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Abstract

Many genetic epidemiological studies collect repeated measurements over time. This design not 

only provides a more accurate assessment of disease condition, but allows us to explore the genetic 

influence on disease development and progression. Thus, it is of great interest to study the 

longitudinal contribution of genes to disease susceptibility. Most association testing methods for 

longitudinal phenotypes are developed for single variant, and may have limited power to detect 

association, especially for variants with low minor allele frequency. We propose Longitudinal 

SNP-set/Sequence Kernel Association Test (LSKAT), a robust, mixed-effects method for 

association testing of rare and common variants with longitudinal quantitative phenotypes. LSKAT 

uses several random effects to account for the within-subject correlation in longitudinal data, and 

allows for adjustment for both static and time-varying covariates. We also present a longitudinal-

trait burden test (LBT), where we test association between the trait and the burden score in linear 

mixed models. In simulation studies, we demonstrate that LBT achieves high power when variants 

are almost all deleterious or all protective, while LSKAT performs well in a wide range of genetic 

models. By making full use of trait values from repeated measures, LSKAT is more powerful than 

several tests applied to a single measurement or average over all time points. Moreover, LSKAT is 

robust to misspecification of the covariance structure. We apply the LSKAT and LBT methods to 

*Correspondence to: Zuoheng Wang, PhD, Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, 
CT 06510, Phone : (203) 737-2672, Fax : (203) 785-6912, zuoheng.wang@yale.edu. 

The authors declare no conflicts of interest.

WED RESOURCES
LSKAT and LBT source code is available at https://github.com/ZWang-Lab/LSKAT/.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
Genet Epidemiol. 2017 January ; 41(1): 81–93. doi:10.1002/gepi.22016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ZWang-Lab/LSKAT/


detect association with longitudinally-measured body mass index in the Framingham Heart Study, 

where we are able to replicate association with a circadian gene NR1D2.

Keywords

longitudinal study; association testing; linear mixed model; variant set; quantitative trait

1. INTRODUCTION

Over recent years, genome-wide association studies (GWAS) have been successful in 

identifying thousands of susceptibility variants for common diseases and complex traits. 

However, these genetic variants have explained only a small proportion of heritability 

[Eichler et al., 2010; Manolio et al., 2009]. To date, most of the GWAS have focused on 

case/control status of particular diseases or cross-sectional measurements of phenotypic 

traits. Many genetic epidemiological studies have been conducted in cohorts, in which 

repeated measures on the trait of interest are collected on each participant over a period of 

time. Such studies not only provide a more accurate assessment of disease condition, but 

enable us to investigate genes influencing the trajectory of a trait and disease progression, 

which are likely to reduce the remaining missing heritability of these traits [Wu and Lin, 

2006]. Recently, complementary to traditional epidemiological studies, electronic medical 

records (EMR) have become an emerging resource for genomic research [Dumitrescu et al., 

2015; Gottesman et al., 2013; Kullo et al., 2010; MaCarty et al., 2011]. EMR-derived data 

offer rich phenotype information including longitudinal measures and lengthy follow-up. As 

a result, more and more longitudinal studies have been introduced in GWAS to understand 

how genetic variants affect changes over time of a particular phenotype [Cousminer et al., 

2013; Smith et al., 2010; Tang et al., 2014].

In longitudinal data analysis, it is important to account for the non-independence of repeated 

measurements from the same subject. To estimate growth trajectories or changes of trait 

values over time, several statistical methods have been developed, such as random effects 

models [Laird and Ware, 1982], hierarchical linear models [Raudenbush and Bryk, 2002], 

empirical Bayes models [Hui and Berger, 1983], and growth mixture models [Muthen, 

2004]. Association analyses that incorporate these methods have been applied to 

longitudinal GWAS to test individual genetic variant [Das et al., 2011; Fan et al., 2012; 

Furlotte et al., 2012; Londono et al., 2013; Meirelles et al., 2013; Sikorska et al., 2013; 

Wang et al., 2012]. However, single-variant association tests suffer from restricted power to 

detect association, especially for variants with low minor allele frequency (MAF) which are 

commonly seen in high-throughput sequencing studies and exome chip genotyping arrays. It 

would be advantageous to consider the joint effect of multiple markers in a variant set. Such 

analyses offer greater power by reducing the multiple testing burden and aggregating signals 

on the basis of genomic features such as genes or linkage disequilibrium (LD)-based 

haplotype blocks [Neale and Sham, 2004; Wu et al., 2010].

