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Abstract

As a ‘case-study’ to demonstrate an approach to establishing a fertility-intent prediction model, we 

used data collected from recently diagnosed HIV-positive women (N=69) and men (N=55) who 

reported inconsistent condom use and were enrolled in a sexual and reproductive health 

intervention in public sector HIV care clinics in Cape Town, South Africa. Three theoretically-

driven prediction models showed reasonable sensitivity (0.70 to 1.00), specificity (0.66 to 0.94), 

and area under the receiver operating characteristic curve (0.79 to 0.89) for predicting fertility 

intent at the six-month visit. A k-fold cross-validation approach was employed to reduce bias due 

to over-fitting of data in estimating sensitivity, specificity, and area under the curve. We discuss 

how the methods presented might be used in future studies to develop a clinical screening tool to 

identify HIV-positive individuals likely to have future fertility intent and who could therefore 

benefit from sexual and reproductive health counseling around fertility options.
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Introduction

With increased availability and access to antiretroviral (ARV) drugs, many HIV-positive 

women and men have begun to feel more assured that they can lead healthy and productive 

lives, including realizing their desires to have children. While it often has been assumed that 

HIV-positive individuals do not want children, accumulating evidence indicates that some 

HIV-positive individuals throughout the HIV care trajectory -- from recent diagnosis to 

achievement of viral suppression as a result of ARVs -- wish to have children [1–10]. South 

Africa has been the site of numerous studies of fertility intentions among HIV-positive 

persons. For example, in Cape Town, South Africa, about 50% of HIV-positive women and 

men who entered the HIV care system were found to be seeking or were open to the 

possibility of having children [11]. Eleven percent of women attending HIV Care services in 

Cape Town had been pregnant since becoming aware of their diagnosis, and nearly all 

pregnancies were unintended [8].

Many studies have identified correlates of fertility intent among HIV-positive persons [5–

19], with the majority examining the cross-sectional association between variables of 

interest and participants’ fertility intent. However, use of prior information to predict future 

fertility intent, often referred to as a “prediction model”, has rarely been undertaken. 

Prediction models serve an additional purpose beyond that of testing associations between 

single variables and the outcome. In an association study, the main focus is to examine the 

relationship between the outcome and independent variables. While the primary goal is to 

predict a diagnostic or prognostic outcome, the strength of the association may not provide 

sufficient information for prediction. For example, in our prior analysis of baseline data from 

a study of fertility intentions among HIV-positive women and men, we found a significant 

association between gender and fertility intent (OR=5.64, p<0.001), as well as educational 
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level and fertility intent (OR=0.79, p<0.001) [18]. Such findings indicated that men are 5.64 

times as likely as women to have fertility intent, and participants with less than a high school 

education are 3.22 times as likely as those who graduated from high school to have fertility 

intent. However, an odds ratio or any other statistics measuring the strength of association 

(such as risk ratio and risk difference) does not reveal the probability of fertility intent for a 

particular individual. That is to say that knowing a patient’s gender and educational level as 

well as their strength of association with the outcome is not enough for a clinician to 

determine the likelihood of patients’ future fertility intentions. To answer a question such as 

“Does a person with certain characteristics (e.g., highly educated women) have a high 

likelihood of fertility intent?” a prediction model for fertility intent is needed. A prediction 

model with good ability to discriminate allows one to properly predict a binary outcome that 

may be difficult or costly to obtain at the current time, such as cancer or neurological 

disease, using information that is relatively easy to collect or available prior to the 

development of the outcome [19–23].

Prediction models have been widely used in studies evaluating responses to clinical 

interventions, combining a number of characteristics to predict a diagnostic or prognostic 

outcome [22]. This modeling approach guides the selection and interpretation of subsequent 

diagnostic tests, and provides estimates of the clinical probability of having certain diseases 

[23–25]. Thus, identification of potential clinical markers can help clinicians predict which 

patients are at high risk for a particular disease. In behavioral studies, a prediction model 

could be used to predict participants’ future behavior or intentions based on certain 

characteristics included in the model. Such models have been established and applied to 

predict depression [26] and suicidal intent [27] in various populations.

