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Abstract

Introduction—Gait impairment in Parkinson's Disease (PD) is often severely disabling, yet 

frequently remains refractory to treatment. The locus coeruleus (LC) has diffuse noradrenergic 

projections that are thought to play a role in gait function. Enhancement of norepinephrine 

transmission may improve gait in some PD patients. We hypothesized that the severity of PD 

pathology, and more specifically, Lewy bodies and neuronal loss in the LC, would correlate with 

the severity of gait dysfunction in PD.

Methods—Autopsy data from 51 patients, collected through the Morris K. Udall Parkinson's 

Disease Research Center, were correlated with clinical gait-related measures, including individual 

Unified Parkinson's Disease Rating Scale (UPDRS) Part II and III questions, total UPDRS Part III 

scores, and timed upand-go speed (TUG).
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Results—Neither the presence nor degree of Lewy body pathology in the LC on autopsy was 

associated with a higher UPDRS part III gait score. LC tau deposition and frontal Lewy body 

deposition were not correlated with any of the assessed gait measures. The degree of Lewy body 

pathology, independent of Braak stage, was positively associated with the severity of motor 

symptoms overall (UPDRS Part III total score).

Conclusion—Neither the degree of Lewy body nor tau pathology in the LC is associated with 

severity of gait disorders in PD. This finding may have implications for targeted noradrenergic 

therapies in patients with refractory gait disorders.
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1. Introduction

Gait dysfunction in Parkinson's disease (PD), including freezing of gait, hypokinetic stride 

length, imbalance, postural instability, and increased risk for falls [1], contributes to reduced 

quality of life [2], and drives the majority of health care expenditures in PD patients [3]. 

Several aspects of gait dysfunction in PD are poorly understood, and many consider gait 

dysfunction to be the motor symptom least responsive to otherwise effective medical [4] or 

surgical [5] therapies. An improved understanding of the anatomy and neurochemical 

mechanisms of gait control is needed to develop targeted and effective therapies, beyond 

currently existing dopaminergic strategies, for PD-related gait disorders.

The current functional anatomy model of locomotor control includes a spinal mechanism for 

isolated rhythm generation [6,7]. Several brainstem areas are integral to supraspinal control, 

including a mesencephalic locomotor region (MLR), a subthalamic locomotor region and a 

cerebellar locomotor region [8]. Brainstem monoaminergic nuclei, including the locus 

coeruleus (LC) and the raphe nuclei (RN), are part of a “muscle tone excitatory system” [9] 

activated by the MLR, and allow for descending control of muscle tone. Feedback 

mechanisms [10] within the brainstem and feed-forward input ascending from the spinal 

cord allow for a balance of excitatory and inhibitory control over the noradrenergic output 

from the LC in normal locomotion. Of the parkinsonian gait symptoms, noradrenergic 

dysfunction in the LC is most closely linked to freezing of gait [11]. However, other 

mechanisms such as cholinergic output from brainstem centers [12], cortical atrophy [13], 

and subcortical white matter [14] changes have also been implicated in disordered gait.

Given the role of monoaminergic brainstem nuclei in the normal control of postural tone, the 

well-described α-synuclein deposition [15,16] and neuronal loss in the LC [17,18] of PD 

patients are likely to play an important role in PD-related disorders of posture and 

locomotion. In fact, evidence from both animal [19] and human [18] studies supports the 

role of the LC in PD-related gait disorders.

We hypothesized that the severity of PD pathology, including α-synuclein inclusions (Lewy 

bodies), neuronal loss, and other pathological evidence of neurodegeneration, would 

correlate with the severity of gait dysfunction measured by the Unified Parkinson's Disease 
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Rating Scale (UPDRS) and Timed Up and Go Speed (TUGS) in PD patients who had 

undergone autopsy. Establishing this relationship in humans would add to our understanding 

of the mechanism underlying dopamine-unresponsive motor symptoms in PD, and explore 

the utility of noradrenergic augmentation as a therapeutic mechanism.

2. Methods

2.1. Pathology

Autopsies were conducted by the Division of Neuropathology at Johns Hopkins. Brains 

were examined externally, fixed for two weeks in 10% buffered formaldehyde. Tissue blocks 

for microscopic examination were processed, embedded in paraffin, and cut at 10-μm 

thickness. All sections were stained with H&E; selected sections were silver-stained (Hirano 

method) and immunostained with antibodies against phosphorylated Anti-Tau (PHF-1) (a 

gift of Dr. Peter Davies) and α-synuclein (Transduction laboratories). The neuropathological 

assessment and diagnostic formulation followed the recommendations of the third report of 

the DLB Consortium [20]. The severity of Lewy body pathology (including Lewy bodies 

and neurites) was assessed semiquantitatively in the locus coeruleus, substantia nigra, cranial 

nerve nuclei IX & X, and middle frontal gyrus (range 0–4). In the locus coeruleus, we rated 

loss of neurons and astroglial proliferation as absent, mild/moderate, or severe. Pigment 

incontinence, neurofibrillary tangles, and Lewy bodies were reported as present or absent. If 

Lewy bodies were absent in the first slice on H&E staining, subsequent slices (up to 3) were 

analyzed for the presence of Lewy bodies and their density using anti-alpha synuclein 

stained slices. Braak stage was also determined [15].