Most existing methods for region-based association analysis are designed for phenotypes 

from a single time point, including two broad classes of methods referred to as “burden 
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tests” [Han and Pan 2010; Li and Leal, 2008; Lin and Tang 2011; Madsen and Browning, 

2009; Morgenthaler and Thilly, 2007; Morris and Zeggini, 2010; Price et al., 2010] and 

“variance component tests” [Chen et al., 2013; Neale et al., 2011; Schifano et al., 2012; Wu 

et al., 2011]. Burden tests collapse information from multiple variant sites in a region into a 

single genetic burden score, and then test for association between the trait and the burden 

score. In contrast, variance component tests aggregate statistics from individual variant sites 

for measuring association. Omnibus tests that combine burden tests and variance component 

tests have also been proposed in population samples [Derkach et al., 2013; Lee et al., 2012] 

and family studies [Jiang and McPeek, 2014]. The performance of various burden and 

variance component tests have been extensively evaluated for rare genetic variants [Derkach 

et al., 2014]. In general, the power of a test depends on the nature of association, such as 

proportion of causal variants, directions of association, variants frequencies and genetic 

effects.

For longitudinal data, there has been limited literature on statistical methods for region-

based association analysis [Beyene and Hamid, 2014; Chien et al., 2016; Wu et al., 2014; 

Yan et al., 2015]. Linear mixed model is one of the popular methods for longitudinal data. 

Kernel-based methods offer a flexible and powerful platform to combine complex or high-

dimensional genomic information [Schaid, 2010], e.g. the sequence kernel association test 

(SKAT) for rare variants [Wu et al., 2011]. In this study, we propose LSKAT (Longitudinal 

SNP-set/Sequence Kernel Association Test), a longitudinal trait association testing 

approach, which combines features of linear mixed models and kernel machine methods to 

test for association between variants in a genomic region and a longitudinal quantitative 

phenotype. LSKAT can be viewed as an extension of the SKAT test of a single measurement 

to repeated measurements. It effectively accounts for the within-subject correlations by 

using several random effects and allows for adjustment for both static and time-varying 

covariates. We also present a longitudinal-trait burden test (LBT), where we test association 

between the trait and the burden score in linear mixed models. Through simulation studies, 

we evaluate the type I error rates of LSKAT and LBT, and compare their power to that of 

SKAT and burden test. We further investigate the performance of LSKAT and LBT when the 

assumptions on the correlation structure of the random effects are violated. Our simulation 

results show that LSKAT has an increased power over the SKAT and burden tests with a 

single time point measurement or the average value across time points. When a high 

proportion of the variants are causal and they are almost all deleterious or all protective, 

LBT achieves the highest power. However, when both deleterious and protective variants are 

present, or the fraction of the causal variants is low, LSKAT outperforms LBT. Moreover, 

LSKAT is robust to misspecified covariance structure in all of our simulation settings. 

Finally, we illustrate the utility of the two approaches by evaluating genome-wide 

association with longitudinally-measured body mass index in the Framingham Heart Study, 

where we replicate association with a circadian gene NR1D2.
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2. METHODS

2.1 Kernel-based linear mixed model for longitudinal trait

Suppose a quantitative trait is measured over time on n sampled individuals. We consider the 

problem of association testing between the trait and all variants in a genomic region, e.g. a 

single gene, an exon, or a multigene region. Let yij be the trait value measured on the ith 

subject at time tij, and xij be a p × 1 covariate vector, where xij always includes an intercept, 

i.e., the first entry of xij is 1. We allow that xij includes both static and time-varying 

covariates. Suppose the genomic region of interest contains m variants that have been 

selected in the test. Let Gi = (Gi1, …, Gim)T denote an m × 1 genotype vector at the m 
variant sites, and Gik = 0, 1 or 2, according to whether the ith subject has 0, 1 or 2 copies of 

minor allele at the kth variant site. We model the trait value using a linear mixed effects 

model:

(1)

where β is a p × 1 vector of the regression coefficients for the covariates, γ = (γ1, …, γm)T 

is an m × 1 vector of random effects for the m genetic variants. We assume that the variant 

random effects vector γ does not change with time, and follows an arbitrary distribution 

with E(γk) = 0 and , where τ is the variance component of genetic effects, and 

wk is a fixed, pre-specified weight for the kth variant that depends on particular features of 

the variant. Various weighting schemes have been proposed. For example, the weight of a 

variant is some function of its MAF [e.g., Madsen and Browning, 2009; Wu et al., 2011], or 

the weight is determined by prior information on function or annotation. Uniform weighting 

can be used if no prior information is available.

In Model (1), the dependency among repeated measures of the trait values is captured by 

several random effects: ai represents the individual random effect, rij is the individual-

specific time-dependent random effect, and eij is the measurement error. We assume ai’s are 

independent and . Here we allow individuals to have measures at different time 

points. The correlation between each pair of rij and rij′, the random effects at two 

measurement times tij and tij′ of the ith subject, depends on the time lag between the two 

time points and the degree of influence on the trait. For example, we assume 

 has a multivariate normal distribution, , where ni is 

the number of repeated measurements on the ith subject, and the correlation matrix Ri can 

be modeled with the first-order autoregressive correlation structure [AR(1)] with 

, where |φ| < 1 [Diggle, 1988]. The error term eij is assumed to be i.i.d. 

.

Writing in a matrix form, we have the following conditional phenotypic model:
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(2)

where , the phenotype vector of length N = Σini, X 
is the N × p covariate matrix, and G is the n × m genotype matrix. That is, conditional on γ, 

X and G, Y has a multivariate normal distribution with mean vector Xβ + MGγ and 

covariance matrix Σ, where M is an N × n design matrix for measurement clustering 

structure, with Mli being the indicator that the lth entry of Y belongs to the measurements on 

subject i. The conditional covariance matrix Σ includes three terms: the first term, , 

summarizes the individual-level time-independent correlation; the second term, , models 

the individual-level time-dependent correlation, where R = diag(R1, …, Rn) is a block 

diagonal matrix; and the last term, , represents the measurement error, where I is an N-

dimensional identity matrix. Note that, by converting the genotype matrix G to the design 

matrix MG in Model (2), we extend the genetic mean vector from the individual level to the 

measurement level. The overall mean also depends on the covariate values at each time point 

that are allowed to change over time.

To detect association between the trait and the genomic region of interest, we test H0 : γ = 0 
vs. H1 : γ ≠ 0 in Model (1), which is equivalent to test H0 : τ = 0 vs. H1 : τ > 0. The null 

maximum likelihood estimates (MLEs) of β, φ, , , and  can be obtained by fitting the 

null model  to the data without performing a genome scan. We then 

estimate the null covariance matrix  by replacing φ, ,  and  with their null MLEs. 

Finally, we obtain the LSKAT statistic, given by

(3)

where  is an m × m diagonal weight matrix. Since the covariance 

matrix Σ in Model (2) is specified as a block diagonal matrix, the LSKAT statistic TK can 

further be expressed as the weighted sum of the individual variant score statistics

where , the phenotype vector on the ith subject, Xi is the covariate 

matrix on subject i,  is the ith diagonal block of , and  is an ni-vector of 1’s. 

Thus, LSKAT belongs to the class of quadratic statistics considered by Derkach et al., 

[2014].

To evaluate the P-value of the LSKAT statistic, we define
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Under the null hypothesis, TK asymptotically follows a mixture of chi-square distributions, 

i.e. , where (λ1, …, λr) are the nonzero eigenvalues of the matrix 

, and the ’s are independent  variables. The P-value can then 

be evaluated by a moment-matching method [Liu et al., 2009].

2.2 Burden score-based linear mixed model for longitudinal trait

To extend the burden test to the context of repeated measures, we consider the genetic 

burden score as a single variable and evaluate its association with the trait in a linear mixed 

model. In this case, we fit the model

(4)

where the burden score  is a weighted sum of genotypes at all variants being 

tested, and θ is the parameter of interest. Here yij, xij, β, ai, rij, eij are as defined in Model 

(1). The LBT statistic is a score test for testing H0 : θ = 0 vs. H1 : θ ≠ 0, given by

(5)

where w = (w1, …, wm)T is an m × 1 weight vector. We can also write the LBT statistic TB 

as

It can be seen that LBT belongs to the class of linear statistics specified by Derkach et al., 

[2014]. Under the null hypothesis, TB asymptotically follows a scaled  distribution.

3. RESULTS

3.1 Simulation studies

We conduct simulation studies in order to (1) evaluate the type I error rates of LSKAT and 

LBT; (2) compare their power to that of SKAT and burden test (BT); and (3) assess 

sensitivity of the two tests to misspecified covariance structure. Because SKAT and BT are 

only applicable to a single measurement, we consider both tests when they are applied to the 
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baseline measures (SKATBL and BTBL) and the average across multiple time points 

(SKATAVG and BTAVG).