In this paper, a case-study is used to illustrate an approach to developing a prediction model 

rather than trying to establish a “definitive” prediction model of fertility intent. The models 

are employed to illustrate how such information could help clinicians and counselors address 

reproductive health issues more effectively with their HIV-positive patients -- by identifying 

those who might benefit from discussion of pregnancy desires, regardless of where they fall 

on the HIV care continuum. We further illustrate the added value of a prediction model for 

clinical and social scientists above what we can learn from testing associations between 

predictor variables and outcomes, by developing and evaluating several prediction models 

for fertility intent among a sample of HIV-positive women and men in Cape Town, South 

Africa. Such a statistical approach provides a useful tool for future researchers seeking to 

model determinants not only of fertility intent but of other behaviors that have public health 

significance.

Methods

Study population, recruitment and intervention

We used available data from Emtonjeni (spring of knowledge), a recently completed Phase II 

randomized futility trial focused on promoting reproductive choices and sexual health 

among women and men living with HIV. This study was designed to evaluate a multi-level 

intervention to integrate sexual and reproductive health into care for newly-diagnosed HIV-

positive persons who were ineligible for antiretroviral therapy (ART) due to CD4+ counts 
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≥200mm. Although this pre-ART group was monitored every six months for ARV eligibility, 

they were not viewed as high a priority for services relative to individuals seen in HIV 

testing, PMCT+ and ART settings. Our focus on HIV-positive persons at their entry point 

into the HIV care system allowed for “early” intervention, as significant numbers of women 

become pregnant prior to becoming eligible for ART [8;28]. At the time of study 

implementation, between August 2010 and August 2011, neither general medical nor HIV-

specific treatment practices routinely addressed concurrent HIV/STI and sexual and 

reproductive health needs of people living with HIV.

Four typical public sector HIV care clinics in Cape Town, South Africa serving low-income 

individuals from the surrounding townships were pair matched, and the two clinics within 

each pair were randomized to either a three-session provider-delivered enhanced 

intervention or a standard-of-care counselor-delivered intervention. Through values-neutral 

counseling, the enhanced intervention aimed to help individuals explore the pros and cons of 

conception vs. pregnancy prevention, and approaches to STI prevention within their unique 

life circumstances, with the goal of facilitating personal decision-making to optimize their 

own health and that of existing and future child(ren). In addition to counselling of HIV-

positive individuals, the enhanced intervention included on-site contraceptive services and a 

brief “milieu intervention” for staff. The major outcome was adherence to safer sex 

guidelines (no condom-unprotected sex) among those wishing to avoid pregnancy, or 

adherence to safer conception guidelines among those seeking conception. Data from this 

study allowed us to delineate the proportion of HIV-positive women and men who did and 

did not opt to seek pregnancy, and whether pregnancies were pursued in line with best 

practices recommendations.

Prior to receiving their CD4+ cell count results, a clinic nurse gave clients in the waiting 

area an Information Sheet describing the study (as one about sexual and reproductive health 

services for HIV-positive women and men aimed at increasing understanding about how to 

improve the quality of these services within the HIV care system). Those who were 

interested were referred to study staff for more information. Potential participants were not 

informed of the study eligibility criteria.

Eligible participants had to be ≥18 years, attending the clinic to receive their first CD4+ cell 

count results since testing HIV-positive and therefore not on ARVs, not pregnant, report 

unprotected sex in prior three months and/or intent to conceive within the next six months, 

and be willing and able to provide informed consent. These criteria were selected because 

our intervention focused on both avoidance of pregnancy and adherence to safer conception 

among HIV-positive individuals who were intending to conceive. The sample for this 

analysis was limited to 197 participants who reported inconsistent condom use in the past 3 

months, some with and without immediate fertility intent at baseline. There were 151 valid 

records on their fertility intent at FU2, and 127 valid records on baseline CD4+ count. We 

excluded 73 participants due to incomplete information on predictor or outcome variables. 

