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Abstract

Context—Cancer-related fatigue (CRF) persists months after treatment completion. Although a 

CRF biomarker has not yet been identified, validated self-report questionnaires are used to define 

and phenotype CRF in the discovery of potential biomarkers.

Objectives—The purposes of this study are to identify CRF subjects using three well-known 

CRF phenotyping approaches utilizing validated self-report questionnaires and to compare the 

biologic profiles that are associated with each CRF phenotype.

Methods—Fatigue in men with non-metastatic prostate cancer receiving external beam radiation 

therapy (EBRT) was measured at: baseline (T1), midpoint (T2), endpoint (T3), and one year post-

EBRT (T4) using the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) and Patient 

Reported Outcomes Measurement Information System-Fatigue (PROMIS-F). Chronic fatigue (CF) 

and non-fatigue (NF) subjects were grouped based on three commonly used phenotyping 

approaches: 1) T4 FACT-F <43; 2) T1-T4 decline in FACT-F score >3 points; 3) T4 PROMIS-F T-

score >50. Differential gene expressions using whole genome microarray analysis were compared 

in each of the phenotyping criterion.

Results—The study enrolled 43 men, where 34-38% had CF based on the 3 phenotyping 

approaches. Distinct gene expression patterns were observed between CF and NF subjects in each 

of the three CRF phenotyping approaches: 1) Approach 1 had the largest number of differentially 
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expressed genes, and 2) Approaches 2 and 3 had 40 and 21 differentially expressed genes between 

the fatigue groups, respectively.

Conclusion—The variation in genetic profiles for CRF suggests that phenotypic profiling for 

CRF should be carefully considered because it directly influences biomarker discovery 

investigations.
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cancer-related fatigue; radiation therapy; prostate cancer; transcriptome profiles; fatigue 
phenotypes

Introduction

Cancer-related fatigue (CRF) is often the most commonly reported distressing side effect of 

cancer and cancer therapy, affecting anywhere from 50-90% of oncology patients (1). CRF 

negatively reduces health-related quality of life and increases mortality among cancer 

patients (2). The management of CRF is challenging for health care clinicians because the 

concept is poorly defined and its etiology is unknown.

Efforts to understand the etiology of CRF remain challenging because the CRF phenotype 

has not been well characterized. This lack of a well characterized CRF phenotype stems 

from the lack of a consistent definition and a standard phenotyping approach (3). In a recent 

review of 47 articles exploring the biology of CRF, the lack of consensus among researchers 

in defining CRF was confirmed because CRF was measured using multiple approaches (3). 

Although most researchers operationally defined CRF using a variety of multi-item and 

single-item self-report questionnaires, a number defined CRF using clinical guidelines (e.g., 

National Cancer Institute Common Toxicity Criteria) or conducting diagnostic clinical 

interviews. Further, studies in these reviewed articles used various scoring rubrics and cut-

off scores to determine the presence or absence of CRF when attempting to phenotype CRF 

for biomarker discovery (3). This lack of consistency and consensus in defining CRF and in 

characterizing the CRF phenotype creates confusion among researchers who are trying to 

advance the science of CRF to understand its biologic underpinnings. To advance our 

science in CRF, the authors would like to refocus the conversation on the need for a clear, 

well-defined CRF phenotype by presenting three commonly used CRF phenotyping 

approaches and highlighting the strengths of each phenotyping approach, with the hope of 

provoking further discussion on the issue.

A clear, well-defined phenotyping approach has been successful with other symptoms, 

notably pain and depression. For example, a well characterized pain phenotype led to the 

development of better therapeutic strategies using effective anti-nociceptive therapies (4, 5). 

Moreover, a well described phenotype for depression led to the inclusion of new depressive 

disorder classifications in the Diagnostic and Statistical Manual, 5th edition (DSM-V) and an 

array of effective personalized and targeted treatments (6). A well characterized CRF 

phenotype is an essential step in the process of identifying biologically-relevant therapeutic 

targets and developing precise and effective personalized management. Therefore, the 

purposes of this study are to identify subjects with persistent fatigue following cancer 
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therapy. Considering that there is no gold standard approach to phenotype CRF, we used 

three well-known CRF phenotyping approaches utilizing validated self-report questionnaires 

to categorize subjects with persistent fatigue, and compared the biologic profiles that are 

associated with each phenotyping approach. Instead of identifying specific genes associated 

with CRF, the main goal of the study was to demonstrate that different approaches to 

phenotype CRF are associated with different transcriptome profiles. In addition, we aimed to 

determine biological pathways associated with these distinct transcriptome profiles 

generated by different phenotyping approaches.

