Skip to main content
. Author manuscript; available in PMC: 2018 Jan 1.
Published in final edited form as: Genet Epidemiol. 2016 Dec 5;41(1):18–34. doi: 10.1002/gepi.22014

Table 2.

Empirical Type I Error Rates of the Approximate F-distribution Tests based on Pillai-Bartlett Trace of Six Traits and Moderate Correlation, When the Variants Are Only Rare. The results of “Basis of both GVF and β(t)” were based on smoothing both GVF and genetic effect functions β(t) of model (5), the results of “Basis of beta-Smooth Only” were based on the smoothing β(t) only approach of model (7). The order of B-spline basis was 4, and the number of basis functions of B-spline was K = Kβ = 15; the number of Fourier basis functions was K = Kβ = 21.

Region Size Sample Size Nominal Basis of both GVF and β(t) Basis of beta-Smooth Only MANOVA Model (1)
Level α B-sp Basis Fourier Basis B-sp Basis Fourier Basis
6 kb 500 0.001 0.000906 0.000919 0.000906 0.000916 0.000921
0.0001 0.000091 0.000088 0.000093 0.000090 0.000085
1000 0.001 0.000996 0.000930 0.000998 0.000930 0.000918
0.0001 0.000096 0.000091 0.000096 0.000091 0.000089
1500 0.001 0.000985 0.000991 0.000985 0.000991 0.000984
0.0001 0.000094 0.000099 0.000094 0.000099 0.000095
9 kb 500 0.001 0.000940 0.000925 0.000940 0.000923 0.000912
0.0001 0.000090 0.000095 0.000090 0.000095 0.000100
1000 0.001 0.000906 0.000969 0.000906 0.000969 0.000900
0.0001 0.000092 0.000086 0.000092 0.000086 0.000092
1500 0.001 0.000981 0.000980 0.000981 0.000980 0.000952
0.0001 0.000111 0.000091 0.000111 0.000091 0.000076
12 kb 500 0.001 0.000930 0.000901 0.000930 0.000901 0.000909
0.0001 0.000086 0.000089 0.000086 0.000089 0.000078
1000 0.001 0.000905 0.000930 0.000905 0.000930 0.000946
0.0001 0.000094 0.000085 0.000094 0.000085 0.000094
1500 0.001 0.000965 0.000983 0.000965 0.000983 0.000984
0.0001 0.000099 0.000099 0.000099 0.000099 0.000097
15 kb 500 0.001 0.000950 0.000947 0.000950 0.000947 0.000940
0.0001 0.000093 0.000099 0.000093 0.000099 0.000093
1000 0.001 0.000951 0.000946 0.000951 0.000946 0.000965
0.0001 0.000103 0.000094 0.000103 0.000094 0.000098
1500 0.001 0.000925 0.000966 0.000925 0.000966 0.000987
0.0001 0.000098 0.000089 0.000098 0.000089 0.000104
18 kb 500 0.001 0.000896 0.000957 0.000896 0.000957 0.000913
0.0001 0.000077 0.000088 0.000077 0.000088 0.000105
1000 0.001 0.000979 0.000955 0.000979 0.000955 0.000946
0.0001 0.000093 0.000078 0.000093 0.000078 0.000105
1500 0.001 0.000969 0.000985 0.000969 0.000985 0.000962
0.0001 0.000083 0.000114 0.000083 0.000114 0.000105
21 kb 500 0.001 0.000888 0.000929 0.000888 0.000929 0.000936
0.0001 0.000086 0.000085 0.000086 0.000085 0.000077
1000 0.001 0.000879 0.000940 0.000879 0.000940 0.001018
0.0001 0.000092 0.000095 0.000092 0.000095 0.000093
1500 0.001 0.000919 0.000932 0.000919 0.000932 0.000989
0.0001 0.000086 0.000079 0.000086 0.000079 0.000086
24 kb 500 0.001 0.000943 0.000846 0.000943 0.000846 0.000931
0.0001 0.000087 0.000091 0.000087 0.000091 0.000076
1000 0.001 0.000968 0.000986 0.000968 0.000986 0.000975
0.0001 0.000085 0.000084 0.000085 0.000084 0.000085
1500 0.001 0.000989 0.000990 0.000989 0.000990 0.001014
0.0001 0.000110 0.000096 0.000110 0.000096 0.000090
27 kb 500 0.001 0.000935 0.000960 0.000935 0.000960 0.000946
0.0001 0.000105 0.000107 0.000105 0.000107 0.000092
1000 0.001 0.000988 0.000974 0.000988 0.000974 0.000984
0.0001 0.000105 0.000106 0.000105 0.000106 0.000098
1500 0.001 0.000999 0.000993 0.000999 0.000993 0.000966
0.0001 0.000097 0.000113 0.000097 0.000113 0.000097
30 kb 500 0.001 0.000900 0.000916 0.000900 0.000916 0.000942
0.0001 0.000069 0.000082 0.000069 0.000082 0.000083
1000 0.001 0.000953 0.000940 0.000953 0.000940 0.000938
0.0001 0.000109 0.000083 0.000109 0.000083 0.000104
1500 0.001 0.000997 0.000940 0.000997 0.000940 0.000980
0.0001 0.000095 0.000098 0.000095 0.000098 0.000097