Thus, analyses in this paper are based on 124 complete cases (for all predictors and 

outcomes).
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Ethical considerations

Informed consent (including for access to medical records) was obtained from all interested 

eligible participants. Ethical approval was obtained from [Names Removed for Blind 

Review].

Data collection

Face-to-face interviews were conducted in isiXhosa or English, according to client 

preference, by experienced gender-matched interviewers in privacy in the clinic. The 

baseline interview was administered prior to participants’ receipt of CD4+ cell count results, 

except for eight participants, who completed this interview within one month of receiving 

their results. Participants were again interviewed three months (FU1) and six months (FU2) 

after baseline, although only baseline and FU2 data were included in this analysis. 

Participants received 50 rand ($7.00 US at the time of the study) for completing the baseline 

interview, and 100 rand ($14.00 US at the time of the study) for the 6-month follow-up 

interview.

Measures

The outcome of interest was the participant’s future intention for conception measured at the 

FU2 interview. This binary outcome was created based on the participant’s response to the 

question, “Are you thinking about trying to have a child in the next 12 months?” 

Independent variables considered in the prediction models included baseline measures of (1) 

demographic characteristics (gender, age, educational level, work status [working full-time 

or part-time; self-employed; unemployed], place of residence [living in an informal 

dwelling/rents a room in someone else’s home, or owns/rents home], and number of children 

currently under participant’s care); (2) health status (years since HIV diagnosis and CD4+ 

cell count [from the medical record]); (3) sexual partners and practices (whether the 

participant had a main partner currently or in past 3 months, and if so, whether s/he lived 

with that partner); (4) disclosure of HIV status to main partner; (5) reproductive history over 

past 3 months (contraceptive practices, number of biological children, relying on a hormonal 

method in relationship with current/recent main partner, and participant’s perception of main 

partner’s fertility intent [interested in immediately conceiving a child, no immediate intent, 

uncertain about partner’s intent, or partner uninterested in conceiving a child]); and (6) 

intervention condition (three-session provider-delivered enhanced sexual and reproductive 

health intervention). We asked about fertility intent only of participants, not specifically with 

which partner. “Main” partner variables were used as covariates since presumably women 

and men would know more about main and less about their casual partners; slightly more 

than two-thirds (68.4%) of participants had only a main partner. Although participants were 

asked about the HIV status of their partners, many did not know their partners’ statuses; 

therefore, we excluded this variable from the analysis.

The participant’s fertility intent at baseline also was considered as a potential predictor of 

FU2 fertility intent. In addition, we assessed self-efficacy for communicating with one’s 

partner about safer sex and sexual and reproductive health, a measure comprising 9 items 

with responses in a 4-point Likert format (sample item: ‘How confident are you that you 

could convince [a/your] regular partner in the next 3 months to use condoms?’, response 
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options ranging from ‘very unconfident = 1’ to ‘very confident = 4’; Cronbach’s alpha = 

0.61), and self-efficacy for obtaining information on SRH services, consisting of 4 items and 

using the same format (sample item: ‘How confident are you that you could find additional 

information about contraceptive options at a clinic or hospital?’; Cronbach’s alpha = 0.63).

Procedures to establish a prediction model

To establish a prediction model for fertility intent, we first used the data collected from our 

sample to identify a list of potential predictors for this outcome. A variable was considered a 

potential predictor if it had theoretical relevance, clinical importance (e.g., gender and 

intervention condition), or showed significance in a simple logistic regression [14] to predict 

our outcome. We then used these variables to fit a multiple logistic regression model of the 

form , where p is the 

probability of fertility intent (yes vs. no) at six months follow-up (FU2) given male gender 

(X1), years of education (X2), participant had fertility intent at baseline(X3), number of 

biological children (X4), pill/injectable contraceptive use (X5), and other potential predictors 

(X6 to Xm). After obtaining the estimated regression coefficients β0̂, β̂1, β2̂, β̂3, β4̂, ... , β̂m, 

the predicted probability of fertility intent at FU2, p̂, was then calculated using the formula p̂ 
= exp (β̂0, + β̂1X1 + β̂2X2 +β̂3X3 + β4̂X4 + ··· + β̂mXm )/{1 + exp(β0̂ + β̂1X1 + β2̂X2 + β̂3X3 

+ β̂4X4 + ··· + β̂mXm)}.