Methods

Subjects

Men with non-metastatic prostate cancer, who were receiving androgen deprivation therapy 

and scheduled to receive EBRT, were enrolled under a National Institutes of Health (NIH) 

institutional review board-approved study (NCT00852111). Patients were enrolled from the 

radiation oncology clinic of the Hatfield Clinical Research Center, NIH, Bethesda, Maryland 

from May 2009 to December 2010. Fatigue was measured and blood was drawn at four time 

points: baseline or before EBRT (T1), midpoint (T2), endpoint (T3), and one year post 

EBRT (T4). Subjects were excluded from the study if they had progressive disease causing 

significant fatigue; experienced major psychiatric illness within five years; had uncorrected 

hypothyroidism or anemia; took sedatives, steroids, or non-steroidal anti-inflammatory 

agents; or had a second malignancy. After obtaining informed consent, demographic 

information and medical history were obtained by patient interview and medical records 

review.

Fatigue questionnaires

Fatigue was measured by the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) 

scale and the Patient Reported Outcomes Measurement Information System-Fatigue 

subscale (PROMIS-F). FACT-F is a 13-item measure with scores that range from 0-4 for 

each item (0= the worst; 4= the best) with 52 as the maximum possible score. The lower the 

FACT-F score, the higher the fatigue intensity (7). FACT-F has good test-retest reliability (r 

= 0.90) and internal consistency reliability (α = 0.93 and 0.95) on initial and test-retest 

administration, suggesting that it can be administered as an independent, unidimensional 

measure of fatigue; it has been used extensively in individuals with cancer [7]. In addition, a 

FACT-F score of 43 best divides fatigue scores of cancer patients and the general population 

(8). PROMIS-F is a 7-item questionnaire that was developed from more than 1000 datasets 

from multiple disease populations including cancer, heart disease, rheumatoid and 

osteoarthritis, psychiatric conditions, spinal cord injury, and chronic obstructive pulmonary 

disease. Initial testing of psychometric properties showed an internal consistency reliability 

coefficient of 0.81(9). The PROMIS measures are reported on a T-score metric that is 

anchored to the mean score of a healthy American general population (10). The T-score 

metric has a mean of 50 and a standard deviation (SD) of 10, which improves the 

interpretability of scores (11). A higher PROMIS T-score represents more of the concept 

being measured or greater fatigue. We selected to use both FACT-F and PROMIS-F because 

they have previously been reported to be highly correlated (r = 0.95, p < 0.001) (12), hence 
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fatigue scores generated by these fatigue questionnaires, measured the same concept. Both 

FACT-F and PROMIS-F items required subjects to recall their fatigue experience in the past 

7 days.

All study measures were obtained in an outpatient setting during participants’ clinical visits. 

Questionnaires were administered to subjects before any clinical procedures were carried out 

in order to avoid extraneous influences on their responses. Subjects were subdivided into 

chronic fatigue (CF) and non-fatigue (NF) groups using three commonly used phenotyping 

approaches. Approach 1: FACT-F score <43 at T4; Approach 2: decline in FACT-F score >3 

points from T1 to T4; and Approach 3: PROMIS-F T-score >50 at T4.

Sample preparation and microarray

About 2.5 ml of blood was collected from each subject in a RNA PAXGene tube at each 

study time-point (Qiagen, Frederick, MD). Samples were stored at -80°C until further 

processing. RNA extraction and Affymetrix microarray chips (HG U133 Plus 2.0, Santa 

Clara, CA) were processed as previously described (13). Affymetric GeneChip Command 

Console (AGCC, 3.0V) was used to scan images during data acquisition.

