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Abstract

Specific learning disorders (SLD) are an archetypal example of how clinical neuropsychological
traits can differ from underlying genetic and neurobiological risk factors. Disparate environmental
influences and pathologies impact learning performance assessed through cognitive exams and
clinical evaluations, the primary diagnostic tools for SLD. We propose a neurobiological risk for
SLD with neuroimaging biomarkers which is integrated into a genomewide association study
(GWAS) of learning performance in a cohort of 479 European individuals between 8 and 21 years
of age. We first identified six regions of interest (ROIs) in temporal and anterior cingulate regions
where the group diagnosed with learning disability has the least overall variation, relative to the
other group, in thickness, area, and volume measurements. Although we used the three imaging
measures, the thickness was the leading contributor. Hence, we calculated the Euclidean distances
between any two individuals based on their thickness measures in the six ROIs. Then, we defined
the relative similarity of one individual according to the averaged ranking of pairwise distances
from the individuals to those in the SLD group. The inverse of this relative similarity is called the
neurobiological risk for the individual. Single nucleotide polymorphisms in the AGBL 1 gene on
chromosome 15 had a significant association with learning performance at a genomewide level.
This finding was supported in an independent cohort of 2,327 individuals of the same
demographic profile. Our statistical approach for integrating genetic and neuroimaging biomarkers
can be extended into studying the biological basis of other neuropsychological traits.
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1 Introduction

Individuals with learning problems often suffer from diminished socioeconomic status and
reduced emotional well-being (American Psychiatric Association, 2013), and treating them
is an important public health priority (Castle, 2002). Five to fifteen percent of school
children in the United States have a specific learning disorder (SLD) (Altarac & Saroha,
2007). The Diagnostic and Statistical Manual of Mental Disorders V (DSM-V) defines a
SLD as a distinct diagnosis for cognitive deficits in perceiving and processing information
that has a biological origin and that cannot be better explained by developmental,
neuropsychological, or physical disorders (American Psychiatric Association, 2013).
Learning disorders are, however, a latent construct manifesting along a continuous risk
spectrum (Fletcher, Lyon, Fuchs, & Barnes, 2007).

The primary tools used for diagnosing a SLD are reading, writing and mathematical
performance assessments. Many unrelated factors, including quality of instruction received,
personal motivation, socioeconomic status, and the presence of emotional or attention
disorders, also influence test performance (American Psychiatric Association, 2013; Fletcher
et al., 2007). At the same time, there is considerable evidence that genetic factors influence
cognitive traits related to learning performance such as reading, working memory, and
episodic memory (Ando, Ono, & Wright, 2001; Donohoe, Deary, Glahn, Malhotra, &
Burdick, 2013; Fletcher et al., 2007; Glahn et al., 2012; Hansell et al., 2015; Harlaar,
Spinath, Dale, & Plomin, 2005; Panizzon et al., 2011).

There are many challenges in mapping genetic variants to learning performance because
cognitive traits and neuropsychological (NP) traits, more generally, have a complex genetic
basis (Lee et al., 2013; Okbay et al., 2016; Ripke et al., 2014). Missing heritability is
endemic in genetic studies of NP traits and may be complicated by copy number variations
and rare variants (Eichler et al., 2010). These issues raise considerable hurdles in
genomewide association studies (GWAS) to detect single nucleotide polymorphisms (SNP)
having significant relationships with NP traits (Visscher, Brown, McCarthy, & Yang, 2012).

Emerging evidence suggests that neuroimaging can offer insight into improving genomic
studies of NP traits (Meyer-Lindenberg, 2012). Neuroimaging biomarkers, obtained using
modalities such as magnetic resonance imaging or positron emission tomography, are
heritable and have significant associations with NP traits such as depressed mood,
schizophrenia, and cognitive deficits (Glahn et al., 2012; Meyer-Lindenberg & Weinberger,
2006). Since brain function has a closer biological relationship to clinical traits than genetic
risk factors, neuroimaging biomarkers are suitable endophenotypes, or intermediaries, in
genomic studies of cognitive and NP phenotypes (Donohoe et al., 2013; Glahn et al., 2012).
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With this view in mind, several recent large-scale research initiatives performed
neuroimaging scans with one goal being to improve genomic studies of NP traits. Integrating
multimodal data collected by these initiatives into a single inferential framework requires
statistical methods that account for large numbers of observed biomarkers and traits.
Complex and multivariate relationships between genetics, neurobiology, and clinical
assessments are not well characterized and thus handicap inference in this field called
imaging genetics (J. Liu & Calhoun, 2014). Developing effective statistical frameworks for
imaging genetics offers a promising avenue for better inferring sources of genetic and
neurobiological risk affecting NP traits (Meyer-Lindenberg, 2012).