Once p̂ for each participant was calculated, we then aimed to choose an optimal cut-off point 

(of p̂) to distinguish between participants with and without fertility intent at FU2. The 

criteria used to select an optimal cut-off point are thoroughly discussed in the literature. 

There are simple criteria that involve only sensitivity and specificity such as (1) setting a 

minimum value for specificity and maximizing sensitivity, or setting a minimum value for 

sensitivity and maximizing specificity [29–31]; (2) maximizing the product of specificity 

and sensitivity [32]; (3) maximizing the sum of specificity and sensitivity (i.e., maximizing 

Youden’s Index) [33]; and (4) maximizing the diagnostic odds ratio [34–36]. More complex 

criteria further take costs of misclassifications into consideration such as (1) the Generalized 

Youden Index [35, 37–38]; (2) cost-benefit methodology [39–41]; and (3) the 

misclassification cost term [42–44]. Criteria based on maximization of the Kappa Index [35; 

45] make full use of the information in the confusion matrix (a 2X2 table that reports the 

number of false positives, false negatives, true positives, and true negatives) to assess the 

improvement over chance prediction.

Costs of misclassifications can also be included in criteria such as the Weighted Kappa 

Index [34; 46]. Alternatively, researchers/clinicians can base their selection of optimal cut-

points on positive predictive value (PPV) and negative predictive value (NPV). Vermont et 

al. [31] discussed criteria (1) to set a minimum value for PPV or NPV or (2) to maximize the 

sum or product of PPV and NPV. Likelihood-based methods such as setting a particular 

value for the negative or positive diagnostic likelihood ratio [47–48], and test-based 

approaches such as minimizing the p-value associated with the statistical Chi-squared test 

which measures the association between the marker and the binary result obtained on using 

the cut-point [49–52] have also been discussed. In cases where prevalence is the parameter 

of primary important, one can use criteria based on setting (1) the closest value to observed 
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prevalence [53] or (2) sample prevalence to predicted prevalence [53–54]. Given that many 

more criteria in addition to the above mentioned ones are available to select the optimal cut-

point, researchers/clinicians should choose the one that best fits their practical needs. Most 

importantly, whatever method is going to be used to select a cut-point, it should be specified 

a priori to preclude researchers from changing the selection criteria after having seen the 

data, to avoid diminishing the scientific rigor and replicability of the study. For simplicity of 

discussion, we chose to maximize the Youden index, which is equal to the sensitivity + 

specificity -1 [33], as our criterion for selecting the optimal cut-point. Once that optimal cut-

point was identified, the predicted fertility intent status at FU2 for each of our study 

participants was determined by the following algorithm: if p̂ was greater than the selected 

cut-point, that participant was classified by the model as having immediate fertility intent at 

6-month follow-up; alternatively, if p̂ was at or below the optimal cut-point, the participant 

was classified by the model as having no immediate fertility intent at 6 months follow-up.

Evaluation of prediction model

To determine the accuracy of a prediction model, we evaluated the model’s discrimination 

ability, i.e., the “ability of the model to distinguish correctly the two classes of outcomes” 

[55]. Sensitivity, specificity, and the area under a receiver operating characteristic (ROC) 

curve (AUC) are often used to evaluate a model’s predictive capacity (probability of correct 

classification), and thus model fit. In Table 1, we define ‘condition’ as the outcome, fertility 

intent at 6-month follow-up, for the prediction model, as determined by a “gold standard” as 

used in medical diagnostics to refer to “disease diagnosis” using the most appropriate and 

widely accepted methods. Results based on a gold standard are usually treated as a substitute 

for the true ‘disease’ status to test a diagnostic method, or, as in this paper, a prediction 

model. In our study, the gold standard was the actual reported fertility intent at FU2, and the 

expected fertility intent from the prediction model was compared to it to evaluate the 

accuracy of the prediction model. Subjects in area A are true positives (tested positive and 

condition positive), subjects in area B are false positives (tested positive but condition 