Data analysis

Affymetrix .CEL files containing raw intensity data were imported into Partek Genomics 

Suite 6.6 (Partek Inc., St. Louis, MO), log transformed, and normalized using the robust 

multiarray average (RMA) algorithm. Because the chips were processed on different days, 

Partek batch removal analysis of variance (ANOVA) was used to eliminate differences due 

to batch variation. Principal component analysis (PCA) was performed using normalized 

signal intensities from Affymetrix microarray data. ANOVA with false discovery rate (FDR) 

correction was used to identify differentially expressed genes between fatigue groups (FDR 

< 5%).

Principal component analysis (PCA) is a multivariate statistical method performed to reduce 

complexity of multidimensional data and to identify overall patterns in the data. 

Dimensionality of a dataset is reduced into linearly uncorrelated variables, principal 

components (PC), which explain most of the variation in the data. Each PC, a new variable 

created from linear combinations of the original variables (genes), does not correlate with 

others. Each enrolled subject is represented as a dot in the ellipsoid plots (Figure 1). The 

closer the two dots are, the greater the similarity in gene expression profiles between two 

subjects. Gene ontology (GO) enrichment analysis was performed to identify 

overrepresented functional and biologically meaningful GO categories of the differentially 

expressed genes. A chi-square test was performed to compare the proportion of the gene list 

in the group to the proportion of the background in the group. A high enrichment score 

indicates a more overrepresented functional group, a FDR corrected p-value <0.05 is 

considered significant.

To assess fatigue changes over time, a two-way repeated-measures ANOVA was employed. 

For this analysis the between-subject factors were defined as fatigue levels, while the within-

subject factor was defined by study time points. The sphericity assumption was tested with 

Mauchly’s test, and fatigue differences at each time point were determined by non-
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directional Student’s t-test with Bonferroni corrections for multiple comparisons. Statistical 

analyses regarding fatigue symptoms were analyzed with SPSS statistics software version 20 

(IBM SPSS, Purchase, NY). Transcriptome profile analysis and GO enrichment analysis 

were performed using Partek Genomic Suite 6.6.

Results

Subject demographics and fatigue symptoms

A total of 43 men were included in this study. The majority (62%) of these men were 

Caucasian with a mean age of 66.10 ± 1.20. These 43 men were categorized into CF and NF 

based on the three phenotyping approaches (Table 1). Approach 1 defined fatigue as FACT-F 

score < 43 at T4. This approach employs cross-sectional comparisons of the subject’s 

fatigue score with the mean FACT-F score of the US general population, which is 43 (8). Of 

the 43 men, 34 subjects had FACT-F scores at T4 and 38.2% of these subjects were 

categorized as CF. Approach 2 defined fatigue as a decline in FACT-F score ≥3 points from 

T1 to T4. A 3-point longitudinal change in FACT-F score has been found to be the cut off 

threshold for clinically important difference in a study comparing multiple fatigue 

instruments (14). Of the 43 subjects recruited, 29 had FACT-F scores at both T1 and T4 and 

34.5% of these subjects had CF. Approach 3 used a different questionnaire and defined 

fatigue as PROMIS-F T-score >50 at T4. This approach is another cross-sectional 

phenotyping method that compares the PROMI-F T-score of the subjects to that of the 

average PROMIS-F score of the healthy US general population, which is 50 (10). Thirty-five 

of the subjects had PROMIS-F scores at T4 and 34.3% of the subjects had CF. In all three 

phenotyping approaches, the CF subjects did not differ from NF subjects in demographic 

characteristics including age, weight, body mass index, and Gleason scores (Table 1). PSA 

levels were low (≤ 0.2 ng/mL) in both CF and NF subjects one year after EBRT suggesting 

that disease progression was not a contributing factor to differences in transcriptome profiles 

generated by the three phenotyping approaches.

Genome-wide gene expression comparison of three phenotyping approaches

Top up- and down-regulated genes in CF subjects compared to NF subjects for each of the 

fatigue phenotyping approach are shown in Table 2, where different gene expression profiles 

are observed for each of the 3 fatigue phenotyping approaches in the same study subjects. 

For example, Approach 1 had the most differentially expressed genes (244 genes) between 

CF and NF subjects. Approach 2 had 40 genes and Approach 3 had 21 differentially 

expressed genes between fatigue groups.

Principal components (PCs) obtained from the transcriptome data were arranged to account 

for the variation in data between fatigue phenotyping approaches. The top three PCs that 

were able to capture most of the variance in the data sets were visualized in scatter plots 

shown in Figure 1. In Approach 1, 42.4% of the variance of the dataset was represented by 

the first PC that accounted for 30.6% (X-axis) of the variation; the second and the third PCs 

accounted for 6.05% (Y-axis) and 5.66% (Z-axis), respectively (Figure 1a). In Approach 2, 

40.4% of the variance was represented by the first PC, which accounted for 26.4% (X-axis), 

second PC = 7.21% (Y-axis), and third PC = 6.79% (Z-axis) (Figure 1b). And in Approach 
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3, 44.5% explains the total variation in the dataset (Figure 1c). Differences across whole 

genomes between CF and NF subjects appear dissimilar among the three fatigue 

phenotyping approaches of the same study subjects.

Variations in differentially expressed genes (FDR adjusted p < 0.05) among the three fatigue 

phenotyping approaches resulted in different GO enrichment analysis results. In Approach 1, 

46.01% of the differentially expressed genes (GO enrichment score = 29.54; p < 0.05) were 

associated with biological adhesion, 8.24% of genes were associated with component 

organization or biogenesis (GO enrichment score = 5.29; p < 0.05), 7.58% of genes were 

associated with immune system process (GO enrichment score = 4.87; p < 0.05), and 5.62% 

of genes were associated with multicellular organismal process (GO enrichment score = 

3.61; p < 0.05) (Figure 2a).

In Approach 2, 21.48% of the differentially expressed genes were associated with cellular 

component organization or biogenesis (GO enrichment score = 3.31; p < 0.05) and 20.25% 

of genes were associated with biological adhesion (GO enrichment score = 3.12; p < 0.05) 

(Figure 2b). Approach 3 had the least homology compared to the other two phenotyping 

approaches. Nearly 17% of differentially expressed genes in Approach 3 were associated 

with rhythmic process (GO enrichment score = 2.16), specifically, with circadian rhythm 

(GO enrichment score = 4.31; p < 0.05) (Figure 2c).

Discussion

Fatigue is a common, debilitating, and costly side effect of many cancer treatment regimens. 

It is often defined as a “subjective sense of tiredness” that persists over time, interferes with 

activities of daily living, and is not relieved by adequate rest (15, 16). Understanding the 

etiology of this distressing symptom is critical to identify biomarkers that can serve as 

therapeutic targets to develop optimal management. Investigation of mechanisms underlying 

CRF requires a thoughtful phenotyping approach to ensure its clinical relevance. The three 

most commonly used and clinically-relevant phenotyping approaches for CRF described in 

this manuscript reflect distinct genomic profiles representing separate and specific functional 

and biological pathways. The intention of this study is not to recommend which CRF 

phenotyping approach is superior over another, but to highlight the strengths of each of the 

common CRF phenotyping approach, in order to provoke a continued conversation on the 

need to carefully select an optimal CRF phenotyping approach that can appropriately meet 

the desired clinical or research outcomes. In the following section, we will discuss the 

advantage of each fatigue characterization approach in order to help researchers determine 

the optimal method that can better serve their purpose.

The FACT-F score lower than 43 approach effectively categorized fatigue and non-fatigue 

subjects post cancer treatment as seen by significant differences in mean fatigue scores at 

completion of EBRT and one year post EBRT completion (Figure 3a). Compared to other 

criteria, phenotyping CRF using the FACT-F 43-point cut-off score was associated with the 

most significant changes in gene expression profiles, as well as the largest number of 

differentially expressed genes between CF and NF subjects. It is likely that this phenotyping 

approach is a good method to examine cancer treatment-related alterations in transcriptome 
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profiles; however, it may not be able to delineate immediate and chronic transcriptome 

profile changes associated with fatigue. GO enrichment analysis revealed that most of the 

differentially expressed genes (46.01% of genes; GO enrichment score = 29.54; p < 0.05) 

were associated with biological adhesion, a process important for inflammatory responses to 

cellular insults. This finding suggests that differences in immune responses to radiation-

induced insults may have contributed to the differences in fatigue phenotypes.