2.2. Subjects

This analysis was part of a prospective clinico-pathological study with a longitudinal 

research cohort assessed for motor, cognitive, and psychiatric features of PD [21]. Subjects 

recruited from tertiary care and community practices included both older and younger 

individuals, with both shorter and longer disease duration (6–34 years), who provided pre-

mortem consent for IRB-approved collection of clinical data and autopsy data from brain 

donation. Clinical assessments were performed every two years until autopsy or loss to 

follow-up. This study was approved by the Johns Hopkins University Institutional Review 

Board. In the current analysis, PD subjects with autopsy data and at least one documented 

TUGS and UPDRS were included. The following clinical variables were included in this 

analysis: sex, age at PD diagnosis, age at death, TUGS, and all UPDRS Part III individual 

item scores and the Part III total score from the most recent assessment.

2.3. Statistical methods

We reported clinical characteristics and pathological scores as means with standard 

deviations (Table 2). Spearman correlations were performed between baseline clinical 

variables and clinical gait ratings. For the exploratory analysis, we tested Spearman 

correlations between various ordinal pathological outcomes (independent variables) and 

clinical ratings (dependent variables). We also used Fisher's exact tests for association 

between categorical independent variables and clinical scores.
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Independent variables included the pathological features listed in Table 1. Primary 

dependent variables included the gait- and posture-related UPDRS Part III items and TUGS. 

Secondary dependent variables included all UPDRS Part III items. Total UPDRS Part III 

scores and TUGS were tested for an association with pathological predictors using 

regression analyses after it was confirmed that there was a trend for linear association.

We explored significant correlations with ordinal logistic regression analyses, multinomial, 

or multiple regression analyses depending on whether the outcome variable was ordinal, 

categorical, or continuous. Regression techniques were used to evaluate the association 

between the presence of Lewy bodies in the LC and UPDRS Part III gait scores or the total 

Part III score, while adjusting for age at symptom onset, disease duration, Braak stage, and 

time from last clinical observation to autopsy as covariates in the model. To follow 

assumptions used by the ordinal logistic regression, UPDRS Part III gait scores of 0 & 1 and 

3 & 4 were combined because of the small number of subjects with a gait score of 0 or 4, 

after we found that this did not affect the statistical significance of the model.

3. Results

The number of subjects with pathological data and mean results are reported in Table 1. A 

total of 51 autopsies contained pathological data from the LC. Demographic and clinical 

data are reported in Table 2. There was no difference in age at PD onset, sex, disease 

duration or age at death between those who did and did not have Lewy bodies in the LC at 

autopsy. Concurrent AD pathology was only found in 2 participants, so this was unlikely to 

confound trends in LC pathology. On review of pathological notes, no cases of infarct in the 

brainstem or basal ganglia were reported in the 51 subjects with LC pathology data. The 

difference in Braak stage between those with (2.86, 95%CI:2.47–3.25) and without (3.5, 

95% CI:1.9–5.1) LC Lewy bodies was not statistically significant (p = 0.34). The average 

elapsed time between the most recent TUGS or UPDRS Part III and autopsy was 52.4 (SD = 

31.4) or 37.4 (SD = 27.2) months, respectively.

3.1. LC Lewy bodies and gait function in PD

None of the UPDRS gait-related scores showed a significant association with the presence of 

Lewy bodies, density of Lewy bodies in the LC, degree of cell loss, or any other markers of 

LC pathology.

A multiple linear regression model adjusted for age at PD diagnosis, disease duration, Braak 

stage of PD pathology, and time from last UPDRS score to autopsy showed that for each 1-

point increase in Lewy body score, the UPDRS Part III total score increased by an average 

of 7.6 points (95% CI: 0.12–15.1, p = 0.047).

The density of tau neurofibrillary tangles in the LC did not correlate with the UPDRS Part 

III gait item score, nor did it show a significant association with the other gait measures 

tested. The degree of Lewy body pathology in the frontal lobe (Brodmann's areas 8/9) also 

did not correlate with the severity of any of the clinical gait scores.
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3.2. LC Lewy bodies and other motor scores

The degree of LC Lewy body pathology did not correlate with any of the other individual 

UPDRS Part III items with one exception: there was a significant association between the 

presence/absence of Locus coeruleus pigmentary incontinence (a marker of dopaminergic 

cell loss) and facial tremor (p = 0.034). Because an association between LC pathology and 

other motor sub-scores was not part of our original hypotheses, we corrected for multiple 

comparisons and this association did not meet significance with a corrected alpha.

3.3. Other brainstem Lewy pathology and gait

Neither substantia nigra Lewy body presence nor score was associated with any of the 

UPDRS gait items, while they did associate with rigidity (p = 0.017), hand grips (p = 0.13), 

speech (p = 0.023), and leg agility (p = 0.013). The presence of Lewy bodies in cranial nerve 

nuclei IX or X was also not associated with UPDRS gait score (p = 0.809) or any of the 

other gait-related items.

4. Discussion

Despite prior pathological and imaging evidence linking noradrenergic dysfunction and gait 

disorders in PD [11,18], we did not find a significant association between gait dysfunction 

(measured by gait-related UPDRS Part III subscores) and Lewy body deposition in the locus 

coeruleus. Loss of independent ambulation is one of the largest contributors to a decline in 

quality of life during the course of Parkinson's disease [2], and this study may suggest that 

structural demise of LC dopaminergic neurons alone does not simply explain postural 

instability and gait impairment in PD.

This finding is inconsistent with some recent findings that noradrenergic medications may 

improve gait function, and suggests that enhancement of noradrenergic function may not 

impact gait disorders as much as previously hoped. In support of this lack of association 

between noradrenergic tone and gait disorder, L-3,4-DOPS (droxidopa) is a noradrenergic 

medication shown to only minimally improve freezing of gait (FOG) in moderately severe 

Parkinson's disease (Hoehn and Yahr stage III), and had even less benefit in more advanced 

stages [22]. Similarly, methylphenidate did not show benefit in a composite motor score or 

gait measures in PD [23].

Furthermore, there was no association between the degree of neuronal loss or gliosis and the 

gait scores (r = −0.08; Fisher's exact p = 0.214). The latter finding may be due to a plateau in 

the degree of neuronal loss by autopsy, thereby potentially masking the association between 

neuronal loss in the LC and gait dysfunction.

Although previous work has shown a link between cortical function and gait dysfunction 

(especially freezing of gait) [24–26], we also did not find an association between the severity 

of cortical pathology and UPDRS gait-associated scores, including FOG (Fishers exact p = 

0.42). The lack of an association between frontal pathology and measures of gait disorder in 

our study may be due to other gait-impairing processes that do not involve Lewy body 

deposition [27], the limitation of the specific region we sampled (Brodmann 8/9 = 
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dorsolateral prefrontal cortex and/or premotor area), or the type of pathological examination 

performed.

While specific UPDRS Part III gait measures were not associated with Lewy body density in 

the LC, a higher total UPDRS Part III (total motor score) was associated with the number of 

Lewy bodies in the LC. This association persisted even when controlling for the Braak stage 

of each brain, so that when comparing brains of the same overall Lewy body disease 

severity, higher Lewy body load in the LC still was associated with increased severity of PD 

motor signs. While the LC Lewy bodies may not be specifically involved in gait disorder, 

their presence must add to overall motoric disease severity. Future research targeting brain 

networks involved in parkinsonian motor symptom progression should include the LC along 

with other more established nodes, such as the substantia nigra.

4.1. Limitations

As with any study relying on autopsy data, pathological specimen collection and clinical 

rating collection were dissociated in time, leading to two main issues: 1) homogenization of 

pathological findings as patients reach an “end-stage” state, and 2) variability in time 

between the clinical ratings and autopsy. We addressed the second point by adding the 

amount of time between clinical scale and autopsy as a covariate in our regression models, 

realizing that pathological change may not be a simple linear correlate of elapsed time at 

various disease stages across all patients. Also, the semi-quantitative scale used for rating of 

pathology severity is suboptimal but follows standard neuropathology autopsy ratings.

One could also raise the question of whether the correlation between LC Lewy bodies and 

overall motor dysfunction is confounded by generalized Lewy body deposition, in 

concordance with the progressive spread of α-synuclein pathology [15], and that increasing 

LC Lewy bodies and more severe motor impairment are both results of more widespread 

Lewy pathology. In this case, we would expect that subjects with more severe frontal lobe 

Lewy body pathology would have more severe gait dysfunction, as the frontal lobe is 

typically affected with Lewy body deposition later in PD; however, we did not find a 

correlation between frontal lobe Lewy body presence and UPDRS Part III gait score (r = 

−0.07, p = 0.78). Neither SN nor CN IX-X Lewy body presence correlated with worsened 

UPDRS Part III gait score, suggesting that LC Lewy bodies are not simply a marker of more 

advanced brainstem pathology. Rather, our findings suggest that the presence of Lewy 

pathology in the LC is associated with dysfunction of that nucleus out of proportion to what 

would be expected from progressive accumulation of Lewy pathology throughout the 

brainstem.

4.2. Significance

In opposition to sparse clinical, imaging, and pathological data linking LC pathology with 

gait disorders in PD, our study on Lewy body pathology in 51 PD brains demonstrated no 

association between LC Lewy body pathology and PD gait dysfunction. On the other hand, 

there was an association between LC Lewy body score and global motor dysfunction in PD 

patients, indicating that noradrenergic dysfunctions may further complicate dopaminergic 

deficits underlying PD motor symptoms.
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The LC and the noradrenergic system has been evaluated as a potential target for levodopa-

unresponsive PD motor symptoms, including gait and postural abnormalities. While we 

found an association between overall motor function (total UPDRS Part III score) and LC 

Lewy body pathology, a specific association with gait disorder and postural instability did 

not exist. Our research supports the exploration of targeted therapies to augment 

norepinephrine function in hopes of improving motor function overall in PD, which have 

already been pursued with success where droxidopa has been available commercially 

[22,28]. However, it suggests that gait and postural instability may be caused by a more 

complex interaction between multiple neurotransmitter systems and motor control networks 

and that modifying the noradrenergic system alone may not improve gait or postural 

instability.
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Table 1

Neuropathological assessments in PD patients. Score reported as mean (ordinal variables) or % present 

(dichotomous variables).

Pathology variable (n) N Possible output Mean score or % “present” Range

LC Lewy Body Score 48 Score 0-4 1.8 0–4

Frontal (BA 8/9) Lewy Body Score 47 Score 0-4 1.6 0–4

LC neuronal loss and gliosis 47 Score 0-3 1.3 1–2

LC pigment incontinence/pigmented microphages 47 Present/absent 72% Present/absent

LC Lewy body presence 51 Present/absent 92% Present/absent

LC neurofibrillary tangle presence 42 Present/absent 31% Present/absent

Pallor of LC 50 Present/absent 84% Present/absent

SN Lewy body presence 47 Present/absent 96% Present/absent

SN Lewy body score 47 Score 0-4 1.9 0–3

SN Neuronal loss gliosis 47 Score 0-3 1.4 1–2

CN IX – X Lewy body score 20 Score 0-4 2.4 0–3

LC = Locus coeruleus. BA = Brodman's area. SN = substantia nigra. CN IX-X = glossopharyngeal and vagal nerve nuclei.
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Table 2

Baseline clinical characteristics and clinical data collected from most recent evaluation prior to brain donation 

in Parkinson's disease patients.

Clinical data Lewy bodies absent LC Lewy bodies present in LC p-value All subjects

Age at death (yr) 77.7 (9.7) 78.4 (8.6)
0.81

1 78.2 (8.8)

Age at UPDRS (yr) 83.5 (2.1) 74.6 (1.2) 0.0326 75.3 (8.1)

Sex (% male) 61.5 (0.5) 65.6 (0.5)
0.80

1 64.4 (0.5)

Age of onset (years) 66.0 (10.1) 60.6 (12.4)
0.17

1 62.2 (11.9)

Disease Duration (years) 15.0 (5.2) 17.4 (6.5)
0.24

1 16.7 (6.2)

UPDRS Part III: Gait 1.7 (1.0) 2.3 (1.2)
0.02

2 2.1 (1.1)

UPDRS Part III: Postural Instability 1.6 (1.0) 2.1 (1.2)
0.38

2 2.0 (1.2)

UPDRS Part II: Freezing 1.2 (1.3) 1.5 (1.4)
0.39

2 1.4 (1.2)

UPDRS Part III: Generalized bradykinesia 1.8 (1.0) 2.1 (1.1)
0.88

2 2.0 (1.1)

UPDRS Part III: Total 36.4 (14.7) 38.9 (10.8)
0.53

1 38.2 (11.9)

TUG (seconds) 16.8 (6.2) 14.5 (7.4)
0.36

1 15.2 (7.1)

Braak stage 3.5 2.9 0.341 2.9 (1.3)

P-values:

All data reported as mean (SD). UPDRS = Unified Parkinson's Disease Rating Scale. TUG = Timed Up-and-Go Score. LC = locus coeruleus.

1
t-test of means

2
Fisher's exact test.
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