negative), subjects in area C are false negatives (tested negative but condition positive), and 

subjects in area D are true negatives (tested negative and condition negative). Sensitivity 

refers to the proportion of true positives among total condition positives (A/(A+C) in the 

table), i.e., probability of testing positive, given that the subject is condition positive (having 

certain disease or intent), whereas specificity refers to the proportion of true negatives 

among total condition negatives (D/(B+D) in the table), i.e., probability of testing negative, 

given that the subject is condition negative. An ROC curve, on the other hand, provides 

detailed visual information about the performance of a prediction model. In an ROC curve, 

plotting the sensitivity against 1-specificity for various cut-points from 0 to 1 can help 

researchers to select a better prediction model and corresponding optimal cut-point. 

Specifically, the intercept of the ROC curve with the line at 90 degrees to the no-

discrimination line is equivalent to the Youden index (i.e., sensitivity + specificity −1), so the 

larger the intercept the better the performance of the prediction model. Furthermore, if one 

chooses the Youden index as the selection criterion for identifying the optimal cut-point, the 

corresponding cut-point of the largest intercept in the ROC curve will be the optimal cut-

point. Another useful statistic generated by the ROC curve is the area under the curve 

(AOC). It represents the probability that a randomly chosen condition positive (diseased, or 
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in this case, having fertility intent) subject is (correctly) rated or ranked with greater 

suspicion (probability tested positive) than a randomly chosen condition negative (non-

diseased, or in this case, no fertility intent) subject [19]. Thus, the prediction model with the 

greater area under the curve will have better ability to discriminate patients with and without 

the disease. The classification of sensitivity, specificity, and AUC vary with the nature of the 

‘disease’. For those statistics, one generally considers a value of 0.90 or above as excellent 

and 0.80 or greater as good.

Correction for potential bias in estimating sensitivity, specificity and AUC

As the cut-point for the predicted probability is based on selecting an optimal combination 

of sensitivity and specificity from the data used to build the model, the direct estimate of 

these two statistics using data from the entire sample is upwardly biased [33,56]. Therefore, 

if we take another independent sample from the same population, fit the same model, and 

use the same cut-point to estimate the sensitivity and specificity, the result may not be as 

good as that obtained from the current data. This is called overfitting. To reduce the potential 

for bias due to overfitting, we used a k-fold cross-validation procedure to estimate the 

sensitivity, specificity, and AUC for the derived prediction model [55; 57]. In k-fold cross-

validation, the original sample is randomly partitioned into k equal (or nearly equal) sized 

subsamples. Of the k subsamples, a single subsample is retained as the validation set for 

testing the model, and the remaining k-1 subsamples are used as the training set. The cross-

validation process is then repeated k times, with each of the k subsamples used exactly once 

as the validation set. For each cross-validation process, we used one training set to fit a 

logistic regression model (as shown above), obtained the estimated regression coefficients, 

calculated the predicted probability of fertility intent at FU2 (i.e., p̂), and selected an optimal 

cut-point to distinguish participants with fertility intent from those without fertility intent 

according to the algorithm described above. We then applied the same regression 

coefficients obtained from that training set to calculate p̂ for each participant in the 

corresponding validation set, used the selected optimal cut-point (chosen from the training 

set) to classify the participant’s fertility intent, and obtained one estimate of the sensitivity, 

specificity, and AUC. The entire process was repeated k times and the final estimate of 

sensitivity, specificity and the AUC was the average of the k estimates.

For the k-fold cross-validation procedure, there are no definitive guidelines or rules for 

choosing the number k. Generally speaking, k=5 and 10 are the most common selections of 

k for cross-validation. However, as the sample we used for illustration in this paper for the 

prediction model was relatively small (N=124) and had low prevalence (of outcome) (only 

20 cases of fertility intent at FU2), we chose a 3-fold and 5-fold cross-validation method to 

avoid potential issues caused by the small sample size for the validation set. With such 

choice of cross-validation procedure, we were able to allow for a reasonable number of 

records in each validation set (41 or 42 records (6 or 7 positives) for 3-fold method and 24 or 

25 records (4 positives) for 5-fold method). However, as the number of positives in each set 

was still relatively small (when k=5, there are only 4 cases in each validation set), the 

validated sensitivity will be sensitive to the selection of random partition. Therefore, we 

iterated the cross-validation procedure (100, 1000, and 5000 times) to study the stability of 
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our estimated statistics. Data were managed using the PASW SPSS version 18.0 (SPSS Inc., 

Chicago, IL); and all analyses were conducted using SAS software version 9.3 [58].

