information 

such as positive perturbation ( ) or negative perturbation ( ).

Since we have partial information about ui(tj), we only use the uncorrupted information to 

reconstruct the graph structure. For the corrupted part, we estimate the corruption signal 

, update set Ωi, and solve the optimization iteratively. We could iterate between the 

reconstruction and refine the support estimation as follows:

(7)

where superscript k represents the iteration step and the support of a function (supp(·)) is the 

set points in which the function is not zero-valued. We could iterate the above procedure (7) 

till it converges and then we can recover the optimal * and estimate the corresponding *. 

For larger networks, we can use the linearized alternating direction method to solve (7) 

efficiently [23].

4.2 Handling a Large Number of Candidate Basis Functions

In computer graphics applications, although being low-rank is a necessary condition for 

most regular, structured images, it is certainly not sufficient [23]. In order to repair a more 

realistic regular or near regular pattern (typically piecewise smooth), Liang et al. consider 

additional structures by introducing certain transformed domains [23]. In the biological 

setting, since we select the set of possible candidate basis functions that capture fundamental 

biochemical kinetics and the number of sample time steps (M) is limited in biological data 

sets, the number of rows in  is easily greater than the number of columns. Thus,  becomes 

a tall matrix which easily has full column rank. Since we want to encourage the common 

graph structure across column spaces, being low-rank may not be sufficient to repair the 

same structure, especially considering a large number of basis functions with limited time 

samples. For example, when we consider a tall matrix, reducing rank of  may not 

encourage the common graph structure across the different experiments; There could be 

variations across the horizontal direction without affecting the rank or sparsity of the matrix. 

Hence, in order to recover a more realistic regular or near regular pattern across column 

space of tall matrix , we modify the above convex program in Equation (5) as follows:
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(8)

where instead of the nuclear norm ‖ ‖*, we minimize the total variation ‖ ‖TV defined by:

(9)

where :,i denotes the i-th column of . Also, compared to image repairing, we have extra 

information such as the time invariance of the GRN structure and thus we can impose 

additional constraints. For example, parameters of the influence map for each experiment i 

are assumed to be fixed over time for each experiment (i.e., ) followed by Assumption 

1. Thus, we regularize the variation across column spaces in  in order to recover 

meaningful common GRN structure; Otherwise, for example, if we use ‖ ‖* with a large 

number of basis functions, it is often hard to repair common or near common graph 

structure.

Lastly, we introduce transformations  in Equation (8) by which the components of the 

sensing matrix Φi(tj) can be made more uniformly distributed so that we reduce the 

coherence and improve identifiability, as discussed in [21,22]. Here, we simply use a 

randomly chosen matrix for . Since randomly chosen matrices spread out the component 

of Φi(tj) and ui(tj) uniformly, it helps to differentiate the influence from highly correlated 

bases in Φi(tj) in practice.

5 Results and Discussion

We present more detailed examples for problem formulation and also evaluate the 

performance of reconstruction results with synthetic experimental data sets for both linear 

and nonlinear systems (see Supplementary Information for details). In this section, we 

demonstrate the practical relevance of the proposed method by applying it to the DREAM4 

in silico Network Challenge dataset [24] [25] [26], a benchmark suite for performance 

evaluation of methods for gene network inference. Instead of random graph models, this 

dataset is generated by biologically plausible in silico networks, for example, by extracting 

sub-networks from transcriptional regulatory networks of E. coli and S. cerevisiae [24]. 

Also, time series datasets are generated from these networks using adequate dynamical 

models such as a detailed kinetic model of gene regulation. First, we show the result of GRN 

reconstruction based on the proposed method. Then, we interpret the implications of our 

result and use it to learn the relationship between the data and the identifiability of the 

proposed method.
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5.1 Application of DREAM 4 in silico Network Challenge dataset

For the simplicity of analysis and explanation, we consider networks of size 10 and focus on 

their time series datasets with all perturbations. Each perturbation only affects about a third 

of all genes – but basal activation of these genes can be strongly increased or decreased. The 

genes that are directly targeted by the perturbation may then cause a change in the 

expression level of their downstream target genes leading to an indirect effect. As such, 

these experiments try to simulate physical or chemical perturbations applied to the cells, 

which would then cause some genes, via regulatory mechanisms, to have an increased or 

decreased basal activation.

The perturbations increase or decrease the basal activation of genes of the network 

simultaneously as shown in Figure 2(a). Each data set contains time courses showing how 

the GRN responds to a perturbation and how it relaxes upon removal of the perturbation. We 

consider 5 different time series and each time series has 21 time points (sampled every 50 

steps). At t = 0, a perturbation is applied to the network, for example, a drug being added. 

The first half of the time series (until t = 500) shows the response of the network to the 

perturbation which is constantly applied from t = 0 to t = 500. At t = 500, the perturbation is 

removed and, thus, the second half of the time series (until t = 1000) shows how the gene 

expression levels go back from the perturbed to the unperturbed steady state. Since there are 

two different modes in time courses (i.e., with perturbation and without perturbation), in 

order to use all the time points, we should handle this perturbation condition properly. 

Otherwise, one model may not be able to fit both the first half and the second half of the 

time series.

Table 1 represents 5 different perturbation conditions, for example, for Exp#3 (the third 

row), Gene1 (G1), Gene2 (G2) and Gene8 (G8) are inhibited by drugs. Note that these are 

the known information, i.e., whether the response is corrupted by perturbation or not, but we 

do not know how much the perturbation affects the GRN response. Each treatment might 

also affect other genes, of which we have no a priori knowledge.

In order to infer the GRN structure using these time series gene expression data under 

various perturbations, we should identify how these perturbations affect a change in the 

expression level of the targeted genes. Otherwise, the inferred GRN can be biased or may 

only represent a partial structure of the whole GRN. To do this, we incorporate all data sets 

together and take advantage of the common structure of GRNs across the inferred GRNs. 

Since we only have partial information about the exact extent of the perturbations (or 

corruptions) as shown in Table 1, we should consider the (possibly) corrupted response as 

unmeasured and ignore it for reconstruction. By using the information in Table 1, we can 

initialize the support Ωi in Equation (6) and further refine this support iteratively in Equation 

(7).

Figure 2(b) shows the initial separation of the (possibly) perturbed responses and the 

unperturbed responses based on the initial support. For example, from Table 1 and Figure 

2(a), for Gene2 (G2), we know that we have to ignore Exp#3's response which contains the 

(unknown) influence from perturbation (shown in gray color), and instead use the other 

experimental data (non-gray color) as shown in Figure 2(b). Similarly, for Gene3 (G3), we 
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ignore Exp#5's response but for Gene4 (G4), we can use all responses since there are no 

direct perturbations for G4. Intuitively, one may consider the directly perturbed gene 

responses (gray color) in Figure 2(b) as the analog of the corrupted parts of an image shown 

in Figure 2A and the other responses (non-gray color) as the analog of the uncorrupted parts 

of the image shown in Figure 2B.

Figure 3 shows the reconstruction result, the estimated corruption and the inferred GRN. In 

Figure 3(a)A, the first column represents the true GRN structure, where red represents 

activation and green represents inhibition edge. Since the proposed method uses both 

sparsity (which encourages sparsity of GRNs) and low-rank (which encourages 

commonalities across the inferred GRNs) of , we can reconstruct the common GRN, most 

of which is consistent with the true GRN (the first column). Also, we can infer and estimate 

how much each perturbation affects the dynamics of the GRN, as depicted in Figure 3(a)B. 

Since we choose the set of possible candidate basis functions in Equation (3) and assume 

that the commonality is uniform across all genes and experiments, a small fraction of the 

reconstructed GRN may be inconsistent with the true GRN.

5.2 Implications

The proposed method is able to detect unknown influences caused by perturbations and then 

correctly repair the common graph structure across perturbed GRNs by isolating these 

effects in GRN inference.

In this section, we first analyze the reconstruction result together with the data set. Then, we 

discuss the implications of the proposed method through these analyses, discussing the 

relationship between the data and the identifiability of the network. We explain how one 

could optimize the experimental design to improve the identifiability of the network for the 

proposed method.

5.2.1 Existence of (dominant) common dynamic responses—In order to estimate 

the effect of perturbations, the proposed method retrieves common dynamics of GRN 

subject to various perturbations. In other words, the proposed method uses low-rank of  (or 

a combination of ‖·‖1 and total variation) to extract commonalities across different datasets. 

Thus, if these commonalities are not well exposed in the dataset, the method may fail to 

recover the corresponding components. In practice, we can determine whether the low-rank 

component reflects dominant response or not by plotting the responses of output genes with 

respect to the input genes shown in Figure 4 and 5. By doing this, we can also validate the 

reconstruction results.

For instance, in Figure 3(b), the reconstruction result shows that we recover G1→G4 and 

G1⊣G5 but we fail to recover G1⊣G2 and G1→G3 (dotted line, missing link). In order to 

further investigate the reason for these results (true negative or missing link), we plot 

responses of G2, G3, G4 and G5 with respect to G1 in Figure 4. Again, the gray color 

denotes the response corrupted by perturbations. For example, in Figure 4A, G2 is directly 

perturbed in Exp#3 (gray color) and, thus, we ignore it for reconstruction.
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• Figure 4A: Since the responses of G2 are not varying with respect to the 

responses of G1, there is no way to infer this connection (G1⊣G2) from 

this data set. Only the dataset for Exp#3 contains this inhibition response, 

however it also contains the unknown direct perturbation effect. Thus, the 

reconstruction result with this missing link is actually the best result for 

this dataset, as it avoids overfitting. Note that the response of G2 in Exp#4 

(cyan color in Figure 4A) is not caused by G1 because G1 shows steady 

state response.

• Figure 4B: Given the data of Exp#1 and Exp#3, the response of G3 is 

more likely to be governed by (G1→G4⊣G3). Exp#2 is the only dataset 

that reflects the relationship (G1→G3). Thus, since the dynamic response 

corresponding to (G1→G3) is not a dominant common response for this 

dataset, we cannot reconstruct the corresponding GRN (G1→G3).

• Figure 4C and Figure 4D: Since all the responses show the consistency or 

the common dynamic responses, we can capture the true connections such 

as (G1→G4) and (G1⊣G5). Also, Figure 4C shows the effect of activation 

(positive correlation) and Figure 4D represents the effect of inhibition 

(negative correlation). For example, in Figure 4C, as G1 decreases, G4 

decreases. On the other hand, in Figure 4D, as G1 decreases, G5 increases. 

In Figure 4C′ and Figure 4D′, we plot normalized responses to show the 

common dynamic responses clearly. Since dynamic features can be 

represented by possible candidate basis functions in Equation (3), the 

sparse low-rank representation can capture the commonality of the GRN 

structure.

This result implies that since the low-rank of  encourages commonalities across other's 

GRNs, if there are no dominant common responses for a certain edge, it is challenging to 

infer the corresponding edge. In the context of image repairing, one can think that if a 

certain part of the sparse low-rank texture is not exposed well due to corruptions, we may 

not be able to repair such texture properly.

Therefore, in order to reconstruct the GRN exactly, we have to design experiments with 

various perturbations that cause the underlying system to be perturbed and excited uniformly 

well. Or, we may have to consider different weighting factors across each gene for extracting 

the commonalities properly. For example, since we have more (uncorrupted) responses of 

G4 and G6, we can penalize the commonality more on G4 and G6. On the other hand, if 

there are only a few meaningful responses of a certain node, for example G3 in Figure 5B, 

we can reduce the weighting factor of commonality for that specific node.

Also, in practice, more information on drug perturbation (i.e., the GI-50 value) can help 

refine the effect of (unknown) perturbation. For example, in Figure 4A, if we know the effect 

of drug perturbation (i.e., independent dose-response data for drug), we can use the dataset 

for Exp#3 which contains the inhibition response (G1⊣G2) to infer the corresponding 

connection by isolating the effect of perturbation.
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5.2.2 Avoiding overfitting—As we discussed for Figure 4A, our method avoids 

overfitting and thus failed to infer the true inhibition (G1⊣G2) which could only be 

identified by corrupted data (gray color in Figure 4A). Similarly, in Figure 3(b), we 

reconstruct G8⊣G2 but fail to recover G6⊣G2. Figure 5A shows the response of G2 vs. G6. 

Since this response shows positive correlation and cannot match to inhibition (G6⊣G2), we 

fail to recover G6⊣G2. On the other hand, Figure 5A′ shows the response of G2 vs. G8 and 

matches to the effect of inhibition. Thus, we are able to capture this edge.

Note that in Figure 5A′, the response of Exp#3 (gray color) shows both negative correlation 

(corresponding to true inhibition) and positive correlation (corresponding to direct 

perturbations). Since both G2 and G8 are inhibited by perturbations in Exp#3, if both 

perturbations' effect are dominant, the response can show positive correlation. Thus, the 

responses driven by direct perturbations can distort the relationship between genes and lead 

to incorrect GRN inference. Therefore, if we cannot estimate and isolate the effect of these 

perturbations, we should ignore perturbed responses to avoid overfitting.

5.2.3 Ambiguity—In Figure 3(b), the reconstruction results show false positive edges 

(dashed line, i.e., false discovery). Since the proposed method relies on the common 

dynamic features in the data sets to infer the GRN structure, if there are no dominant 

responses, it seems to be ambiguous and might present a challenge to infer the 

corresponding edge in the GRN structure. For example, consider influence at G3 and G4; 

since there is only one experiment which shows the dynamic response of G3 with respect to 

G9 in Figure 5B and G10 in Figure 5B′, it is hard to extract commonality. Thus, we identify 

a false positive link (G9→G3) (dashed line) in Figure 3(b). Similarly, since responses of G4 

with respect to G9 show more common dynamic responses in Figure 5C and D, we infer a 

false positive link G9→G4 instead of G10→G4. Note that although the responses of G9 in 

Exp#4 and Exp#5 have similar scales in Figure 2(a) and G10 can only be affected by G9 

(from the true GRN structure), the responses of G10 in Exp#4 and Exp#5 have quite 

different scales, which may cause a false positive inference.

5.3 Summary

We now summarize the lessons learnt from the above analyses, where we applied our 

method to the DREAM data set. The proposed method

• can reconstruct the GRN by incorporating all data sets together.

• can incorporate from others' inferred GRNs into the common GRN 

structure by using the low-rank property (commonalities).

• can infer and estimate the (unknown) drug effect, which can distort the 

relationship between genes and may lead to incorrect GRN inference in 

general, by separating the common dynamic response from the inferred 

GRN.

• can avoid overfitting but may fail to infer the true GRN when the dynamic 

responses corresponding to a certain edge do not show dominant common 

responses or they show ambiguities.
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6 Conclusion

In this paper, we show how to harness both sparse and low-rank structures for reconstructing 

GRNs in heterogeneous data sets based on various drug-induced perturbation experiments. 

Our method proposes a new convex formulation for GRN reconstruction and can 

automatically correctly repair the common graph structure of a partially perturbed GRN, 

even without precise information about the corrupting effects of drug-induced perturbations. 

Through synthetic experiment simulations and application of DREAM dataset, we show that 

our method can complete and repair GRN structure subjected to drug-induced perturbations. 

Also, through numerical comparisons, we demonstrate advantage over existing graph 

inference method dealing with different data sets and estimation of perturbation inputs. We 

are currently applying this method to large-scale datasets and using this tool for designing 

effective experiments in inferring the HER2+ breast cancer signaling pathway.
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Figure 1. 
Conceptual diagram of repairing common GRN structure based on collections of time series 

gene expression from drug-induced perturbation (gLAP(·), gM(·), gAKTi(·)) experiments in 

HER2 positive breast cancer. In order to show analogous relationship of repairing sparse 

low-rank texture [23] in computer graphics application, we present each representation with 

the corresponding illustration such as input image (a), input support (b) and repairing result 

(c) shown in Figure S1.
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Figure 2. 
DREAM4 in silico dataset [24]: time series gene expressions are obtained by applying 

various perturbations to the original network in five different experiments. (a) raw data plots 

show dynamic responses of all genes across various perturbations (b) possible separation of 

the raw data based on the experiment design information shown in Table 1 where gray color 

denotes (possibly) corrupted responses by direct perturbations. One may consider the 

directly perturbed gene responses (gray color) as the corrupted image shown in A and the 

other responses (non-gray color) as the uncorrupted images shown in B.
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Figure 3. 
Reconstruction results: (a) reconstructed GRNs (A) where red color denotes the activation 

edge and green color denotes the inhibition edge and estimated corruption (B) where red 

color denotes positive values and green color denotes negative values. Note that the 

estimated corruptions represent temporal profiles which directly affect ẋ, for example, when 

we perturb Gene1 (G1) in Exp#1, green color represents inhibition of G1 by drug 

perturbation; red color after green represents the effect of removing drug perturbation. (b) 

inferred GRN where solid lines denote the true positive (consistent with the true GRN), 

dotted lines denote the true negative (missing link) and dashed lines denote false positive 

(red: activation, blue: inhibition). Analyses and further details of these results are presented 

in Section 5.2.
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Figure 4. 
Responses of G2, G3, G4 and G5 with respect to G1 (influence from G1): each x-axis 

represents input response (i.e., G1) and each y-axis represents output responses (G2, G3, G4, 

and G5). (A) responses of G2 vs. G1 (B) responses of G3 vs. G1 (C) responses of G4 vs. G1 

(D) responses of G5 vs. G1 (C′) (normalized) responses of G4 vs. G1 (D′) (normalized) 

responses of G5 vs. G1. Gray color represents the corrupted responses from perturbations 

which are ignored for reconstruction. For example, G2 (A) is directly perturbed in Exp#3, 

G3 (B) is directly perturbed in Exp#5 and G5 (D) is directly perturbed in Exp#5 as shown in 

Table 1.
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Figure 5. 
Input-output responses: each x-axis represents input response and each y-axis represents 

output response. (A/A′) responses of G2 with respect to G6 and G8 (B/B′) responses of G3 

with respect to G9 and G10 (C/C′) responses of G4 with respect to G9 and G10. Gray color 

represents the responses corrupted by perturbations which are ignored for reconstruction.
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