In the simulations, we first generate 10,000 chromosomes over a 1 Mb region using a 

coalescent model that implements a population genetic model to mimic the LD pattern, 

recombination rates, and the population history of Europeans [Schaffner et al., 2005]. We 

then simulate 1,000 sets of genotype data from randomly selected sets of regions within the 

1 Mb chromosome. The lengths of the regions range from 5 kb to 30 kb. We further remove 

the variants with less than 4 copies of minor allele in the n samples, where we set n = 500, 

1000, and 2500. The selected regions contain 47 observed variants on average, and the 

number of observed variants in any given data set varies across the sample size n.

3.1.1 Type I error simulations—In the assessment of type I error rates, for each of the 

1,000 simulated genotype data sets, we simulate 1,000 sets of trait values at eight time points 

using the model

where Xij1 is a continuous, time-varying covariate that is generated from a standard normal 

distribution, Xi2 is a binary, time-independent covariate taking values 0 or 1 with a 

probability of 0.5, ai is an individual random effect generated from a  distribution, 

, where R is an 8 × 8 correlation matrix specified by the 

AR(1) model with a correlation coefficient φ, and eij is independently generated from a 

 distribution at each time point. Here the variance components are set to 

 and φ = 0.75. Note that this null model indicates that the trait values are 

not related to the genotypes in the type I error experiments. Putting all together, we obtain 

106 genotype-phenotype data sets.

In linear mixed models, we commonly model the covariance structure of random effects. 

There has not been much investigation on whether misspecification of the covariance 

structure affects the type I error and power in genetic association analysis with longitudinal 

phenotypes. Therefore, we further investigate the robustness of LSKAT and LBT when the 

correlation matrix R is misspecified. We simulate trait values under two correlation 

structures commonly used for growth curves:

1. compound symmetry model, where the correlations within a subject are 

constant over time, i.e., Rjk = φ when j ≠ k, and Rjj = 1;

2. first-order structured antedependence [SAD(1)] model specified as in 

Jaffrézic et al. [2003] with
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Here the correlation function in the SAD model is non-stationary and 

depends not only on the time interval, but also on the start and end points 

of the interval.

For each of the 106 replicates of genotype-phenotype data, we apply the LSKAT and LBT 

methods to test association with all variants, including X1 and X2 as covariates in the 

analysis. We use the weights suggested by Wu et al. [2011] for rare variants with MAF < 5% 

and that suggested by Madsen and Browning [2009] for common variants with MAF ≥ 5%. 

We estimate the type I error rates with nominal levels set at 10−3, 10−4, and 10−5. Table 1 

gives the empirical type I error rates of LSKAT and LBT under various correlation structures 

and sample sizes. In all simulations, the type I error of LSKAT does not exceed the nominal, 

though when the true correlation is compound symmetry, LSKAT is slightly conservative. In 

contrast, LBT has inflated type I error under the SAD(1) model when sample size is small (n 
= 500). These results suggest that the type I error rate of LSKAT is protected and robust 

against deviation from the assumed within-subject AR(1) correlation structure, whereas the 

type I error of LBT is more sensitive to sample size and correlation structure.

An important feature of the LSKAT and LBT methods is the use of several random effects to 

capture the within-subject correlation in linear mixed models. We conduct additional 

simulations to assess the impact on type I error if the individual-level time-dependent 

correlation is not accounted for. For each of the 106 genotype-phenotype data sets, we apply 

alternative versions of LSKAT and LBT without considering the term rij in Models (1) and 

(4). The empirical type I error rates are inflated for both LSKAT and LBT at all three 

nominal levels when sample size is 2500, and LBT has slightly inflated type I error at the 

nominal 10−3 level when sample size is 1000 (Table 2). We also apply the SKAT and BT 

methods to the genotype-phenotype data sets without modeling the within-subject 

correlation. In this case, the type I error rates of SKAT and BT are severely inflated (results 

not shown). These simulation studies demonstrate that it is critical to account for the non-

independence of repeated measurements and model the time-dependent correlation in 

association testing with longitudinal data.