Results

Background characteristics

Participants were, on average, 30.7 years of age and had completed about 10 years of school. 

There was a greater proportion of women (55.6%) than men (44.4%). More than half of 

participants worked full- or part-time, and 63.7% resided in an informal dwelling or lived 

with someone else. On average, they had two biological children and cared for three 

children. Three-quarters were diagnosed with HIV within the previous year, and the median 

CD4+ cell count was 408 cells/mm3 (values ranged from 73 to 1260, IQR = 216); 32.3% had 

CD4 <350). All participants reported having a main partner, and 48.4% lived with their main 

partner. Nearly two-thirds (64.1%) indicated that their main partner knew they were HIV-

positive. About two-fifths (43.6%) of participants reported that they or their partner used 

hormonal contraception.

Establishing prediction models

To illustrate a procedure for establishing prediction models, we used the information 

obtained from 124 study participants to build three models to predict fertility intent. Model 1 

included all potential predictors listed above in the Measures Section (Table 2). Model 2 

contained all of the predictors in Model 1, with the exception of age, education, and 

diagnosis within one year, due to the weak association these variables had with the outcome 

in Model 1 (Table 3). Model 3 was the model identified by a stepwise selection procedure in 

which all variables considered in Model 2 were entered. It required a significance level of 

0.10 for variable entry and 0.05 for variable retention in the model. These inclusion and 

exclusion criteria are commonly used for larger sample studies, but again, since our analysis 

was for illustrative purposes, we employed the same significance levels for the selection 

criteria. Based on these criteria, only three predictors were selected for entry in Model 3: 

hormonal contraception use (pill/injectable), participant’s fertility intent at baseline, and log 

transformed CD4+ cell count (Table 4). ROC curves for the three models (using the data 

from entire sample of 124 participants) are shown in Figure 1.

k-fold cross-validation—For each of the three models, we report the average sensitivity, 

specificity, and AUC obtained from 100, 1000, and 5000 iterations of k-fold (k=3, 5) cross-

validations, respectively (Table 5). As shown in Table 5, the sum of sensitivity and 

specificity, as well as AUC estimated through the cross-validation procedure, were 

uniformly smaller than those obtained via a procedure without cross-validation for all three 

models. Such findings demonstrated the existence of over-fitting. For example, for Model 3, 

the sensitivity, specificity, and AUC are 0.800, 0.750, and 0.788, respectively, without cross-

validation; however, those values drop to 0.640, 0.750, and 0.758, respectively, for 3-fold 

cross-validation (with 5000 iterations).

To illustrate the potential clinical utility of a prediction model, we provide a “diagnosis” 

chart that is easy for a clinician to use, based on Model 3 (Table 6). For any patient, based on 
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responses to the two dichotomized questions in the prediction model and the cut-point of 

CD4+ count for each category, a clinician could easily predict the patient’s fertility intent six 

months after their initial baseline assessment. For example, if an HIV-positive patient with a 

CD4+ count over 643 reports current fertility intent and hormonal contraceptive (pill/

injectable) use (Row 1, Table 6), it indicates her high probability of having fertility intent in 

the future according to our prediction model. In such a case, the provider would consider 

initiating a discussion about safer conception strategies to prevent possible HIV transmission 

due to unsafe sex. Or, if a patient at baseline indicated hormonal contraceptive use, and no 

fertility intent (Row 2, Table 6), and had a CD4+ count greater than about 935, the model 

suggests that there may be a change in fertility intent at 6-month follow-up visit – and that it 

is worth a provider’s time to initiate a discussion with a patient who, based on their initial 

contraceptive use and intentions, would not necessarily have been ‘flagged’ as someone with 

whom to explore reproductive issues again. Thus, without a prediction model, this could be 

difficult for a clinician to predict. Although the diagnosis chart we built from Model 3 is 

easy to interpret and use in practice, we need to keep in mind that the accuracy of the 

prediction is imperfect.

Discussion

Addressing the reproductive health needs of HIV-positive women and men remains a 

challenge. The primary purpose of this paper is to highlight the need for developing and 

testing prediction models to estimate the probability of future fertility intent among HIV-

positive individuals, and to provide a methodological approach for establishing a prediction 

model and evaluating its ability to correctly discriminate. We used available baseline data 

from a recently completed intervention study that promoted the integration of sexual and 

reproductive health into HIV care services to demonstrate an approach. This study was not 

designed to develop a screening or prediction model for fertility intent for application in 

clinical settings. Instead, the final selected model in our case study was for illustrative 

purposes only. The models we fitted were not intended to have clinical meaning nor lead to 

change in practice. Therefore, some important predictors were not measured and the sample 

size was insufficient for drawing definitive conclusions.

Statistical and clinical considerations for model selection

There are statistical and clinical considerations for model selection. Statistically speaking, 

the model with higher accuracy of discrimination and greater generalizability is more 

preferable. Therefore, we would choose Model 3 over Models 1 or 2 due to its higher 

sensitivity, specificity, and AUC after cross-validation. Note that, as we previously pointed 

out, the criterion for model selection should not rely on the crude estimate of sensitivity, 

specificity, and AUC because they are upwardly biased. While Model 1 looks superior from 

the crude estimates (due to a greater overfitting), Model 3 is still more favorable because its 

cross-validated statistics are better. Clinically, a prediction model with few variables is more 

appealing, as the information is easier to obtain. Therefore, from a clinical stand point, 

Model 3 is still the most preferable model among the three candidates.
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When evaluating a prediction model, we often face the question of which is more important 

-- sensitivity or specificity? It depends. For some severely adverse outcomes, for example, 

suicide intent, we definitely would want the sensitivity to be as high as possible (with a 

clinically acceptable corresponding specificity) to preclude missing any persons with suicide 

intent and to initiate preventative actions. For diseases whose treatment might be painful or 

time-consuming to the patient, we would want the specificity to be high (with a clinically 

acceptable corresponding sensitivity) to avoid imposing a burden on true negatives. The 

Youden index is one of the most common ways to choose a cut-point for a prediction model, 

but there may be situations in which two or more cut-points have optimal and very close 

Youden indices; for example, if two cut-points A and B have very close Youden indices of 

1.61 vs. 1.60, A with sensitivity 0.75 and specificity 0.86, B with sensitivity 0.85 and 

specificity 0.75. A researcher will then have to select the final cut-point based on A and B; if 

sensitivity is more important, one may want to choose B even its Youden index is not 

optimal. In our case example of identifying HIV-positive persons interested in conception, 

the cost-benefit issues to be weighed involve risks to uninfected partners and infection of the 

child, benefits for averting new infections, balanced with providers’ time to address other 

medical concerns/issues. In such a case we would argue for higher and more stable 

sensitivity so that we can offer related information and support to people with positive 

fertility intent. Since these are HIV-positive individuals, a clinician would want to identify 

those who are likely to want to conceive so that he/she can give them information about how 

to do so while minimizing the risk of HIV transmission to an uninfected partner. From the 

results, Model 1 is the least stable, and Model 2 has lower sensitivity and less stability than 

Model 3. Therefore, Model 3 would be the best choice; also, it has few predictors (only 

three) and information on the predictors is easy to obtain.