We sought to develop an integrated framework for studying the genomic basis of learning
ability from neuroimaging, cognitive, and genetic data collected by the Pediatric Imaging,
Neurocognition, and Genomics Study (PING) (Jernigan et al., 2015). To this end we proceed
in three steps as outlined in Figure 1. First, we use principal component analysis to generate
a quantitative learning performance score based on cognitive assessments in the NIH
Toolbox used in the PING. In this approach, an ideal score would reflect cognitive domains
relevant for perceiving and processing information, while deemphasizing others such as
attention or executive function. Next, we use neuroimaging biomarkers to generate a
neuroimaging risk score for learning problems that takes into account functional
specialization of relevant brain regions. We developed novel, robust, and computationally
efficient methods using variance-based methods to develop both of these scores. Finally, we
integrate the combined learning performance and neuroimaging risks into a gene-
environment interaction of learning performance that accounts for population heterogeneity.

2 MATERIALS AND METHODS
2.1 PING Cohort

The primary results are from data collected by the PING Study, which examined a cohort of
1,492 typically developing children from the United States, 3 years through 21 years of age.
Subjects were genotyped with the Illumina Human660W-Quad Beadchip and underwent
structural MRI scans with one of 13 devices at multiple sites (see Table S1 for scanner
parameters). Subjects were also accessed with age-appropriate exams from the NIH Toolbox
to evaluate neuropsychological performance across several cognitive domains (Weintraub et
al., 2013). The cognitive attributes evaluated by the respective exams are listed in Table S2.
Protocols for data collection, informed consent, and quality assurance are described in
Jernigan, et al. (2015). Non-genetic data was obtained from PING’s web portal, while
genetic data was obtained from the study’s principal investigators. All statistical procedures
were evaluated in R unless otherwise noted. Script and custom functions for duplicating all
results presented here may be obtained from the corresponding author.

Our analysis was restricted to 479 PING participants of European genetic ancestry (EGA),
ages 8 years through 21 years. Restrictions were placed to reduce nonlinear effects on exam
scores (Akshoomoff et al., 2014) and neuroimaging biomarkers due to age and population
heterogeneity. See Table S3 and Table S4 for demographic summaries and inclusion criteria,
respectively, for the sample of 479 subjects considered here.
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EGA was determined by principal component analysis (PCA) of the genotype data from the
PING. Participants were designated as having EGA if their scores on the first two principal
components were below the extreme 15t percentile of participants with self-reported
European ancestry (see Figure S1 for details). The sample was also restricted to include only
the elder of any pair of participants having high genetic-relatedness, which was defined as
having an identity-by-descent (IBD) value greater than 0.20. There were 97 such pairs in the
entire PING cohort. EGA and IBD restrictions were placed to avoid inflated test statistics
that often arise in samples that are highly stratified or contain cryptic relatedness. PCA and
IBD analysis were both performed with PLINK version 1.9 (Purcell et al., 2007).

Variables for household income and highest level of parental education were used as
covariates in the analysis. Missing values for either variable were imputed with the
missForest package in R (Stekhoven & Biihimann, 2012; Stekhoven, 2013) (see Table S5 for
details).

2.2 Cognitive exam scores

Covariate effects of age, sex, household income, parents’ education, and first two PCs of
genotype were removed from scores on each cognitive exam through multivariate linear
regression over the PING sample (n=479). Exam scores were then each scaled to zero mean
and unit variance. A learning performance score was defined as the equal-weighted average
of the List Sorting, Picture Sequence Memory, