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Abstract

Understanding structural changes in the brain that are caused by or associated with a particular 

disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises 

a collection of tools that can be used to understand complex spatial disease effects across the brain. 

We discuss several important issues that must be considered when analyzing data from 

neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding 

by non-imaging variables such as age and sex on the results of MVPA. After reviewing current 

practice to address confounding, we propose an alternative approach based on inverse probability 

weighting. We demonstrate the advantages of our approach on simulated and real data examples.

1 Introduction

Quantifying population-level differences in the brain that are attributable to neurological or 

psychiatric disorders is a major focus of neuroimaging research. Structural magnetic 

resonance imaging (MRI) is widely used to investigate changes in brain structure that may 

aid the diagnosis and monitoring of disease. A structural MRI of the brain consists of many 

voxels, where a voxel is the three dimensional analogue of a pixel. Each voxel has a 

corresponding intensity, and jointly the voxels encode information about the size and 

structure of the brain. Functional MRI (fMRI) also plays an important role in the 

understanding of disease mechanisms by revealing relationships between disease and brain 

function. In this work we focus on structural MRI data, but many of the concepts apply to 

fMRI.

One way to assess group differences in the brain is to apply voxel-wise statistical tests 

separately at each voxel, also known as the “mass-univariate” approach. This is the basic 

idea behind statistical parametric mapping (SPM) [20–22] and voxel-based morphometry 

(VBM) [1, 12]. Voxel-based methods are limited in the sense that they do not make use of 

information contained jointly among multiple voxels. Figure 1 illustrates this concept using 

toy data with two variables, X1 and X2. Marginally, X1 and X2 discriminate poorly between 

the groups, but perfect separability exists when X1 and X2 are considered jointly. Thus, there 

has been a shift away from voxel-wise methods to multivariate pattern analysis (MVPA) in 

the imaging community. In general, MVPA refers to any approach that is able to identify 

disease effects that are manifested as spatially distributed patterns across multiple brain 

regions [9–11, 13–16, 19, 23, 33–35, 39, 41, 43, 47, 48, 53, 61–64].

The goal of MVPA is often two-fold: (i) to understand underlying mechanisms and patterns 

in the brain that characterize a disease, and (ii) to develop sensitive and specific image-based 

biomarkers for disease diagnosis, the prediction of disease progression, or prediction of 

treatment response. In this work, we elucidate subtle differences between these two goals 
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and provide guidance for future implementation of MVPA in neuroimaging studies. The 

differences between these goals and the corresponding analyses are directly related to the 

idea of modeling for the purposes of explanation, description, or prediction as discussed by 

Shmueli [56]. In this work, we discuss and apply these ideas in the context of MVPA for 

analyzing neuroimaging data.

Confounding by non-imaging variables such as age and gender can have undesirable effects 

on the output of MVPA. We show using simulated and real data how confounding of the 

disease, image relationship may lead to identification of false disease patterns and spurious 

results. Thus, confounding can undermine the goals of MVPA. We discuss the implications 

of “regressing out” confounding effects using voxel-wise linear models and propose an 

alternative based on inverse probability weighting.

The structure of this paper is the following. Section 2 provides a brief review of the use of 

MVPA in neuroimaging with examples of its implementation in various disease applications. 

In particular, we focus on the use of the support vector machine (SVM) as a tool for MVPA. 

In Section 3, we distinguish the target parameters associated with goals (i) and (ii) above and 

discuss how an analysis must reflect the primary goal. Additionally, we address the issue of 

confounding by reviewing current practice in imaging and proposing an alternative 

approach. In Section 4, we illustrate the issues discussed in Section 3 using simulated data. 

Section 5 presents an application of the methods to data from an Alzheimer’s disease 

neuroimaging study. We conclude with a discussion in Section 6.

2 Multivariate Pattern Analysis in Neuroimaging

A popular MVPA tool used by the neuroimaging community is the support vector machine 

(SVM) [7, 27, 60]. This choice is partly motivated by the fact that SVMs are known to work 

well for high dimension, low sample size data [54]. Often, the number of voxels in a single 

MRI can exceed one million depending on the resolution of the scanner and the protocol 

used to obtain the image. The SVM is trained to predict disease class from the vectorized set 

of voxels that comprise an image. In general, feature weights are taken to describe the 

contribution of each voxel to the classification function. Alternatives include penalized 

logistic regression [59] as well as functional principal components and functional partial 

least squares [46, 66]; additionally, unsupervised methods are gaining ground. Henceforth, 

we focus on MVPA using the SVM.

We introduce SVMs by supposing that outcome-feature pairs exist of the form , 

where yi ∈ {−1, 1} and xi ∈ ℝp for all i = 1,…,n. The hard-margin linear SVM solves the 

contrained optimization problem

(1)
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where v ∈ ℝp and b ∈ ℝ. When the data are not linearly separable, the soft-margin SVM 

allows classification errors to be made during training through the use of slack variables ξi 

with associated penalty parameter C. In this case, the optimization problem becomes

(2)

where C ∈ ℝ is a tuning parameter, and ξ ∈ ℝn consists of elements ξi. However, in high-

dimensional problems where the number of features is greater than the number of 

observations, the data are always seperable by a linear hyperplane [42]. Thus, MVPA is 

often applied using the hard-margin SVM in (1) with a linear kernel. For example, this is the 

approach implemented by: Bendfeldt et al. [3] to classify subgroups of multiple sclerosis 

patients; Cuingnet et al. [10] and Davatzikos et al. [11] in Alzheimer’s disease applications; 

and Liu et al. [38], Gong et al. [25], and Costafreda et al. [8] for various classification tasks 

involving patients with depression. This is only a small subset of the relavant literature, 

which illustrates the widespread popularity of the approach.

3 MVPA and the Role of Confounding

Let D ∈ {0, 1} be an indicator of disease; let A ∈ ℝr denote a vector of non-image 

covariates; and let X ∈ ℝp denote a vectorized image with p voxels. Upper-case letters 

denote random variables and lower-case letters denote observed data. Suppose D and A both 

affect X. For example, Alzheimer’s disease is associated with atrophy in the brain that is 

manifested in structural MRIs, and age is a non-image covariate that also affects brain 

structure.

Before discussing the role of confounding in MVPA, we comment on a subtlety of the 

approach that we refer to as “marginal versus joint MVPA.” The issue is simply whether one 

is interested in estimating disease patterns marginally across non-imaging variables such as 

age and gender, or jointly with these variables. Suppose data arise from P0(X,D,A), the joint 

distribution of X, D, and A, where P0 has the property that P0(D | A) = P0(D). That is, 

P0(X,D,A) = P0(X | D,A)P0(D)P0(A). We define the target parameters of both marginal and 

joint MVPA in terms of P0(X,D,A) as follows. Let  denote a set of classifiers cJ : (x,a) → 
{−1, 1} that map observed input X = x and A = a to a predicted class cJ(x, a) ∈ {−1, 1}. 

Define ℒ (y, y′) to be a loss function that penalizes misclassification such as squared error 

loss, (y – y′)2. Let  be the solution to

(3)

Linn et al. Page 3

Int J Biostat. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where E0 denotes expectation with respect to P0. Thus,  is a classifier in the set  that 

minimizes the expected loss under P0; we define  to be the target parameter in joint 

MVPA. Similarly, let  denote a set of classifiers cM : x →{−1, 1} that map observed 

input X = x to a predicted class cM (x) ∈{−1, 1}. Let  be the solution to

(4)

where E0 denotes expectation with respect to P0. Thus,  is a classifier in the set  that 

minimizes the expected loss under P0; we define to be the target parameter in marginal 

MVPA.

It follows directly that

(5)

because  is a larger class than . As a concrete example, suppose  is chosen to be the 

set of all linear classifiers so that cJ(X,A) has the form , where b, vx, va 

are unknown parameters to be estimated using training data. Similarly, suppose  is chosen 

to be the set of all linear classifiers so that cM(X) has the form , where b, ux 

are unknown parameters to be estimated using training data. Then,

(6)

and

(7)

Conclude that (5) holds because the minimization in (7) is over a smaller set than that of (6).

Thus, if both training and test data arise from P0, it is beneficial to perform joint MVPA in 

terms of expected loss. In other words, if non-imaging variables A are associated with the 

image X in a way that is informative of disease, it might be of interest to estimate disease 

patterns jointly with non-imaging variables. In this case, the resulting estimated weight 

pattern would offer insight to the relative contribution of image features versus demographic 

and other clinical variables to the discriminative rule. On the other hand, if the research aim 

is to strictly evaluate the contribution of an image to discrimination, one could perform 

marginal MVPA.
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3.1 MVPA for Descriptive Aims

When the goal of MVPA is to understand patterns of change in the brain that are attributable 

to a disease, the ideal dataset would contain two images for each subject: one where the 

subject has the disease and another at the same point in time where the subject is healthy. Of 

course, this is the fundamental problem of causal inference, as it is impossible to observe 

both of these potential outcomes [30, 52]. In addition, confounding of the image-disease 

relationship presents challenges. Figure 2 depicts confounding of the D, X relationship by a 

single confounder, A. Training a classifier in the presence of confounding may lead to biased 

estimation of the underlying disease pattern, regardless of whether marginal or joint MVPA 

is performed. This occurs when classifiers rely heavily on regions that are strongly 

correlated with confounders instead of regions that encode subtle disease changes [37]. 

Failing to address confounding in MVPA can lead to a false understanding of image features 

that characterize the disease. For the remainder of this section, we consider the context of 

marginal MVPA, but the ideas extend easily to joint MVPA. To simplify notation we 

abbreviate cM and  as c and , respectively. In addition, we use the phrase “no 

confounding” to mean D is independent of A marginally across X, i.e., pr(D | A) = pr(D).

The target parameter is defined in terms of P0(X,D,A), the joint distribution of X, D, and A 
under no confounding. Let  denote a set of classifiers c : x → {−1, 1} that map observed 

input vector X = x to a predicted class c(x) ∈ {−1, 1}. As in the previous section, ℒ(y,y′) is 

a loss function that penalizes misclassification. Let  be the solution to

(8)

where E0 denotes expectation with respect to P0. Thus, c* is a classifier in the set  that 

minimizes the expected loss under no confounding. For a given set , the classifier c∗ is our 

target parameter. The problem is that in the context of confounding, the observed data are n 
independent and identically distributed training vectors (Xi,Di,Ai) sampled from some other 

joint distribution, say P(X,D,A), instead of P0(X,D,A).

To illustrate the effects of confounding, consider a toy example with a single confounder A, 

two features X1 and X2, and a binary outcome D. In Alzheimer’s disease, A might be age, D 
an indicator of disease, and X1 and X2 gray matter volumes of two brain regions. We 

generate N = 1,000 independent observations from the generative model

(9)

Note that (9) has the property that P(D|A) = P(D) so that data generated from this model 

have joint distribution P0(X,D,A). The data are plotted in the top three panels of Figure 3 

and the linear SVM decision boundary learned from the sample is drawn in gray in the top 

right panel. Next, we take a biased sample of size n = 400 from the original training 
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observations to induce confounding. In the biased sample, A mimics the confounding effect 

of age in Alzheimer’s disease in two ways: (i) we give larger values of A a higher 

probability of being sampled with D = 1, and (ii) A has a decreasing linear effect on the 

expected value of X1 and X2 as displayed in Figure 3. The target parameter is the gray line 

in the top right panel, which is the SVM decision boundary learned from the features X1 and 

X2 in the unconfounded data. The decision boundary learned from the confounding-induced 

sample is shown in black in the bottom right panel. Confounding by A shifts the decision 

boundary and obscures the true relationship between features X1 and X2.

There is some variation in the definition of confounding in the imaging literature, making it 

unclear in some instances if, when, and why an adjustment is made. For example, [18] 

recommend correcting images for age effects even after age-matching patients and contols. 

In an age-matched study, age is not a confounder and adjusting for its relationship with X is 

unnecessary. To address confounding, one approach proposed in the imaging literature is to 

“regress-out” the effects of confounders from the image X. This is commonly done by fitting 

a (usually linear) regression of voxel on confounders separately at each voxel and 

subtracting off the fitted value at each location [18, 22]. The resulting “residual image” is 

then used in MVPA. Formally, the following model is fit using least squares, separately for 

each j = 1,…, p:

(10)

where A is now a vector of potential confounders. The least squares estimates  and 

define the jth residual voxel,

Combining all residuals gives the vector  which is used as the feature 

vector in the MVPA classifier. We henceforth refer to this method as the adjusted MVPA.

A similar procedure is to fit model (10) using the control group only [18]. We refer to this 

approach as the control-adjusted MVPA. Let  and  denote the least squares estimates 

of β0,j and β1,j when model (10) is fit using only control-group data. The control-group 

adjusted features used in the MVPA classifier are then , where 

.

A comparison of the adjusted and control-adjusted MVPA features is displayed in Figure 4. 

Model (9) was used to generate the data and a biased subsample was taken to induce 

confounding of the X1, D relationship by A. The first two plots of Figure 4 display original 

feature X2 and the adjusted MVPA feature, . The residuals  are orthogonal to A across 

D by definition of least squares residuals. However, marginal separability of the classes on 

 is much less than marginal separabilty of the classes on the original feature X2. This 
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implies that using adjusted features for marginal MVPA may have undesirable consequences 

on discrimination accuracy and the estimated disease pattern. The right two plots in Figure 4 

show that the contol-adjusted MVPA fails to remove the association between X2 and A. That 

is, higher  values correspond to lower values of A and lower values of  correspond to 

higher values of A. Thus, Figure 4 suggests that regression-based methods for addressing 

confounding are ineffective, motivating our proposed method described next.

3.1.1 Inverse Probability Weighted Classifiers—Having formally defined the 

problem of confounding in MVPA, we now propose a general solution based on inverse 

probability weighting (IPW) [6, 29, 49, 50]. We show how weighting observations by the 

inverse probability of D given A recovers an estimate of the objective function in problem 

(8) when data are sampled from P(X,D,A) rather than P0(X,D,A). The idea of weighting 

observations for classifier training is not new, and applying IPW in this way is directly 

comparable to using sample selection weights to address dataset shift, a well-established 

concept in the machine learning literature [see, for example: 40, 44, 65]. Similar versions of 

the following argument can be found in many papers on dataset shift, but we include it here 

for completeness. We work in the context of marginal MVPA, but the ideas extend directly 

to joint MVPA.

The expectation in problem (8) can be written as

(11)

In the context of confounding, data are sampled not from P0(X,D,A), but instead from 

P(X,D,A). Training a classifier using a sample of data from P(X,D,A) targets the objective 

function

(12)

rather than expression (11). The right hand side of (12) is equivalent to

(13)

Define w = dP(D | A)=pr(D = 1 | A)𝟙D=1+pr(D=−1|A)𝟙D=−1. Then, expression (13) can be 

written as

(14)

Note that the “unconfounded” population distribution P0(X,D,A) may not be unique because 

thus far we have not restricted P0(A) P0(D) in any way. Henceforth, we assume P0(A) = 

P(A), i.e., the marginal distribution of confounders from which the observed sample was 

drawn. We also assume dP0(X | D,A) = dP(X | D,A), meaning the distribution of the image is 
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the same in both populations conditional on disease status and non-imaging variables. In 

addition, let pr0(D = d) denote the marginal probability of observing D = d under P0(X,D,A). 

Without loss of generality, assume pr0(D = 1) = pr0(D = −1) = 1/2, corresponding to a 

hypothetical balanced population where each patient’s two potential outcomes, one under 

disease presence and one under absence of disease, are observed. Then, under these 

assumption and noting that dP0(D | A) = dP0(D) = pr0(D = 1)𝟙D=1+pr0(D = −1)𝟙D=0 = 1/2, 

expression (14) can be written as

Thus, we have shown that E[ℒ {c(X),D}] ∝ E0[wL {c(X),D}], and hence

(15)

In practice, the inverse probability weights are often unknown and must be estimated from 

the data. One way to estimate the weights is by positing a model and obtaining fitted values 

for the probability of disease given confounders A, also known as the propensity score [2, 

51]. Logistic regression is commonly used to model the propensity score, however, more 

flexible approaches using machine learning have also received attention [36]. Using logistic 

regression, the model would be specified as

Then, the estimated inverse probability weights would follow as

where expit(x) is the inverse of the logit function, expit(x) = ex/(1 + ex).

Inverse probability weighting (IPW) can be naturally incorporated into some classification 

models such as logistic regression. Subject-level weighting can be accomplished in the soft-

margin SVM framework defined in expression (16) by weighting the slack variables. 

Suppose the true weights wi are known. To demonstrate how IPW can be incorporated in the 

soft-margin SVM, we first consider approximate weights, Ti, defined as subject i’s inverse 

probability weight rounded to the nearest integer. For example, suppose subject i’s inverse 

weight is 1/wi = 3.2; then, Ti = 3. Next, consider creating an approximately balanced 

psuedo-population which consists of Ti copies of each original subject’s data, i = 1,…,n. 

This psuedo-population therefore has  observations. The soft-margin SVM in 

the psuedo-population is then
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However, in the approximately balanced population, some of the  pairs are identical 

copies which implies some of the constraints are redundant. For example,  and 

 are identical copies that correspond to (y1,x1) in the original sample. Then it can be 

seen that  must hold in (16). Let . Then, the constraints

in (16) are equivalent to

In fact, assuming all observations in the original n samples are unique, there are n unique 

constraints of the form  and ξi ≥ 0, corresponding to the original i = 1,

…,n samples. In addition, it is easy to show that . Thus, (16) is 

equivalent to the original data soft-margin SVM with weighted slack variables in the 

objective function:

(16)

The previous argument suggests one could use the wi rather than the truncated versions, Ti. 

However, to our knowledge there does not exist an implementation of the SVM in R [45] that 

enables weighting the slack variables at the subject level. Implementation of subject-level 

weighting is available in the library libSVM [5]. Practitioners familiar with MATLAB or 

Python can implement the weighted SVM directly or by calling one of these languages from 

R using a tool such as the “rPython” package (http://rpython.r-forge.r-project.org/). We are 

currently working on an R implementation of the IPW-SVM. In the meantime, we propose 

an approximation based on the truncated inverse weights for practitioners who are only 

Linn et al. Page 9

Int J Biostat. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://rpython.r-forge.r-project.org/


familiar with R. The full details of our proposed algorithm are presented below. We 

implemented the following algorithm in Section 4 using the package “e1071” in R.

Approximate IPW Algorithm for SVMs

1. Estimate the propensity scores for each subject in the training data. For 

example, we might posit the logistic regression model,

and estimate the parameters using standard software. Denote the estimated 

probabilities by  for i = 1,…,n.

2. Let  denote the estimated inverse probability weight for subject i, 
truncated to the nearest integer. For example, if subject i has

then .

3.
Create an augmented sample of size  that consists of  repeated 

observations of the original data from subject i.

4. Train the SVM classifier using the augmented sample from Step 3.

The augmented sample approximates a sample of data from P0(X,D,A). The IPW-SVM 

algorithm only works when the data are not linearly separable. Otherwise, there are no slack 

variables in the optimization problem to weight. To provide intuition, suppose we are trying 

to separate two points in two-dimensional space. The optimization problem is then the hard-

margin SVM formulation:

Adding copies of the data only adds redundant constraints that do not affect the optimization 

at all. This is a major issue in neuroimaging because the data often have more features than 

observations and are thus linearly separable. When p ≥ n, we propose the following 

approach based on principal component analysis.

Approximate IPW-PCA Algorithm for SVMs

1. Perform Steps 1–3 of the Approximate IPW Algorithm for SVMs.

2. Let Z denote the n∗ × p psuedo-population feature matrix with columns 

corresponding to (imaging) features and rows corresponding to  copies 
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of subject i’s original data for i = 1,…,n. Obtain the first several principal 

component scores from the eigen-decomposition of Z⊤Z which explain a 

prespecified proportion of variation in the psuedo-population data.

3. Train the SVM classifier using the principal component scores obtained 

from the augmented sample. This sample approximates a sample of 

principal component scores arising from P0(X,D,A).

Unfortunately, the resulting weights no longer enjoy the same interpretability as the weights 

from a SVM that inputs the features directly. The weights now correspond to linear 

combinations of voxels or regions that are discriminative rather than the individual voxels or 

regions. We are currently exploring alternatives to address confounding when p ≥ n that 

retain the original interpretability of the features.

To summarize the main points in this section, Figure 5 provides a decision tree with 

recommended analysis plans for given data structures and scientific aims that are applicable 

when p < n. We believe tools such as Figure 5 may be useful to help initiate or guide 

discussion with collaborators about the design and analysis of future neuroimaging studies.

3.2 Remark on MVPA for Biomarker Development

In constrast to being potential confounders that bias results in the previous section, non-

imaging variables play a different, and advantageous, role when MVPA is used to develop 

biomarkers for disease diagnosis, progression, or treatment response. It is unlikely that the 

true underlying distribution of non-imaging variables such as age is balanced with respect to 

disease. That is, it is unlikely a matched study is representative of the population to which a 

derived biomarker will be applied. As a result, matched studies or IPW methods that create 

balance with respect to the disease and non-imaging variables may not result in the optimal 

classifier or biomarker. This observation has been made previously in different contexts, 

including the in the statistical literature [32] and the machine learning literature [40, 44].

In machine learning, dataset shift is the phenomenon where the joint distribution of training 

data differs from the data distribution where the classifier will be applied [40, 44]. Covariate 
shift is a special case of dataset shift which corresponds to a shift in the feature distribution 

used to obtain predictions from the classification model. Solutions usually involve some 

version of observation weighting or moment matching to make the training and test feature 

distributions more comparable [4, 26, 31, 55, 57, 58]. Applying dataset shift methods to 

neuroimaging data has the potential to improve biomarker effectiveness and generalizability. 

For example, suppose a biomarker is developed using imaging and demographic data from a 

matched study. That is, patients have been selected so that there are equal numbers of cases 

and controls for all values of the demographic variables. However, suppose it is known that 

in the general population the disease is more prevalent in older patients. Then, the matched 

study data and the population to which the biomarker will be applied come from different 

joint distributions. Covariate shift methods enable prior knowledge of the population 

distribution to be leveraged to attain better predictive performance of the biomarker. Figure 6 

provides a decision tree with recommended analysis plans when p < n and the scientific aim 

of MVPA is to optimize predictive performance.
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4 Simulations

In this section we evaluate the finite sample performance of the approximate IPW-SVM 

relative to the regression methods discussed in Section 3.1. We simulate training data from 

the following generative model:

(17)

in which A is not a confounder because it does not affect D. This is the same model used for 

the toy examples in Section 3.1. For each of M = 10,000 iterations, we first generate a 

sample of size N = 1,000 from model (17) and train two SVMs: (i) a marginal SVM with 

only X1 and X2 as features, and (ii) a joint SVM with X1, X2, and A included as a features. 

The weight patterns from these are regarded as the target parameters for our comparisons. 

Next we induce confounding by taking a biased subsample of size n = 400 from the 

unconfounded training data. We apply two marginal methods to the biased sample: the 

marginal unadjusted SVM and the marginal IPW-SVM. In addition, we apply six joint 

methods to the biased sample: the joint unadjusted SVM, the adjusted SVM with and 

without A as a feature, the control-adjusted SVM with and without A as a feature, and the 

joint IPW-SVM. The adjusted and control-adjusted SVM are regression-based methods 

commonly used in the neuroimaging literature that are described in Section 3.1.

We use L2 distance between the weight vectors as one critera for comparison. Additionally, 

we note that the solution to optimization problem (8) in Section 3, which we define as our 

target parameter for a joint analysis, acheives optimal test accuracy in the unconfounded 

population among joint MVPA methods. Similarly, the solution to optimization problem (4) 

in Section 3, which we define as our target parameter for a marginal analysis, acheives 

optimal test accuracy in the unconfounded population among marginal MVPA methods. 

Thus, at each iteration we also generate a test data set of size S = 1,000 from model (17) in 

order to compare the test accuracy of all the methods. We expect methods that attain weight 

patterns closest to the corresponding true weight pattern will also attain the highest test 

accuracies. Results are presented separately for marginal and joint MVPA below.

4.1 Marginal MVPA Results

As noted in Section 3.1, the adjusted and control-adjusted SVMs are not marginal methods 

because they indirectly incorporate information about A in the regression-adjusted image 

features. Thus, in this section we compare only the approximate IPW-SVM to the unadjusted 

SVM which trains on the original data without addressing confounding. Figure 7 displays 

boxplots of the average test accuracy and average L2 distance from the true weights for M = 

10,000 iterations. The IPW-SVM attains nearly optimal average test accuracy and performs 

much better than the unadjusted SVM in terms of average L2 distance. Finally, we looked at 

the percentage of iterations where the true order of the absolute value of the weights was 

correctly estimated. The IPW-SVM returns the correct pattern of feature importance 93% of 
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the time, in comparison to a dismal 1% by the unadjusted SVM. The poor performance of 

the unadjusted SVM is due to its reliance on the false separability caused by the confounded 

relationship between D and A.

4.2 Joint MVPA Results

In this section we compare all joint MVPA methods to the joint IPW-SVM. Figure 8 

displays boxplots of the average test accuracy and average L2 distance from the true weights 

for M = 10,000 iterations. The IPW-SVM again attains nearly optimal average test accuracy. 

The control-adjusted SVM without age as a feature performs second-best on average. In 

terms of average L2 distance, the IPW-SVM and control-adjusted SVM without age perform 

approximately the same and outperform all other methods on average.

In some cases, the IPW-SVM outperforms the control-adjusted SVM. To demonstrate, we 

repeated the joint MVPA replacing X1 and X2 in model (9) with

Results are displayed in Figure 9. The IPW-SVM performs best on average in terms of 

prediction accuracy and L2 distance between the true and estimated weights.

5 Application

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://www.adni.loni.usc.edu) is 

a $60 million study funded by public and private resources including the National Institute 

on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and 

Drug Administration, private pharmaceutical companies, and non-profit organizations. The 

goals of the ADNI are to better understand progression of mild cognitive impairment (MCI) 

and early Alzheimer’s disease (AD) and to determine effective biomarkers for disease 

diagnosis, monitoring, and treatment development. MCI is characterized by cognitive 

decline that does not generally interfere with normal daily function and is distinct from 

Alzheimer’s disease [24]. However, individuals with MCI are considered to be at risk for 

progression to Alzheimer’s disease. Thus, studying the development of MCI and factors 

associated with progression to Alzheimer’s disease is of critical scientific importance.

We apply the IPW-SVM to structural MRIs from the ADNI database. Before performing 

group-level analyses, each subject’s MRI is passed through a series of preprocessing steps 

that facilitate between-subject comparability. We implemented a multi atlas segmentation 

pipeline [17] to estimate the volume of 137 regions of interest (ROIs) in the brain for each 

subject and divide each region by that subject’s intracranial volume to adjust for differences 

in individual brain size. The data we use here consist of 204 patients diagnosed with MCI 

and 178 healthy controls (CN) between the ages of 70 and 80. Neurodegenerative diseases 

are associated with atrophy in the brain, and thus the MCI group has smaller volumes in 

particular ROIs on average compared to the CN group. In this analysis, we study the 

consequences of confounding on a MVPA of the ADNI data which aims to identify 

multivariate patterns of atrophy associated with MCI.
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The ADNI study was matched on confounders such as age and gender. This is advantageous 

for our analysis because we are able to first train a SVM using the full data to classify MCI 

versus CN patients. We take the resulting weight pattern as the target parameter. To induce 

confounding, we take a biased subsample where older MCI patients and younger CNs are 

more likely to be selected. Results from the unconfounded, full-data SVM are compared to 

results from six methods that we apply to the confounded subsample: (i) an unadjusted SVM 

(Unadj) learned from the biased sample with age included as a feature, (ii) the adjusted 

SVM (Adj) described in Section 3.1 with and without age as a feature, (iii) the control-

adjusted SVM (CN-Adj) [18] described in Section 3.1 with and without age as a feature, and 

(iv) the IPW-SVM described in Section 3.1 with age included as a feature. We repeat this 

process for 10,000 biased samples and present results averaged over these iterations.

Boxplots of the euclidean distance between the estimated and true weight vectors are shown 

in Figure 10. The unadjusted, CN-adjusted without age, CN-adjusted with age, and IPW-

SVM produce similar results, and these methods reproduce weight patterns closest to the 

truth when compared to the adjusted SVMs with and without age. The adjusted SVM 

without age appears unstable. In fact, we truncated the y-axis for better visual comparison of 

the methods, cutting off over a hundred additional weight distances for the adjusted SVM 

that exceeded 3.25.

In addition to performing MVPA on the full data, we apply the PCA approach detailed in 

Section 3.1. To obtain the “true” low-dimensional weight pattern, we perform PCA on only 

the image features from the full data and retain the first three PC scores. For each of 10,000 

iterations, we again take a biased subsample to induce confounding. We compare the 

unadjusted, adjusted, control-adjusted, and IPW-SVM using only the PC scores as features 

and using the PC scores with age as features. For the regression-based adjusted SVM and 

control-adjusted SVM, we perform PCA on the image after regressing out the region-wise 

age effects. For the IPW-PCA-SVM we follow the algorithm in Section 3.1. Figure 11 

provides boxplots of the euclidian distance between the estimated and true weight vectors. 

On average the IPW-PCA-SVM performs better than the other methods, but several 

iterations yielded undesirable performance. This is most likely due to occasionally very 

large estimated inverse probability weights which have large influence on the psuedo-

population where the SVM is trianed. Overall, it seems that IPW methods work well in 

problems with a small number of features and when there is sufficient overlap in the 

distribution of confounders between the two groups so that the estimated inverse probability 

weights are stable.

6 Discussion

The IPW framework for MVPA is an intuitive, principled way to address confounding. 

When applied to classification frameworks in the context of confounding, IPW approaches 

can identify true underlying patterns associated with disease. We believe there are several 

advantages to addressing confounding in MVPA using IPW. First, as demonstrated by 

simulation results, the IPW approach is estimating the actual target parameter of interest, 

which is to recover disease patterns that are present under no confounding. In addition, a 

nice implication is that MVPA can be implemented even in unmatched studies. In cases 
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where a matched study is too expensive or otherwise infeasible, IPW methods enable 

researchers to still perform MVPA and obtain correct and reproducible results. Finally, IPW 

is simple and intuitive, and the general idea is well-established in the causal inference and 

statistics communities. Thus, future research aiming to perform inference on the estimated 

disease patterns can rely on existing theory. We are currently working on extending existing 

inference methods for MVPA [23] to account for confounding.

Confounding in neuroimaging is a form of class imbalance that depends on non-imaging 

variables such as age and gender. We have proposed a solution that weights by the 

conditional probability of class membership given confounders, i.e., inverse probability 

weighting. It is possible alternative methods for dealing with class imbalance could be 

extended as well [28].

In high-dimensional problems, we conjecture that confounding may not have as much of an 

effect on the maximum margin hyperplane of the SVM due to the curse of dimensionality. 

This might explain why all methods performed similarly on the ADNI data. Further 

exploring the effects of confounding on high-dimensional classification models is imperative 

for neuroimaging research and may greatly impact current practice in the field.
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Figure 1. 
Marginally, X1 and X2 discriminate poorly between the groups, but perfect separability is 

attained when X1 and X2 are considered jointly.
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Figure 2. 
The relationship between D (disease) and X (image) is confounded by A (e.g., age), which 

affects both D and X.
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Figure 3. 
Top row: unconfounded data generated from Model (9). Bottom row: biased-sample data 

with X1, X2, D relationship confounded by A. The target parameter is the SVM boundary 

learned from the data in the top right plot, shown in gray. The black line is the SVM 

boundary learned from the confounded sample in the bottom right plot.
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Figure 4. 
Comparison of adjusted and control-adjusted MVPA features. Left to right: original X2 with 

estimated age effect; residuals, ; original X2 with contol-group estimated age effect; 

residuals, . Lines are the least squares fit of feature on A using the full and control data, 

respectively.
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Figure 5. 
Recommended analysis plan for estimating disease patterns when the data have more 

observations than features.
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Figure 6. 
Recommended anaylsis plan for optimizing predictive performance, possibly for the purpose 

of biomarker development, when the data have more observations than features.
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Figure 7. 
Left: Percent test accuracy of the true and estimated SVM decision rules from the marginal 

MVPA methods. Right: L2 distance between the true and estimated weight vectors from the 

marginal MVPA methods.
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Figure 8. 
Left: Percent test accuracy of the true and estimated SVM decision rules from the joint 

MVPA methods. Right: L2 distance between the true and estimated weight vectors from the 

marginal MVPA methods.
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Figure 9. 
Left: Percent test accuracy of the true and estimated SVM decision rules from the joint 

MVPA methods. Right: L2 distance between the true and estimated weight vectors from the 

marginal MVPA methods.
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Figure 10. 
Euclidean distance between the true and estimated weight patterns for all joint MVPA 

methods using the 137 volumes.
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Figure 11. 
Euclidean distance between the true and estimated weight patterns. Left: First three PC 

scores as features. Right: First three PC scores and Age as features.
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