3.1.2 Power simulations—To compare the power of LSKAT and LBT to that of SKAT 

and BT, we use the 1,000 simulated genotype data sets to generate phenotypes. The genomic 

regions contain on average 47 observed variants. We set the proportion of the causal variants 

at two levels, 30% and 90%, where only a small percentage of variants are associated with 

the trait at the first level, while majority of variants are associated at the second level. We 

simulate trait values using the model

where i = 1, …, n and j = 1, …, 8. Here Xij1, Xi2, ai, rij, and eij are as defined for the type I 

error experiments, s is the total number of causal variants, Gi1, …, Gis are the genotypes for 

the s causal variants coded as 0, 1 or 2, and the γs are the fixed genetic effects for the causal 

variants. In the first scenario with 30% of variants being causal, we set the magnitude of 

each γk to 0.12 for common variants and 0.08|log10MAFk| for rare variants. When the 

proportion of the causal variants is 90%, the genetic effects are reduced to 1/3 of the values 
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in the first scenario. The sign of γk is determined by the pre-specified percentage of causal 

variants with positive and negative effects, where the proportion of positive effects is set at 

100%, 80%, and 50%. We consider three parameter settings for the variance components , 

, and . The parameter values are listed as Models I–III in Table 3. In all three models, 

the correlation coefficient in the AR(1) model is set at φ = 0.75. To evaluate power of all 

methods when the correlation structure is misspecified, we also generate trait values using 

the compound symmetry correlation matrix and the SAD(1) model (Models IV and V in 

Table 3).

We perform association testing with all observed variants using the same weights specified 

in the type I error experiments. Empirical power is obtained for LSKAT, LBT, SKATAVG, 

BTAVG, SKATBL, and BTBL at the significance level 10−5, based on 1,000 replicates. Figure 

1 demonstrates the power results of the first scenario when a substantial fraction of the 

variants are not associated with the phenotype. In each of Models I–III, when the proportion 

of causal variants that are positively associated with the trait is 100% or 80%, LSKAT and 

LBT are more powerful than the other four methods. This is because both LSKAT and LBT 

gain power by directly using the trait information from all time points, while SKAT and BT 

tend to lose information when they are applied to either the baseline measures or the time 

point average of each sample. When all effects of causal variants are in the same direction 

(100% positive), LSKAT and LBT have comparable power, with LBT having a slightly 

higher power when sample sizes are 500 and 1000. In contrast, LSKAT is more powerful 

than LBT when the effects for the causal variants are 80% positive. However, when the 

percentage of positive effects drops to 50%, LBT loses power, and the power of SKATAVG 

and SKATBL improves such that SKATAVG outperforms LBT in all three models, and 

SKATBL performs better than LBT in some cases; while LSKAT is consistently the most 

powerful of all the tests in all three models. In the second scenario when the fraction of the 

causal variants increases to 90%, the power results in Figure 2 are slightly different. When 

the effects of causal variants are all positive, LBT achieves the highest power, and LSKAT 

remains to be more powerful than the other four tests in all three models. As the proportion 

of the positive causal variants declines, LBT gradually loses power, and is less powerful than 

LSKAT when the effects for the causal variants are 50% positive. This suggests that LBT 

performs better when variants are almost all deleterious or all protective, while LSKAT is 

better when both deleterious and protective variants are present. When causal variants are all 

deleterious or all protective, but a large fraction of the variants are not associated with the 

trait, the power gain of LBT over LSKAT is less prominent. These results are in agreement 

with the power comparison between linear and quadratic tests for rare variant association 

with a trait value measured at a single time point [Derkach et al., 2014].

Overall we find that, among the three variance component tests (LSKAT, SKATAVG, and 

SKATBL), the LSKAT method that jointly considers all time points has the highest power; 

SKATAVG that uses the average over all time points comes the second; and SKATBL which 

uses only one time point has the lowest power. The same pattern is also observed in the three 

burden tests LBT, BTAVG, and BTBL. This is consistent with what we expected because the 

average of trait values over eight time points has a smaller variation than the trait value from 

a single time point. Then the variants in the region of interest explain a larger proportion of 
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the variance of the mean phenotypic values than that of the phenotypic variance at one time 

point. As a result, the average approaches are more powerful than their counterpart with a 

single time point measure. When the number of repeated measures is large, the methods that 

jointly consider all time points gain more power than the average approaches. Similar 

patterns were also reported in the simulation studies of Furlotte et al., [2012], where they 

compared the single-marker association with a single time point, the average, and all time 

point measurements in longitudinal phenotypes.