The 3-point change in FACT-F score approach between time points has a unique advantage 

over the other phenotyping approaches, because it considers the longitudinal variability in 

fatigue experience pre- and post-cancer treatment, by using each subject’s own pre-treatment 

baseline score as reference point, instead of capturing the mean symptom score of all 

participants at one given time point. This approach effectively isolated the CF subjects at one 

time point post treatment (Figure 3b); hence, it may be a good method to isolate the chronic 

fatigue phenotype one year after treatment completion. Most of the differentially expressed 

genes detected using this phenotyping approach were associated with cell component 

biogenesis (21.48%; GO enrichment score = 3.31; p < 0.05) and 20.25% of genes were 

associated with biological adhesion (GO enrichment score = 3.12; p < 0.05) (Figure 2b). 

Associating the CF phenotype with biogenesis is a uniquely important finding, because it 

suggests that the chronic fatigue experience may be a consequence of a cascade of 

physiological responses to the radiation-induced insult to re-establish homeostasis (18, 19). 

In addition to biogenesis, differentially expressed genes that are associated with the CF 

phenotype were also related to cell adhesion processes. Both processes are involved in 

various immune responses (20-24), suggesting that fatigue phenotype based on Approach 2 

may be related to differences in immune response to radiation.

CF subjects categorized by PROMIS-F T-scores higher than 50 had significantly different 

fatigue scores from NF subjects at T1, T2, T3, and T4 (Figure 3c). The apparent difference 

between CF and NF subjects at baseline suggests that the fatigue experience described by 

PROMIS-F is associated with intrinsic differences between two subpopulations within the 

patient cohort. This finding also suggests that PROMIS-F may be relatively more sensitive to 

subtle differences in fatigue experiences that are either associated with cancer itself or 

subjective reporting. Moreover, the significant differences in PROMIS-F scores between CF 

and NF subjects in all study time points suggest that this phenotyping approach may be the 

best method to phenotype chronic stable fatigue. Using this phenotyping approach, 17% of 

the differentially expressed genes were associated with rhythmic process (GO enrichment 

score = 2.16), specifically, with circadian rhythm (GO enrichment score = 4.31; p < 0.05) 

(Figure 2c). These findings suggest that it is possible that the fatigue phenotypes detected 

using Approach 3 may be related to differences in circadian rhythm, which plays an 

important role in regulation of the immune system (25), and is thought to play an important 

role in chronic fatigue conditions (25-28).

One major limitation of the study is the small sample size. To address this issue, a post-hoc 

power analysis was conducted using the mean between-group comparison effect size 

observed in the current study (Cohen’s d = 1.70, r = 0.65), an n of 9 subjects would be 

needed to obtain statistical power at 0.80. Therefore, although the sample size in our study is 

limited, the sample size was sufficient given the observed effect size. Another caveat is that 
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the fold change values of differentially expressed genes were small. For the purpose of this 

study, we included all differentially expressed genes that satisfied the statistical cut off of 

FDR-corrected p value of <0.05. Previous studies have shown that using a statistical 

significance cut off criterion reduces variability and improves reproducibility, whereas 

including fold-change cut off criteria contributes to interpretations that are biologically 

meaningful (29-32). Our goal for this paper was to demonstrate that different behavioral 

phenotypes were associated with different clusters of gene expression patterns. Our future 

studies aimed at drawing biologically meaningful conclusions related to the mechanisms 

associated with fatigue will utilize a combination of fold change and statistical cut off 

criteria.

All of the subjects included in this study were elderly men because of the nature of the 

cancer that was being investigated. Gender has been shown to influence symptom intensity 

and subjective reporting of the severity of symptoms such as depression and pain (33, 34). 

Therefore, it is important that these three fatigue phenotyping approaches are assessed in 

female subjects in future work. Because we also enrolled only a few non-Caucasian subjects, 

it was not possible to make a meaningful conclusion (African American: n = 11; Asian: n = 

2; Hispanic: n = 3) related to racial differences. Future studies are needed to explore the 

influence of racial and age differences in phenotyping fatigue and the associated 

transcriptome profiles of these phenotypes. Further, symptom intensity in many conditions 

exhibit diurnal rhythmicity (35, 36). Because subjects included in this study were seen in the 

morning (8 am to 12 noon), future studies are needed to explore the role of circadian rhythm 

in the fatigue experience and the associated changes in the transcriptome profiles of subjects 

with fatigue. Future studies should also incorporate regression frameworks to better explore 

the relationship between fatigue phenotypes and gene expression patterns.

