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Abstract

Background—Conventionally, change in motor performance is quantified with discrete 

measures of behaviour taken pre- and post-practice. As a high degree of movement variability 

exists in motor performance after stroke, pre- and post-testing of motor skill may lack sensitivity 

to predict potential for motor recovery.

Objective—Evaluate the use of predictive models of motor learning based on individual 

performance curves and clinical characteristics of motor function in individuals with stroke.

Methods—Ten healthy and fourteen individuals with chronic stroke performed a continuous 

joystick-based tracking task over 6 days, and at a 24 hour delayed retention test, to assess implicit 

motor sequence learning.

Results—Individuals with chronic stroke demonstrated significantly slower rates of 

improvements in implicit sequence-specific motor performance compared to a healthy control 

(HC) group when root mean squared error (RMSE) performance data were fit to an exponential 

function. The HC group showed a positive relationship between a faster rate of change in implicit 

sequence-specific motor performance during practice and superior performance at the delayed 

retention test. The same relationship was shown for individuals with stroke only after accounting 

for overall motor function by including Wolf Motor Function Test (WMFT) rate in our model.

Conclusion—Nonlinear information extracted from multiple time points across practice, 

specifically the rate of motor skill acquisition during practice, relates strongly with changes in 

motor behaviour at the retention test following practice and could be used to predict optimal doses 

of practice on an individual basis.
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Introduction

Motor outcomes after stroke rely on capacity for learning as individuals work to relearn old, 

and acquire new, motor skills.1 The amount, or “dose”, of practice required to stimulate 

learning after stroke is an important topic among clinicians and researchers alike.2 Motor 

learning refers to “relatively permanent changes in the capability for skilled behavior” and 

has conventionally been quantified with discrete measures of behaviour taken at post-

practice time points.3,4–9 It is known that the acquisition of motor skills which result in 

behavioral change do not occur in a linear manner.9 Pre- and post-testing of motor skill may 

lack sensitivity to delineate nonlinear information regarding how quickly individuals 

improve as well as whether, and when, performance plateaus.9 In the early phase of motor 

skill acquisition individuals acquire basic movement patterns through trial and error 

movement strategies that are used to achieve the desired goal.10 If sufficient practice is 

provided, large improvements in motor performance typically occur in a non-linear fashion, 

followed by smaller rates of improvement when approaching a plateau in behaviour.1 While 

previous works have modeled motor behaviour using a curvilinear function in individuals 

with stroke,11–14 the possibility of exploiting the relationship between rate of motor skill 

acquisition and the number of trials until asymptote to determine whether this information 

can be used to enhance motor learning after stroke has not been studied.15 Undertaking this 

effort is important as it may enable prediction of the appropriate dose of practice on an 

individual basis, which could lead to optimized motor learning after stroke. Some work has 

used post-hoc analyses to quantify the dose of practice needed to induce clinically 

meaningful change,2 or dose escalation methods to identify the maximum tolerated dose.16 

However, at this time no methodology exists that uses the rate of skill acquisition to predict 

retention performance and the dose of practice necessary to achieve performance plateau 

during motor skill acquisition.17 Additionally, this approach could enable the individualized 

prediction of the dose of practice required for rehabilitation of impaired motor skills after 

stroke. Understanding how skills are acquired on an individual level, beyond change scores, 

in the medical field has called into question the use of fixed numbers of procedures for 

credentialing and licensing18. Understanding the progression of learning through a 

proportional progress can help in the development of efficient practice paradigms in 

rehabilitation settings as the numbers of trials (i.e., dose) necessary for motor learning may 

vary from person to person.

Presently, motor outcomes are described with summary values, such as mean response time 

or percent of correct responses, taken at discrete points in time to produce pre-post change 

scores.4–7,15 However, behavioral changes can be characterized using models that 

encompass the evolution of performance changes over time. For example, curve fitting uses 

all data points, as opposed to small blocks, and as such captures the overall trend or the 

‘evolution of performance of practice’. The most suitable method for quantifying how 

performance evolves is the learning curve, as learning does follow a robust pattern of 

change, and suggests that practice always helps improve performance with the most 

observable improvements occurring in the early phase of practice.19 In addition, with an 

adequate dose of practice individuals can achieve comparable levels of performance.20 This 

work has considered healthy adults,15,21–24 and detected differences in motor skill 
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acquisition in healthy people and individuals with stroke.11 Yet, the application of these 

principles in clinical research has lagged. In addition, pre and post measurements have been 

viewed as limiting our understanding of the mechanisms actively involved in an 

intervention.25 In a recent review discussing the neural mechanisms supporting stroke 

rehabilitation, pre and post testing was posed as a hindrance to our understanding of how an 

intervention works, disallowing the isolation of the ‘active ingredient’ involved.25 The 

benefit of an approach that estimates parameters, is that it does not restrict nor define change 

solely to initial and final performance, but instead captures a broad scope of skill acquisition 

compared to a discrete change score calculated from the beginning to end of practice.26

Based on theoretical models of learning, in the current work we used an exponential 

function to generate a curve of improvement in implicit motor skill performance of a 

continuous tracking task (CTT) as a function of time.7,27 The use of a learning curve is 

advantageous in the investigation of the dynamic nature of performance as skill acquisition 

for the CTT involves known transitions throughout the learning process.28 Modeling mean 

scores as a continuous curve, so neighbouring blocks may have some influence on the 

succeeding block, accurately depicts the CTT learning process. Rather than calculating mean 

scores from each block individually, curve fitting incorporates more information to make a 

prediction; performance in the initial blocks sequentially influence performance in the latter 

blocks. Thus the purpose of the present study was two-fold. (1) To derive and compare 

practice parameters estimated from an exponential function between individuals with stroke 

and a healthy control group during implicit motor skill acquisition. (2) To determine the 

relationship between estimated practice parameters within groups and the retention of 

performance following practice. We hypothesized that exponential curve fitting of implicit 

sequence-specific motor performance across six days of skilled motor practice would result 

in group differences in the predictor values that would be associated with retention test 

performance. In addition, we hypothesized that a clinical measure of motor function, the 

Wolf Motor Function Test (WMFT), when added to the regression model, would help to 

predict the magnitude of change associated with implicit motor learning.

Methods

Participants

The stroke (ST) group included 14 individuals with chronic middle cerebral artery (MCA) 

stroke (Mean age = 64.7; SD = 7.24 years). Physical impairment level was assessed using 

the Fugl-Meyer (FM) upper extremity motor scale (Mean = 52.7; SD = 13.0; maximal score 

66).29 Ten right-handed, older healthy individuals made up the control group (HC; Mean age 
= 64.8; SD = 8.5 years) (Table 1). Individuals were recruited from the university and local 

communities. The rights of all participants were protected by the ethical review board at the 

University of British Columbia; each individual signed an approved institutional informed 

consent form prior to enrollment.

Experimental Design

Individuals participated on seven separate days over a 2-week span, with no more than 5 

days between practice sessions. On the first day, the ST group completed the Wolf Motor 
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Function Test (WMFT) and both groups (ST, HC) performed four pre-test training blocks 

(30 trials/block) of the continuous tracking task (CTT). Days 2–6 involved CTT practice and 

on day 7, a 24-hour retention test consisting of four blocks was performed (30 trials/block). 

We selected this dose of practice for our study as our past work has shown that it is enough 

to facilitate motor learning26,30; however, it is unclear whether it is a sufficient dose to lead 

to asymptote in performance. On each practice day (i.e., days 2–6) participants practiced 100 

trials (5 blocks; 20 trials/block); completion of each practice session took approximately 30 

minutes (Figure 1A).

Motor Function Assessment

On day 1, the WMFT of upper extremity function was assessed by a registered Physical 

Therapist. Movement time to complete 15 items of the WMFT with the paretic and non-

paretic arms was determined. A task rate was calculated as 60 seconds/performance time(s) 

with a score of ‘0’ given if a participant was unable to perform the task.30 The WMFT mean 

rate has been shown to be a more sensitive method to characterize motor function of the 

upper extremity in individuals with stroke.30

Behavioral Task

The ST group used their paretic, left arm and the HC group used their non-dominant, left 

arm to track the vertical path of a target with wrist movements that controlled a joystick 

(Current Designs*). Participants’ movements were represented as a red filled circle and the 

target circle was outlined in white; both objects were visible on a black background (Figure 

1B,C). See Wadden et al. 2014 and Supplementary Material for in-depth CTT details.31

Motor performance was evaluated using root mean squared error (RMSE), which is the 

average difference between the target pattern and participant movements, and reflects overall 

tracking errors in the kinematic patterni. RMSE was calculated separately for random and 

repeating segments on every trial. For the pre-and retention test, performance in the first 

block (15 trials of both random and repeated sequences) was evaluated. For each participant, 

a pre- to retention-test change score was calculated separately for random and repeated 

sequences (e.g., mean RMSE on Day 1, Block 1 minus mean RMSE from Block 1 at the 

retention test on day 7; Change ScoreDay1–7).

Practice Exponential Curve

Individual changes in implicit sequence-specific performance and motor control, as 

measured by the RMSE for repeated and random sequences, respectively, were fit to an 

exponential function with a least squares regression analysis.29 RMSE value for each trial 

across the pre-test (day 1) and 5 days of task performance (days 2–6) for each participant 

were parameterized using the following equation32:

*Current Designs Inc, 3950 Haverford Ave. Philadelphia PA 19104
iThere was no significant relationship between the exponential function parameters alpha (α) and B within the ST and HC groups 
(p=0.425). Therefore, the parameter B, used to calculate the retention score and did not confound the correlational analysis between 
practice parameter alpha (α) and the retention score.
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E(RMSEN) is the expected value of RMSE on practice trial N; A is the expected value of 

RMSE after practice has been completed (asymptote parameter); B is the change in the 

expected value of RMSE from the beginning of practice to the end of practice (change score 

parameter); Alpha (α) is the exponential learning rate parameter (Figure 2 for HC single 

subject example).27

Retention Test Score

A retention test score (RTS) was calculated to determine the change in motor behaviour 

associated with learning. By accounting for early practice performance and the change score 

parameter, B, as predicted from the exponential function, a direct comparison between 

practice and retention was possible. The mean RMSE for block 1 for the pre-test (day 1) and 

retention test were calculated (RMSEPT and RMSERT, respectively).33,34 The RTS was 

determined as follows:

In this equation, a higher score indicates better retention (i.e., larger change in motor 

behaviour) of the motor skill. The RTS is interpreted as the increase or decrease in 

performance following the retention interval, and has been deemed the most informative 

measure of retention.35

Predicting dose of practice to asymptote

To evaluate the predictive capabilities of the exponential function to determine optimal dose 

of practice for motor learning, the exact trial was calculated that indicated individual 

performance was within 1% tolerance of the A value. The number of trials until asymptote 

was determined by the following equation:

Trialn is the expected trial N until asymptote; A is the expected values of RMSE after 

practice has been completed (asymptote parameter); B is the change in the expected value of 

RMSE from the beginning of practice to the end of practice (change score parameter); Alpha 

(α) is the exponential learning rate parameter (Figure 2).27

Statistical Analysis

Motor Performance—A between-group analysis of variance (ANOVA) was used to 

evaluate differences in motor performance between ST and HC groups on mean practice 

RMSEDays1 to 6 for each sequence separately (Repeated and Random).

Separate between-group multivariate analysis of variance (MANOVA) for each sequence 

(Repeated and Random) were used to evaluate differences in motor performance between ST 
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and HC groups on the exponential practice parameter dependent measures (A, B, α) derived 

from the exponential function.

Motor Learning—Between-group ANOVAs were used to evaluate differences in motor 

learning for individuals in the ST and HC groups using mean retention RMSE and Change 

ScoreDay1–7 separately for each sequence as the dependent measures (Repeated and 

Random).

A between-group ANOVA was used to evaluate differences in motor performance for 

individuals in the ST and HC groups with the RTS ((RMSEPT − RMSERT)/B) for each 

sequence as the dependent measure (Repeated and Random).

To evaluate the relationship between exponential practice parameters and RTS in the HC 

group, simple linear regression analyses were conducted, where the rate of skill acquisition 

parameter, α, was regressed on the RTS separately for repeated and random sequences1. 

Because stroke-related movement deficits may interfere with motor behavior, we conducted 

hierarchical regression analyses in the stroke group designed to examine the relationship 

between α and RTS while accounting for individuals’ level of motor function. These 

hierarchical regression analyses were conducted separately for the Repeated and Random 

sequences; paretic WMFT rate was entered as a predictor in the first block, and the rate of 

skill acquisition parameter, α, was entered in the second block and these variables regressed 

on the RTSi. The Variance Inflation Factor (VIF) and tolerance statistics indicated minimal 

collinearity within the data as VIF value was under 2.0.36

Prediction of Optimal Dose—A between-group ANOVA was used to evaluate 

differences in the predicted numbers of trials until asymptote between individuals with 

chronic stroke and healthy individuals on the log transformed Predicted trialA_n by Group 

(ST, HC) for each sequence (Repeated and Random).

For all statistical tests, significance level was set to p < 0.05. SPSS 22.0 (IBM, New York, 

NY) statistical software was used for analyses. A Bonferroni correction was used on post-

hoc analyses to correct for multiple comparisons.

Results

Differences in motor performance metrics between ST and HC groups

During practice, there was a near significant difference and significant difference between 

groups (ST, HC) in mean RMSE for repeated and random sequence (mean practice 
RMSEDays 1 to 6). Across practice days the ST group demonstrated worse performance than 

the HC group; mean RMSE for the repeated sequence for the ST group was 13.02 (SD = 

3.75) and for the HC group mean RMSE was 9.7 (SD = 4.12), F(1,22) = 4.255, p = 0.051, η2
ρ 

= 0.162. While for random sequence performance, the ST group demonstrated a mean 

RMSE of 12.2 (SD = 3.62) and the HC group a mean RMSE of 9.0 (SD = 3.41), F(1,22) = 

4.648, p = 0.042, η2
ρ = 0.174.
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Using our exponential function to characterize change in motor performance across practice 

we discovered a significant main effect of group (ST, HC) for the exponential practice 

parameters derived from the repeated sequences (A, B, α), Wilks’ λ = 0.614, F(1,20) = 

4.198, p = 0.019, η2
ρ = 0.386. The post hoc univariate ANOVAs demonstrated that a 

significant difference for the exponential practice parameters was observed for the extracted 

α value, F(1,22) = 4.9, p = 0.0038, η2
ρ = 0.182 (Figure 3). There were no significant 

differences between groups for the exponential practice parameters A or B for repeated 

sequence practice, F(1,22) ≤ 0.276, p ≥ 0.383. There was no significant main effect of group 

(ST, HC) on the practice parameters for random sequence detected by the MANOVA (A, B, 

α), Wilks’ λ = 0.693, F(1,20) = 2.960, p = 0.057, η2
ρ = 0.307.

Differences in motor learning metrics

At retention, there was significant main effect of group (ST, HC) for mean RMSE for 

repeated sequence and near significant difference for random sequence as detected by the 

ANOVAs. Similarly to practice, the ST group performed worse than the HC group at 

retention; mean RMSE for the repeated sequence was higher in the ST group (11.8; SD = 

4.51) than the HC group (8.2; SD = 1.74) F(1,22) = 5.732, p = 0.026, η2
ρ = 0.207. RMSE was 

also higher in the ST group for random sequences (11.6; SD = 4.17) as compared to the HC 

group (8.3; SD = 1.91) F(1,22) = 4.221, p = 0.052, η2
ρ = 0.161. There was no significant 

main effect of group (ST, HC) on Change ScoreDay1–7 for repeated or random sequences as 

detected by the ANOVAs. ST repeated sequence Change ScoreDay1–7 was 4.1(SD = 3.22), 

HC repeated sequence Change ScoreDay1–7 was 7.7 (SD = 12.09) F(1,22) = 1.09, p = 0.307, 

η2
ρ = 0.047. Similarly, ST random sequence Change ScoreDay1–7 was 5.3 (SD = 3.22) and 

HC random sequence Change ScoreDay1–7 was 4.7 (SD = 6.09) F(1,22) = 0.116, p = 0.736, 

η2
ρ = 0.005.

Using our exponential function to characterize change in motor learning from practice to 

retention, there was no significant main effect of group (ST, HC) on the RTS for repeated 

and random sequence as detected by the ANOVAs. The RTS for the repeated sequence for 

the ST group was 0.55 (SD = 0.385), and for the HC group was 0.63 (SD = 0.248), F(1,22) = 

0.286, p = 0.598, η2
ρ = 0.013, while for random sequence performance the ST group 

demonstrated a RTS of 0.62 (SD = 0.259) and the HC group was 0.456 (SD = 0.321), F(1,22) 

= 2.003, p = 0.171, η2
ρ = 0.083.

Relationship between α and retention score for HC group

Simple linear regressions were used to evaluate the relationships between α and the RTS 

((RMSEPT − RMSERT)/B) for both repeated and random sequence performance for the HC 

group. The practice parameter, α, accounted for significant variance in repeated sequence 

RTSs (R2 = 0.465, F(1,8) = 6.952, p = 0.03) (Figure 4a), indicating a significant relationship 

between rate of skill acquisition in practice and motor behavior at the retention test; 

however, this was not observed in the analysis of random sequence performance at the 

retention test (R2 =0.094, F(1,8) = 0.827, p = 0.39, respectively).
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Relationship between α, WMFT, and RTS for ST group

In the hierarchical regression models, paretic WMFT rate accounted for significant variance 

in RTS for both repeated and random sequences (R2 =0.424, F(1,12) = 8.825, p = 0.012; R2 

=0.410, F(1,12) = 8.335, p = 0.014, respectively). Addition of α in the second block 

significantly improved the repeated sequence model (Δ R2 = 0.165, F(1,11) = 4.425, p = 0.05) 

(Figure 4b; table 2), indicating a significant relationship between α and repeated sequence 

RTS when accounting for level of motor function. In contrast, addition of α did not 

significantly improve the random sequence model (Δ R2 = 0.059, F(1,11) =1.229, p = 0.291). 

The VIF was 1.074.

Predicted dose of practice between ST and HC groups

There was not a significant main effect of group (ST, HC) for repeated and random sequence 

in predicted number of trials to asymptote (Predicted trialA_n) by the ANOVAs. Predicted 

trialA_n for repeated sequence performance was greater for the ST than the HC groups for 

the repeated sequences (ST predicted trials= 1755.2 (SD = 3504.68); HC predicted trials = 

414.3 (SD = 436.66), F(1,22) = 2.968, p = 0.099, η2
ρ = 0.119. This group difference was not 

present for random sequences (ST predicted trials = 328.3 (SD = 399.15); HC predicted 

trials = 520.4 (SD = 802.02), F(1,22) = 0.008, p = 0.928, η2
ρ = 0.000.

Testing of Explicit Knowledge

Participants could only recognize sequences at a chance level, and failed to gain explicit 

knowledge of the repeated sequence. The ST group correctly identified 53.4% of sequences; 

the HC group accurately recognized 53.3%.

Discussion

The present study demonstrates that individual implicit sequence-specific motor learning can 

be successfully modeled by an exponential function and this shows significant relationships 

with the retention of the newly learned motor skill. During motor sequence acquisition 

individuals with chronic stroke demonstrated significantly slower improvements in skilled 

motor performance compared to a HC group. Inferior motor sequence performance and 

retention by individuals with stroke as compared to matched controls has been previously 

reported.22,32 The current study expands on these previous findings;11–14 the rate of motor 

skill acquisition both differed between individuals with stroke and healthy controls and was 

predictive of changes in motor learning when combined with clinical measures of motor 

function. The HC group showed a positive relationship between a faster rate of change in 

motor performance during practice and superior performance at the delayed retention test for 

the repeated sequence. Interestingly the same relationship was shown for individuals with 

stroke after we accounted for overall motor function by including WMFT rate in our model. 

Thus when controlling for level of clinical motor function, the rate of motor skill acquisition 

during practice related strongly with individuals’ ability to retain previously acquired motor 

skills.

A pre- to post-testing approach ignores large amounts of information that characterizes 

individual capacity for change, rate of improvement and time to asymptote. Within-
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individual variability has been reported to be between 37 to 53% of between-individual 

variability, which challenges the idea that motor performance on one day represents a 

person’s characteristic performance.37 Further, when motor performance scores, such as 

clinical outcome measures, are used to prognosticate and determine whether therapeutic 

resources should be deployed, a measurement at a single point in time may not adequately 

reflect the full potential of the individual. Findings from the present study in combination 

with previous motor learning literature,38 demonstrate that performance across multiple 

practice sessions may be useful in predicting the retention of motor skills. Here we extend 

this finding and showed that for individuals with stroke, incorporating clinical assessment 

measures of motor function (WMFT), enhanced our ability to predict capacity to learn a new 

motor skill. RTS was calculated from ratio of the exponential derived parameter ‘B’ (similar 

to the change score from the beginning to the end of practice) and the change in performance 

from the beginning to retention. This is a unique approach as a change in practice 

performance (y values) across their entire practice (x values) is based on their expected 

asymptotic value ‘A’. Parameterizing practice and learning to an individual’s predicted 

performance values may offer more insight into her/his potential capacity for change beyond 

constraints of the limited number of trials.

The asymptotic value we derived in the present work describes the estimated value of an 

individual’s performance when an apparent plateau is achieved. Some individuals may 

achieve their asymptote relatively quickly, while others may take substantially more trials to 

do so, which will significantly impact the ‘α’ value. We did not observe a significant 

difference in the predicted trial to asymptote between individuals with stroke and healthy 

controls. This finding may result from our testing of individuals with relatively mild levels 

of stroke related motor impairment (average upper extremity Fugl-Meyer motor score 52 of 

66). However, calculating predicted time to asymptote (A) immediately following practice 

has the potential to guide decisions regarding the correct dose of practice required for 

optimal improvement in motor behaviour and functional outcomes. Optimal dose of practice 

is an attractive concept in the field of rehabilitation following stroke as the dose required for 

neuroplastic change to occur is extremely high.2 The optimal dose of practice is an 

individualized number of repetitions a patient would need in order to maximize retention of 

the desired task. Due to the exponential nature of learning, if dose prescription could be 

calculated based on performance data from individual learning curves and therapists could 

quantify an amount of practice necessary for the retention of motor skills, then the somewhat 

abstract concept of dose could become a tangible notion. In addition, this predictive 

methodological approach may not only specify if the individual may require more practice 

trials, but also provide an indication of the challenge level of the practice session. If the 

practice or rehabilitation session was too easy, the predicted rate of skill acquisition during 

practice will be high and the number of trials to asymptote low; this may translate into lower 

long-term retention of the motor skill performance.39,40 Thus, the present study contains a 

roadmap for future rehabilitation research that employs predictive models of motor learning 

based on individual performance curves and clinical characteristics of motor function.
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Limitations & Future Directions

There are limitations to the present study. We studied a relatively small (n = 14) group of 

mildly impaired individuals with stroke. This limits our ability to form robust association 

between practice parameters, clinical measures and motor learning. To increase the 

ecological validity between clinical research and rehabilitation settings, where tests are 

administered by researchers and treatments are delivered by clinicians, respectively, a deeper 

understanding of the performance and learning relationship must be achieved in larger 

patient populations and across a variety of motor tasks. We do not claim that our curve 

fitting approach is better than other methods; instead we present it as an alternative method 

that captures different data that are useful in understanding patterns of change and doses of 

practice associated with motor learning. Additionally, we present the idea that information 

about patterns of change may be more helpful in the rehabilitation setting than is pre to post 

characterization of behavioural change. Performance in each block of practice are 

connected, meaning performing a block will make the participant better at the task, and thus 

perform better in the next block.41 Rather than narrowing our focus on the performance 

score of one block of data in sequential order, functional forms (i.e., exponential function) fit 

a curve through the middle of all the data. Neighbouring blocks have an influence on 

performance score the participant is predicted to obtain in each block, which is more 

ecological valid and representative of the learning process. Better characterization of skill 

acquisition measures could enable data driven manipulation of motor practice (to ensure 

adequate dose of practice is delivered) and task (to optimize rates of change). Together, these 

shifts should enhance the impact of practice or rehabilitation sessions to optimize motor 

learning.

Conclusions

While rates of skill acquisition have been used to quantify performance following stroke, no 

study has investigated the association with retention performance. Further, the use of 

exponential functions to estimate the number of trials until plateau in motor behavior has not 

been considered. Therefore, we propose an innovative use for these curvilinear measures. 

Individualized dose of practice is an important step in the field of rehabilitation following 

stroke, not only to attain economic efficiency, but also to work towards optimizing 

personalized treatment plans. Currently, the most documented use of learning curves in a 

practical setting is the evaluation of skill acquisition for healthcare professionals.42–44 In a 

rehabilitation setting, where individuals with stroke are receiving interventions to relearn 

motor skills, learning curves could be used to determine an individualized set number of 

trials that predict when performance will reach a plateau. In addition, the rate of skill 

acquisition between different interventions could be compared to determine practice 

conditions (i.e., feedback, contextual interference) that yield a more productive method of 

learning. For example, if the physiotherapist understands the normal or excepted and rate of 

skill acquisition then s/he can determine suitable practice conditions to positively affect the 

length of time and difficulty level to achieve an intended outcome. If the rate of skill 

acquisition is abnormally slow, the physiotherapist could decrease the level of difficulty, i.e., 

increase the target size, shorten the distance of a reaching task, etc. If performance is only 

assessed by the final level of behaviour then large amounts of valuable information are lost 

that could have been used to update how interventions were being administered. Prescribing 
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rehabilitative exercises based on predictive values could help to construct an idealized 

practice paradigm on a subject wise basis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Continuous Tracking Task (CTT). (Panel A) During the pretest and posttest, the repeated 

and random waveforms segments were performed in separate blocks. During practice days 

(2–6) individuals tracked continuous 20 s waveform segments (multiple overlapping lines 

represent different trials) repeating sequences were flanked with random sequences in a 

single block (Panel D). (Panel B, C) Pictorial of the CTT apparatus used to perform the task 

during pre and post-testing and practice. Participants operated a joystick to move a closed 

red dot inside an open black circle on a computer screen.
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Figure 2. 
Skill acquisition follows an exponential decay as performance improves. Fitting RMSE data 

extracted from a motor skill practice to the function, E(RMSEN) = A + B−αN, produced 

practice parameters based on the nonlinear decay of performance during skill acquisition. 

E(RMSEN) is the expected value of RMSE on practice trial N; A is the expected value of 

RMSE after practice has been completed (asymptote parameter); B is the change in the 

expected value of RMSE from the beginning of practice to the end of practice (change score 

parameter); Alpha (α) is the exponential rate parameter.27 Data shown here were derived 

from a sample HC participant.
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Figure 3. 
Repeated Sequence Practice Curves showing a significant difference between the HC and ST 

groups for exponential practice parameters for the extracted Alpha (α) value, F(1,22) = 4.9, p 
= 0.0038, η2

ρ = 0.182.

Wadden et al. Page 16

Neurorehabil Neural Repair. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
a and b: a. Relationships of RTS and Alpha (α) during repeated sequence performance in 

healthy individuals (HC Group) (p < 0.05). b. Partial plot generated by hierarchical 

regression analysis for Repeated Sequence Performance. The relationship between RTS and 

Alpha (α) was significant after accounting for WMFT rate for the hemiparetic limb in 

individuals with chronic stroke (ST Group) (p < 0.05).
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