We further assess the impact of misspecified covariance structure on the power of the six 

methods. Figure 3 shows the power results for Models IV and V in which the true 

correlation matrix on the subject-specific random effects is compound symmetry and the 

SAD model, respectively, where the fraction of the causal variants is 30%. Because the type 

I error of LBT based on the asymptotic distribution tends to be inflated when sample size is 

small, we use the empirical cutoff values at the significant level 10−5 in power assessment. 

For both the LSKAT and LBT methods, as we fit the null model under the AR(1) correlation 

model, we expect the power to be reduced. This can be illustrated by comparing the power 

results of Models IV and V to that of Model I, where the overall variances are the same in 

these three models. For example, when sample size is 1000, and all effects of causal variants 

are in the same direction (100% positive), the power of LSKAT is 0.51 and 0.64 in Models 

IV and V respectively, while the power is 0.74 in Model I. Similarly, under the same setting, 

the power of LBT is 0.47 and 0.66 in Models IV and V respectively, while the power is 0.76 

in Model I. In contrast, the power of SKATAVG, BTAVG, SKATBL, and BTBL do not change 

much across Models I, IV and V. Under the misspecified covariance structure in Models IV 

and V, LSKAT remains to be the most powerful or has power approximately equal to the 

most powerful of all the tests in all scenarios. When 90% of the variants are causal, we 

observe slightly different results (Figure 4). The power of LBT is higher than that of LSKAT 

when the effects of all causal variants are in the same direction. When the proportion of 

positive effects drops to 50%, LBT becomes powerless and LSKAT has improved power. 

Overall, the power of LSKAT and LBT in Models IV and V is lower than that in Model I.

3.2 Analysis of body mass index from the Framingham Heart Study

To illustrate the use of our methods, we analyze a GWAS dataset from the Framingham 

Heart Study (FHS) [Splansky et al. 2007]. FHS is a multicohort, longitudinal study of risk 

factors for cardiovascular disease. We investigate association with body mass index (BMI). 

BMI is a heuristic measure of body weight based on a person’s weight and height, and is the 

most widely used diagnostic tool to assess whether an individual is underweighted, normal, 

overweighted or obese. It is a strong risk factor for obesity-related diseases, such as 

hypertension, type 2 diabetes, and cardiovascular diseases [Frayling 2007]. The FHS sample 

consists of unrelated individuals as well as individuals from multigenerational pedigrees. We 

focus on a set of 2,104 unrelated individuals from the first two generation cohorts (original 

and offspring cohorts), where the original cohort has data from 28 exams, and the offspring 

cohort has data from 8 exams.

All samples were genotyped on the Affymetrix 500K array. We include in the analysis 

individuals who satisfy the following criteria: (1) completeness (i.e., proportion of variants 
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for which genotype is called) > 95% and (2) empirical self-kinship < .525 (i.e., empirical 

inbreeding coefficient < .05). In addition, we exclude 72 individuals who appear to be far 

apart from the rest of the sample in the principal components plot. The resulting data set has 

1,678 individuals who have both genotype and phenotype information, of which 728 are 

males and 950 are females. These individuals were measured for BMI at multiple time 

points from age 19 to age 86. For individuals in the original cohort, we use the data from 

exams 1–28, and for individuals in the offspring cohort, we use the data from exams 1–8. 

The number of measures on each subject ranges from 3 to 22, and the intervals between 

measurements are highly variable among subjects.

We perform a genome-wide gene-based longitudinal association analysis with BMI. For 

each gene region that is either protein-coding or RNA genes, we extract all variants that are 

on the Affymetrix 500K chip and are within 100 kb of the gene. We exclude sites that do not 

meet all of the following conditions: (1) call rate > 90%, (2) Hardy-Weinberg χ2 statistic P-

value > 10−6, and (3) at least 4 copies of minor allele. We then impute any missing 

genotypes using the software IMPUTE2 [Howie et al., 2009]. All together we test 

association of 32,393 genes with BMI, including sex, age at each exam, and the top 5 

principal components as covariates in the analysis.

We consider four tests LSKAT, LBT, SKATAVG, and BTAVG, where the weights specified in 

the type I error experiments are used. All tests are reasonably calibrated based on the Q-Q 

plots (Figure 5). The genomic control inflation factors are 0.983, 1.048, 0.995, and 0.971 for 

LSKAT, LBT, SKATAVG, and BTAVG, respectively. Table 4 reports the top six gene regions 

for which at least one of the four tests gives a P-value < 5 × 10−5. The first two genes are 

located at 20p11.23, where the P-values of LSKAT and LBT are much smaller than that of 

SKATAVG and BTAVG. The LINC00237 gene is significantly associated with BMI after 

Bonferroni correction, with a nominal P-value of 7.9 × 10−7 by LBT. This gene leads to the 

production of a non-coding RNA. It has previously been reported to be a candidate gene for 

macrosomia, obesity, macrocephaly, and ocular abnormalities (MOMO) syndrome (Vu et al., 

2012). The SGK1 gene on chromosome 6 encodes a serine/threonine protein kinase. High 

levels of expression of this gene may contribute to hypertension and diabetic nephropathy 

[Ferrelli 2015]. The NR1D2 gene on chromosome 3 is a nuclear hormone receptor gene. It 

plays an important role in circadian rhythms and carbohydrate and lipid metabolism. Several 

studies have reported association of this circadian gene with obesity [Garaulet et al., 2014; 

Goumidi et al., 2013]. For the two genes on chromosome 21, LSKAT yields a smaller P-

value than the other three methods (P-value is 2.8 × 10−5 for AP001347.6 and 4.4 × 10−5 for 

LIPI). AP001347.6 is an antisense gene. The LIPI gene encodes a phospholipase that 

hydrolyzes phosphatidic acid to produce lysophosphatidic acid. Defects in this gene have 

been reported to be associated with hypertriglyceridemia which increases the risk of obesity 

and heart disease [Wen et al., 2003].

3.3 Computation time

The computational burden of LSKAT and LBT comes from the inversion of the correlation 

matrix. Additionally, LSKAT requires the eigenvalue decomposition of the correlation 

matrix to calculate the P-value. Thus, the computational cost largely depends on the sample 
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size, the number of variants, and the number of measurements. When a study is balanced, 

i.e., all samples have the same number of measurements, the identical structure of the 

correlation matrix allows the inversion and decomposition to be performed only once for 

each tested region, which can substantially reduce the computation time. The Framingham 

BMI data we analyze contain unbalanced data. For instance, the number of measures on 

each subject ranges from 3 to 22, and the intervals between measurements are highly 

variable among subjects. Therefore we need to perform matrix inversion and decomposition 

separately for each individual. The combined analysis of LSKAT and LBT on the whole 

genome 32,393 genes took 2.1 hours on an Intel Xeon 2.6 GHz CPU computing cluster with 

15 nodes. This result demonstrates that LSKAT and LBT are computationally feasible for 

large-scale studies.

4. DISCUSSION

Longitudinal studies have recently been introduced in GWAS and provided a valuable 

resource for exploring genetic and environmental factors that affect diseases and complex 

traits. Repeated measures in phenotypic data can yield advantages such as (i) more accurate 

assessment of disease condition, and (ii) the opportunity to explore temporal variations of 

trait values, disease development and progression, which leads to improved power to detect 

association. One study has shown that jointly considering trait values from all time points 

can gain power by as much as eight folds over the traditional mapping procedure utilizing 

only one time point in the single-marker association analysis [Furlotte et al., 2012].

In this article, we introduce two methods, LSKAT and LBT, to analyze longitudinal 

phenotypic data in GWAS and/or sequencing studies. They are useful for detecting 

association between a set of rare and common variants and a longitudinally-measured 

quantitative trait. Both tests are constructed on the basis of a mixed-effects model that can 

not only account for the within-subject correlation, but also adjust for static and time-

varying covariates. LSKAT and LBT can be viewed as extensions of the SKAT and BT 

methods from a single time point measure to repeated measures. We demonstrate in 

simulation studies that LBT achieves high power when variants are almost all deleterious or 

all protective, while LSKAT performs well in a wide range of genetic models, particularly 

when a small fraction of tested variants are causal, and they are mixed with both protective 

and deleterious variants with different magnitude of effect sizes. This is desirable in practice 

because the true biological mechanism and genetic architecture is usually unknown and can 

vary across genes and traits. We have shown that by utilizing multiple measurements, 

LSKAT achieves increased power over SKAT and BT with either a single time point 

measurement or average over multiple time points. We apply LSKAT and LBT to a genome-

wide gene-based association analysis of BMI in the Famingham Heart Study, in which we 

identify six novel genes that may associated with BMI. Among them, the circadian gene 

NR1D2 has previously been reported as association with obesity. In the data analysis, both 

the LSKAT and LBT methods use the phenotype information from all time points to 

increase power to detect association over SKAT and BT.

The models we use for constructing the LSKAT and LBT statistics are under a certain set of 

assumptions, however, the framework is very general and may work for a larger class of 
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problems. We further simulate longitudinal data to assess the type I error and power for 

association with all variants in a genomic region when the linear mixed model is 

misspecified with covariance structure. We have shown that the type I error of LSKAT has 

no inflation with misspecified correlation structure in our simulations, however the power is 

lower than that using the correct covariance model; while LBT has inflated type I error when 

sample size is small. In longitudinal data analysis, there are always a variety of consideration 

when selecting the covariance structure, including the number of parameters, the 

interpretation of the structure, and the impact on tests and estimates of fixed effects. In 

practice, one could fit various correlation models and choose one based on the information 

criteria, such as Akaike’s Information Criteria (AIC) or Bayesian Information Criteria 

(BIC). Furthermore, when samples contain related individuals, familial correlation needs to 

be accounted for to ensure correct calibration of type I error in longitudinal data. For 

example, additional random effect can be incorporated in the anlysis to account for genetic 

relationship (kinship) between individuals.

Both the LSKAT and LBT tests are developed for repeated measures of quantitative traits on 

the basis of linear mixed models, and they are not directly applicable to dichotomous 

outcomes. For binary traits, one possible solution is to incorporate kernel function or burden 

score into the generalized linear mixed models for non-normal data. We are currently 

exploring this direction and will report it in a future communication. In the absence of prior 

information on the genetic architecture of the phenotype, it is useful to develop omnibus 

tests for longitudinal data that combine the strengths of both the LSKAT and LBT tests, 

similar to the SKAT-O statistic of Lee et al. [2012]. In addition, the LSKAT and LBT 

methods assume constant genetic effects for each variants. It would be possible to extend the 

method to allow for time-varying genetic effects, as the relative influence from genetic and 

environmental factors on a trait of interest can fluctuate over time [Li et al., 2015]. A simple 

approach would be to replace the genetic parameter γ with γj in Model (1) such that the 

genetic effects could vary at different time points. Another solution would be to include the 

variant by time interaction terms, and to jointly test the mean genetic effects and the variant 

by time interaction effects. This will be a direction of investigation in our future study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical power of LSKAT, LBT, SKATAVG, BTAVG, SKATBL, and BTBL in Models I–III 

when 30% of variants are causal. Empirical power is based on 1000 simulated replicates at 

eight time points with α = 10−5. Total sample sizes considered are 500, 1000, and 2500. 

From the left to right columns, the plots illustrate settings in which the coefficients for the 

causal variants are 100% positive, 80% positive, and 50% positive.
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Figure 2. 
Empirical power of LSKAT, LBT, SKATAVG, BTAVG, SKATBL, and BTBL in Models I–III 

when 90% of variants are causal. Empirical power is based on 1000 simulated replicates at 

eight time points with α = 10−5. Total sample sizes considered are 500, 1000, and 2500. 

From the left to right columns, the plots illustrate settings in which the coefficients for the 

causal variants are 100% positive, 80% positive, and 50% positive.
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Figure 3. 
Empirical power of LSKAT, LBT, SKATAVG, BTAVG, SKATBL, and BTBL in Models IV and 

V when 30% of variants are causal. Empirical power is based on 1000 simulated replicates 

at eight time points with α = 10−5. Total sample sizes considered are 500, 1000, and 2500. 

From the left to right columns, the plots illustrate settings in which the coefficients for the 

causal variants are 100% positive, 80% positive, and 50% positive.
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Figure 4. 
Empirical power of LSKAT, LBT, SKATAVG, BTAVG, SKATBL, and BTBL in Models IV and 

V when 90% of variants are causal. Empirical power is based on 1000 simulated replicates 

at eight time points with α = 10−5. Total sample sizes considered are 500, 1000, and 2500. 

From the left to right columns, the plots illustrate settings in which the coefficients for the 

causal variants are 100% positive, 80% positive, and 50% positive.
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Figure 5. 
Q-Q plots of LSKAT, LBT, SKATAVG, and BTAVG in the Framingham Heart Study BMI 

data.
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Table 3

Correlation structures and variance component parameters in power simulations

Model Correlation Variance Components

I AR(1)

II AR(1)

III AR(1)

IV CS

V SAD(1)

AR(1): first-order autoregressive model

CS: compound symmetry model

SAD(1): first-order structured antedependence model
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