Despite their similarities, the three most commonly used fatigue phenotyping approaches 

vary in subtle ways that translate into different biological interpretations of the symptom. 

Each approach has its advantages and should be chosen carefully depending on the purpose 

of the study. One takeaway message of this study is that it may be premature to settle on one 

phenotyping approach, however, the scientist needs to be aware that biological pathways of 

transcriptome profiles are vastly different depending on which phenotyping approach is 

used. Therefore, the scientist needs to choose the CRF phenotyping approach that can 

appropriately answer the research question.

Conclusion

Assessing subjective experiences such as fatigue generally requires self-report 

questionnaires, and patient self-report outcome questionnaires inevitably rely on patients’ 

own perceptions. Therefore, it becomes extremely important for clinicians to carefully select 

the appropriate measure and phenotyping approach. We have highlighted the need for a 

careful characterization of the CRF phenotype. As we have shown, even well-correlated 

outcome measurements can differ in subtle, yet important ways. Fatigue is a symptom that 

can originate from multiple pathogenic processes. Defining CRF in a manner that can 

characterize a clear CRF phenotype is both a necessary and a critical component of 

supportive care and symptom management.
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Figure 1. 
Principal component analysis showing differences in transcriptome profiles between chronic 

fatigue (CF) and non-fatigued (NF) men following external beam radiation therapy for 

prostate cancer using three different fatigue phenotyping approaches. Samples were 

repeatedly grouped into CF (blue) and NF (yellow) groups using three phenotyping 

approaches: Approach 1 was based on the FACT-F 43-point cut-off (a), Approach 2 was 

based on FACT-F 3-point change (b), and Approach 3 was based on PROMIS-F T-score >50 

cut-off (c) criteria. Each dot represents a subject, each ellipsoid represents a phenotyping 

approach, and each axis corresponds to one principal component.
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Figure 2. 
Gene Ontology (GO) enrichment analysis of differentially expressed genes (False Discovery 

Rate adjusted p < 0.05) in chronic fatigue (CF) compared to non-fatigued (NF) men at one 

year following external beam radiation therapy for prostate cancer using three different 

fatigue phenotyping approaches: (a) Approach 1: FACT-F 43-point cut off, (b) Approach 2: 

FACT-F 3-point change, and (c) Approach 3: PROMIS-F T-score >50 cut off. Pie charts 

represent the distribution of the number of genes in each enriched GO category. Gene 

ontology (GO) enrichment analysis was performed to identify overrepresented functional 

and biologically meaningful GO categories of the differentially expressed genes.
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Figure 3. 
Fatigue score changes of men with prostate cancer as measured at baseline (T1; prior to 

EBRT), midpoint (T2; day 19-21), endpoint (T3; day 38-42), and one year after EBRT 

completion (T4). Subjects were subdivided into chronic fatigue (CF) and non-fatigue (NF) 

groups based on three phenotyping approaches: Approach 1: a FACT-F 43-point cut off at 

one year (a), Approach 2: 3-point change in FACT-F score from baseline to one-year after 

EBRT (b), and Approach 3: PROMIS-F a T-score greater than 50 at one year cut off (c) 

criteria. (a) 38.2% of subjects fell into the CF category using the FACT-F 43-point cut-off 

criterion (F3,33 = 5.4, p < 0.01). (b) 34.5% of subjects had a change of 3 points and greater 

from baseline to one year after EBRT (F3,33 = 12.3, p < 0.01). (c) Chronic fatigue was 

experienced in 34.3% of subjects based on PROMIS >50 T-score cut-off criterion (F3,34 = 

8.3, p < 0.01). Mauchly’s test of sphericity was not significant in the repeated-measures 

ANOVA models (p > 0.1) indicating that the assumption of sphericity was not violated in 

any of the models. Repeated measures ANOVA and post hoc non-directional Student’s t-test 

with Bonferroni corrections for multiple comparisons were performed to analyze fatigue 

changes over time with fatigue levels defined as the between subjects factor and time as the 

within subjects factor. * Indicates significant differences between CF and NF subjects (p<.

05).
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