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Abstract

G-protein coupled receptors (GPCRs), the largest family of human membrane proteins, mediate 

cellular signaling and represent primary targets of about one third of currently marketed drugs. 

GPCRs undergo highly dynamic structural transitions during signal transduction, from binding of 

extracellular ligands to coupling with intracellular effector proteins. Molecular dynamics (MD) 

simulations have been utilized to investigate GPCR signaling mechanisms (such as pathways of 

ligand binding and receptor activation/deactivation) and to design novel small-molecule drug 

candidates. Future research directions point towards modeling cooperative binding of multiple 

orthosteric and allosteric ligands to GPCRs, GPCR oligomerization and interactions of GPCRs 

with different intracellular signaling proteins. Through methodological and supercomputing 

advances, MD simulations will continue to provide important insights into GPCR signaling 

mechanisms and further facilitate structure-based drug design.
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Introduction

G-protein coupled receptors (GPCRs) mediate cellular responses to hormones, 

neurotransmitters, chemokines and the senses of sight, olfaction and taste. They have served 

as targets of about one third of currently marketed drugs for treating many human diseases, 

including cancer, diabetes, obesity, heart failure and neurological diseases[1,2]. Because 

GPCRs are highly dynamic membrane proteins that undergo large-scale conformational 
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changes during signaling, they have presented challenges for experimental structural 

determination[3].

Molecular dynamics (MD) is a computational technique that simulates the detailed structural 

dynamics of biomolecules over time based on an atomic force field[4]. In the absence of 

particular experimental GPCR structures, computational homology modeling and ab initio 
predictions[5,6] have been used to construct atomic structures of GPCRs and MD 

simulations have then been performed to study their dynamics[7]. MD simulations of GPCR 

computational models have been pioneered by Dahl, Weinstein and the others since the 

1990s on the dopamine[8], serotonin[9–11] and opioid receptors[12]. Following the 

groundbreaking X-ray crystal structure of rhodopsin in 2000[13], many MD simulations 

were performed to investigate the receptor structural changes and receptor-retinal 

interactions[14,15]. Another surge of MD studies on GPCRs was triggered by the X-ray 

structural determination of β2AR in 2007[16,17] and a rapidly growing number of high-

resolution GPCR structures thereafter[18]. Several excellent reviews on MD simulations of 

GPCRs have been presented earlier[19–21].

In this short review, we will briefly discuss the early GPCR MD studies, but primarily 

outline the latest developments of both conventional and enhanced atomistic MD studies of 

GPCRs and offer our perspectives. The simulation methods of our focus include long-

timescale conventional MD; Markov state models (MSM)[22] that extract protein dynamics 

from many short MD simulations; and enhanced sampling via random acceleration MD 

(RAMD)[23], steered MD[24], metadynamics[25] and accelerated MD (aMD)[26]. As 

shown in Figure 1, these studies have provided important insights into GPCR signaling 

processes (such as ligand binding and unbinding and receptor activation and deactivation 

conformational transitions), and into the structural basis for small-molecule drug design.

Molecular mechanisms of ligand binding to GPCRs

It is of great pharmaceutical interest to understand the molecular mechanisms of ligand 

recognition by GPCRs. However, ligand binding takes place over typically microseconds 

and even longer timescales for ligand unbinding or drug release. Due to limited computing 

power, these timescales were beyond the reach of conventional MD even in ten years ago. 

Instead, enhanced MD approaches were first adopted to address this issue. Notably, RAMD 

was applied to simulate the ligand unbinding from rhodopsin in 2007[27] and β2AR in 

2009[28]. For rhodopsin, the retinal was found to exit predominantly from the clefts 

between the transmembrane (TM) 4/TM5 helices or between the TM5/TM6 helices near the 

extracellular side. In contrast, in β2AR the extracellular surface opening was the most 

frequently observed ligand egress point (pathway A). With the salt bridge formed between 

Asp192 in the extracellular loop 2 (ECL2) and Lys3057.32 (the superscripts denote 

Ballesteros-Weinstein residue numbering[29]), the dominant ligand exit pathway A was 

divided into two subpathways, in which one surface opening is formed between ECL2 and 

TM5/TM6/TM7 helices (subpathway A1) and the other is formed between ECL2 and 

TM2/TM3/TM7 helices (subpathway A2). These two subpathways appeared to have 

“practically equal frequency” for ligand exit from the β2AR X-ray structure, although 

RAMD simulations based on a putative ligand-free conformation of β2AR suggested that 
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subpathway A2 is more favorable for ligand unbinding[28]. In 2011, steered MD was used 

to simulate ligand dissociation from the β1 and β2 adrenergic receptors (β-ARs)[30]. The 

simulations produced similar free energy profiles for two exit channels C1 and C2 of β-ARs 

that correspond to the aforementioned subpathways A1 and A2, respectively. It was thus 

suggested that “both routes may serve indistinguishably for ligand entry and exit”. 

Nevertheless, the secondary binding pocket in channel C2 of β2AR that is located at ~15Å 

from the orthosteric site was found less favorable than in channel C1. Moreover, the 

conformational change of Phe218ECL2 in β1AR and Phe193ECL2 in β2AR correlated with 

ligand solvation during unbinding[30]. In addition, metadynamics was applied to investigate 

ligand binding to the δ-opioid receptor (DOR) using a homology model[31]. The 

metadynamics simulations also suggested a preferential pathway of antagonist binding to 

DOR through a cleft formed between ECL2-ECL3 in the extracellular region.

Conventional MD was not applied to study GPCR ligand binding until 2011, when Dror et 

al. used the specialized supercomputer Anton to simulate binding of drug molecules to the 

β-ARs[32]. In contrast to the RAMD and SMD studies, the Anton MD simulations showed 

that the alprenolol antagonist bound to β2AR along a single dominant pathway, in which 

alprenolol passed between ECL2-ECL3 and then through the crevice between ECL2 and the 

TM4/TM6/TM7 helices (the subpathway A1[28] or channel C1[30] discussed above) to 

reach the orthosteric site. In only one out of 12 simulations that captured antagonist binding 

to β2AR, alprenolol entered between ECL2 and the TM2/TM7 helices (subpathway A2[28] 

or channel C2[30]). Besides, as alprenolol enters the extracellular vestibule of β2AR, the 

majority of ligand dehydration occurs, which contributes to the primary observed barrier for 

ligand binding[32]. In 2012, more Anton MD simulations on the M2 and M3 muscarinic 

acetylcholine receptors (mAChRs) showed that the large tiotropium (TTP) antagonist could 

not enter the deep orthosteric site during a simulation, but just bound to the extracellular 

vestibule[33]. In comparison, the endogenous agonist acetylcholine (ACh) of much smaller 

size was able to reach the orthosteric site with transient pause in the extracellular vestibule. 

In 2013, binding of several known negative allosteric modulators (NAMs) to the 

extracellular vestibule of the M2 receptor was captured in further Anton MD 

simulations[34]. The modulators typically form cation-π interactions with aromatic residues 

in the receptor extracellular vestibule. The extracellular allosteric binding mode was 

confirmed by mutation experiments and later by the X-ray structure of the active M2 

receptor that is recognized by a positive allosteric modulator (PAM)[35].

In 2013, we performed aMD simulations to investigate the binding of three ligands to the M3 

mAChR: the antagonist TTP, full agonist ACh, and partial agonist arecoline (ARc)[36]. In 

comparison with the previous Anton MD simulations[33], aMD greatly accelerated the 

binding of ACh to the receptor orthosteric ligand-binding site (~80 times speedup) and 

binding of TTP to the extracellular vestibule. Further aMD simulations also captured binding 

of ARc to the receptor orthosteric site. All three ligands were observed to pause in the 

extracellular vestibule during binding. The metastable intermediate states identified during 

ligand binding were in agreement with the Anton MD simulations[33]. Recently, 

metadynamics simulations have also captured the binding of a PAM to DOR in the presence 

of an agonist[37]. These studies demonstrate the applicability of both conventional and 

enhanced MD simulations to ligand binding of GPCRs.
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Conformational sampling of GPCR deactivation and activation pathways

With emerging X-ray structures of GPCRs determined in both inactive and active states 

(e.g., the β2AR [16,38] and M2 mAChR[35,39]), extensive MD simulations have been 

applied to investigate GPCR activation mechanisms[40–46]. In 2011, Dror et al. observed 

deactivation of β2AR from the active X-ray structure upon removal of the G-protein or its 

mimetic nanobody through Anton MD simulations[40]. The MD simulations revealed an 

intermediate conformation of β2AR during the deactivation process. Vaidehi and co-workers 

combined a coarse-grained conformational sampling method and all-atom MD simulations 

to investigate ensemble conformations of the human β2AR bound by different 

ligands[41,47]. Results showed that the binding of full or partial agonist leads to selection of 

a subset of conformations including the active and inactive states, while the inverse agonist 

selects only inactive state conformations. In 2012, Shan et al. observed distinct 

conformational states and dynamics in the serotonin 2A receptor (5-HT2A) receptor bound 

by the full agonist, partial agonist and inverse agonist[43]. The three ligands induce distinct 

conformational changes in several known GPCR activation elements and different responses 

in the lipid membrane. In 2014, The Google Exacycle cloudcomputing platform was used to 

simulate β2AR for a total of 2.15 milliseconds by combining short cMD runs[46]. MSMs 

revealed multiple activation pathways of β2AR and the simulation-derived structures were 

found to improve molecular docking of ligand molecules. In 2015, Neale et al. investigated 

the effects of lipid binding on activation of β2AR through long-timescale MD 

simulations[48]. Recently, Anton MD simulations also provided important insights into the 

constitutive activity of the US28 receptor that is bound by the CXCL1 chemokine[49].

Metadynamics combined with adiabatic biasing MD (ABMD) simulations was used to 

investigate activation and free energy landscapes of rhodopsin in 2010[50] and β2AR in 

2011[42]. The metadynamics simulations identified important low-energy intermediate 

states of the two GPCRs along their activation pathways. In the case of β2AR, distinct free 

energy profiles were obtained when the receptor was bound by the inverse agonist, neutral 

antagonist and agonist. In 2013, Li et al. also applied metadynamics simulations to the 

adenosine 2A receptor and suggested that different ligands were able to shift the receptor 

conformational equilibrium towards the active and inactive states[45].

In 2013, Miao et al. applied aMD simulations on the M2 mAChR and captured its activation 

at an atomistic level[44]. Starting from the inactive X-ray structure with antagonist removed, 

the receptor undergoes large-scale structural rearrangements to an active state via two 

intermediate conformations. The receptor activation involves major conformational 

transitions in the TM5, TM6 and TM7 helices and changes in the receptor dynamic network. 

Notably, Tyr2065.58 and Tyr4407.53 relocate their side chains towards each other forming 

hydrogen-bonding interactions and the cytoplasmic end of TM6 tilts outward by ~6 Å. 

Subsequent determination of the X-ray structure of the active M2 receptor largely confirmed 

these predictions[35]. In 2015, we also captured activation of the M3 mAChR and 

investigated the allosteric effects of sodium ion binding through extensive aMD 

simulations[51]. Results showed that with the D2.50 residue deprotonated, the M3 receptor 

was bound by an allosteric sodium ion and confined mostly in the inactive state with 

remarkably reduced flexibility. In contrast, the D2.50-protonated receptor did not exhibit 
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sodium ion binding to this site and sampled significantly larger conformational space. The 

receptor activation was observed and characterized by structural rearrangements of the TM 

helices via dynamic hydrogen bond and salt bridge interactions. Network analysis revealed 

that the allosteric signaling between residue D2.50 and key residues in the intracellular, 

extracellular and orthosteric pockets is significantly weakened upon sodium ion binding, 

which precludes receptor activation.

Computer-aided drug design targeting GPCRs

Due to the immense cost in high-throughput screening of large compound libraries, 

computer-aided design has become an attractive approach for drug discovery targeting 

GPCRs[52,53]. Moreover, design of receptor-specific orthosteric drugs has been challenging 

and mostly unsuccessful in the case of GPCRs, largely because residues in the orthosteric 

site are highly conserved across different receptor subtypes, e.g., the five 

mAChRs[33,39,54]. Alternatively, development of allosteric modulators, which bind to 

GPCR allosteric sites with great subtype specificity, has emerged as a new paradigm for 

GPCR drug discovery[55–57].

In 2015, Huang et al. demonstrated a computer-aided design approach to design allosteric 

modulators of two understudied GPCRs, the GPR68 and GPR65, by combining 

computational homology modeling, molecular docking and experimental assays[58]. First, 

yeast-based screening against 24 selected GPCRs revealed that the Lorazepam drug acts as a 

PAM of GPR68. Based on the CXCR4 template, 3307 homology models were constructed 

and refined to capture Lorazepam binding. With an optimized binding mode chosen, a 

library of 3.1 million compounds was computationally docked to predict new GPR68 

allosteric modulators. Functional assays confirmed that ogerin among many was a potent 

PAM of GPR68. Application of the same approach also found allosteric agonists and NAMs 

of GPR65. While homology models appear to generate feasible receptor structures for 

molecular docking, it was also noted that this protocol demands iterative cycles of modeling 

and optimization[58].

Since GPCRs are highly flexible membrane proteins, especially in the druggable allosteric 

sites[34,59], MD simulations have been proposed to construct receptor ensembles for 

molecular docking in order to account for the receptor flexibility. Recently, Miao et al. have 

combined aMD simulations and ensemble docking with experimental binding and functional 

assays to design allosteric modulators of the M2 mAChR[60]. AMD simulations were 

carried out to construct the receptor ensembles. Compounds obtained from the National 

Cancer Institute (NCI) Diversity Set (~1,600) were docked to the receptor ensembles to 

identify novel allosteric modulators. In the first round, 10 top-ranked compounds were 

selected from the Glide virtual screening workflow (VSW) calculations. Although one 

compound significantly slowed down the dissociation of an antagonist radioligand, none of 

them exhibited high enough affinity for the M2 mAChR. In the second round, retrospective 

docking of known ligands showed that combining aMD simulations with the Glide induced 

fit docking (IFD) provided much improved docking enrichment factors compared with the 

VSW. Glide IFD was thus applied in ensemble docking of the M2 mAChR and 38 top-

ranked compounds were selected for experimental testing. Results showed that about half of 

Miao and McCammon Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the 38 hits altered the radioligand dissociation rate, a hallmark of allosteric behavior. 

Through further experimental characterization using competition binding, 12 compounds 

were identified with ≤30µM affinity. With final in vivo functional experiments on six 

selected lead compounds, we confirmed four of them as new NAMs and one as PAM of 

agonist-mediated response at the M2 mAChR. This study also demonstrates a successful 

structure-based design approach to effectively account for receptor flexibility and identify 

chemically diverse GPCR allosteric modulators.

Computing and methodological advances will continue to facilitate future 

simulations and drug discovery of GPCRs

Shown in Figure 2 is an overview of the cellular signaling processes associated with GPCRs. 

Upon binding of extracellular ligands, GPCRs undergo large-scale conformational changes 

and interact with intracellular effector proteins (such as the heterotrimeric G protein and 

arrestin) to activate various cell signaling pathways. Extracellular ligands include small 

organic molecules, neurotransmitters, hormones, lipids, chemokines, etc. Orthosteric ligands 

bind to a GPCR site that is recognized by the endogenous ligand. They can act as 

antagonists, inverse agonists, full and partial agonists and shift GPCRs towards different 

conformational states for cell signaling. Furthermore, the GPCR signaling can be regulated 

by allosteric modulators (e.g., organic molecules and polypeptides) that bind to regions 

topographically distant from the orthosteric site. During the past 25 years, MD studies of 

GPCRs have seen tremendous advances, from the early simulation of a GPCR homology 

model for only 80 ps in 1991[8] to the latest 50 µs Anton simulations (6 orders of magnitude 

increase)[40] and microsecond enhanced MD simulations[36]. MD simulations have greatly 

helped us to understand the dynamic mechanisms of ligand recognition and activation of 

GPCRs.

Despite the above successes, the following aspects of GPCR dynamics and functional 

mechanisms remain unclear, but MD simulations will continue to deepen our understanding 

of GPCRs and facilitate related drug design. Particularly, recognition of GPCRs by large 

lipids and polypeptides (like chemokines) and mechanisms of cooperative binding and 

allosteric modulation between multiple orthosteric and allosteric ligands of GPCRs require 

further investigation. Moreover, the interactions of GPCRs with intracellular proteins remain 

poorly understood, largely due to the increased system size and complexity. Different 

subtypes of GPCRs are able to bind specific G proteins, such as the Gs, Gi and Gq proteins. 

The binding specificity between GPCRs-G proteins is subject to future research. In addition, 

given two milestone crystal structures of the GPCR-G protein[38] and GPCR-arrestin[61] 

complexes, a detailed understanding of the molecular mechanisms underlying the coupling 

of GPCRs with the G protein versus arrestin (i.e., biased agonism) is in order. Finally, 

GPCRs likely form oligomers during their function in the lipid membrane. While coarse-

grained MD has been used to study GPCR oligomerization[62,63], it is important to study 

the effects of oligomerization on the structural dynamics and cell signaling of GPCRs 

through more detailed MD simulations.
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Highlights

• GPCRs mediate cellular signaling and represent important drug targets

• A review on molecular dynamics simulations and drug discovery of 

GPCRs is presented

• Remarkable advances will continue to facilitate GPCR simulations and 

drug discovery
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Fig. 1. 
Advances in conventional and enhanced molecular dynamics (MD) simulations of GPCR 

signaling to date. GPCR structural images are adapted from conventional MD simulations on 

a homology model of the D2 dopamine receptor in 1991[8], rhodopsin using its X-ray 

structure in 2002[14,15], flexibility and internal hydration of β2AR following determination 

of the X-ray structure in 2008[17], drug binding and deactivation processes of β2AR in 

2011[32,40], ligand binding to the M2 and M3 mAChRs in 2012[33] and constitutive activity 

of US28 bound by CX3CL1 chemokine in 2015[49]. Enhanced MD simulations have also 

been applied to explore structural dynamics of GPCRs. For example, ligand unbinding has 

been investigated through random acceleration MD (RAMD) simulations on rhodopsin in 

2007[27] and β2AR in 2009[28], metadynamics simulations of δ-opioid receptor (DOR) in 

2009[31] and steered MD simulations of the b-ARs in 2011[30]. Moreover, GPCR activation 

processes have been characterized through combined metadynamics and adiabatic biasing 

MD (ABMD) simulations of rhodopsin in 2010[50] and β2AR in 2011[42], as well as aMD 

simulations of M2 mAChR in 2013[59] and M3 mAChR in 2015[51]. In addition, ligand 

binding to the M3 mAChR captured through aMD simulations was reported in 2015[36].
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Fig. 2. 
An overview of cellular signaling processes associated with GPCR membrane proteins. 

Upon stimulation by binding of extracellular ligands (or light in the case of rhodopsin), 

GPCRs undergo large-scale conformational changes and interact with intracellular effector 

proteins (such as the heterotrimeric G protein and arrestin) to activate various cell signaling 

pathways. Extracellular ligands include orthosteric ligands and allosteric modulators. 

Orthosteric ligands bind to a GPCR site that is recognized by the endogenous ligand. They 

can act as antagonists, inverse agonists, full and partial agonists and shift GPCRs towards 

different conformational states for cell signaling. The GPCR dynamics and function can be 

further regulated by allosteric modulators (e.g., organic molecules and polypeptides) that 

bind to regions topographically distant from the orthosteric site. On the intracellular side, 

different subtypes of activated GPCRs are able to bind specific G proteins, such as the Gs, 

Gi and Gq proteins. In addition to the G protein mediated signaling pathway, GPCRs can 

also bind to arrestin, leading to internalization of the receptors. Finally, GPCRs might form 
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oligomers during their function in the lipid membrane. MD simulations will continue to 

deepen our understanding of these GPCR signaling processes.
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