Our case study, designed to illustrate the establishment of a clinical prediction model to 

estimate the probability of future fertility intent, has a number of limitations. We developed 

and tested the model on a small sample with unique characteristics and with a relatively 

limited number of predictor variables. Even though we found that Model 3 was superior to 

the other two models we tested, this model is not yet primed for clinical application. A 

considerably larger and more representative sample of our HIV-positive target population 

and a greater array of predictor variables (e.g., motivation for childbearing, gender norms, 

social support) are needed to establish a fertility intent prediction model for application in 

clinical practice. However, our study begins to provide data on an approach to developing a 

clinical practice model, based on a larger and more representative sample. Clients actively 

attempting pregnancy as opposed to having intent for pregnancy will additionally need to be 

considered by clinicians. Given that fertility desires and ability to report these are likely to 

be highly context-specific and vary between clinic populations (e.g., hospital vs. primary 

care) and communities (e.g., settings with heavy social expectations for childbearing vs. 

more limited expectations in others), a single generalizable prediction model for all 

populations is neither realistic nor ideal. Rather, the approach used in our case study could 

be applied in different settings to assist in deriving local predictors.

Our sample was limited to HIV-positive women and men who were inconsistent condom 

users and linked to HIV care and therefore is not representative of all HIV-positive 

individuals in Cape Town. Also, our case example has a limited follow-up period -- fertility 
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intentions are likely to evolve over a much longer time period than six months, and to be 

dynamic with changing health as well as with life and partnership circumstances. Therefore, 

anyone seeking to build a practical prediction model for fertility intentions in clinical care 

needs to recognize that fertility intent is a moving target. Additional studies are needed to 

identify variables significantly associated with fertility intent for building an initial 

prediction model. A well-defined k-fold cross-validation procedure could help to reduce 

potential bias of over-fitting and to assess the predictive accuracy of the model in the target 

population. Moreover, a much larger sample of HIV-positive individuals will be needed to 

give greater confidence in the precision and predictive power of a prediction model of 

fertility intent that has clinical relevance. Note that once a prediction model is established, it 

is necessary to evaluate its performance in datasets that were not used to develop the model 

before its use in clinical practice [59]. This is often referred to as external validation. 

External validation is essential as it quantifies optimism from model overfitting or 

deficiencies during the development of a prediction model and evaluates the validity of the 

model in different locations with a similar population [60]. We did not conduct external 

validation for any of three models discussed in this paper because they were used only for 

illustration.

Fertility planning should be an integral part of comprehensive care for HIV-positive women 

and men, introduced once an HIV-positive individual is engaged in HIV care. Numerous 

studies have shown that health care providers often refrain from asking HIV-positive 

individuals, especially men, about their fertility desires [61]. Among many clinicians there is 

low awareness of safer conception options and that HIV serodiscordance can be maintained 

in a couple [61]. There is also a perception that in the pre-ART period couples do not 

consider fertility issues [61], despite the fact that fertility planning is critical in this group. 

Use of a brief screening tool consisting of variables identified in a prediction model can 

serve to jumpstart health care providers’ discussion of fertility intent with HIV-positive 

individuals, prepare providers to develop a plan with their patients, and guide patients to 

make informed decisions about both contraception and safer conception options in a non-

judgmental manner [62]. Both The Southern African Clinicians Society [63] and the South 

African National Contraception and Fertility Planning Policy and Service Delivery 

Guidelines [64] call for a stronger move toward routine assessment of fertility options for 

people living with HIV (PLHIV). In both resource-rich and resource-limited settings where 

time constraints increasingly challenge the amount of time health care providers spend with 

patients, an evidence-based screening tool derived from a prediction model could be 

utilitarian, helping providers to use their time more effectively while accelerating early 

interventions for PLHIV.
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Figure 1. 
ROC curve for models 1–3
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Table 1

Explanatory table for sensitivity and specificity

Condition (as determined by “Gold standard”)

positive negative

Test outcome Positive A B

Negative C D
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Table 6

CD4+ Cut-points for clinical application

Pill/Injectable Hormonal 
Contraception Use

Fertility Intent at Baseline logCD4+ Count CD4+ Count Predicted Fertility Intent at 
FU2

1 1
> 6.47 >643 Yes

≤6.47 643 No

1 0
>6.84 >935 Yes

≤6.84 935 No

0 0
>6.42 >616 Yes

≤6.42 616 No

0 1
>6.05 >424 Yes

≤6.05 424 No
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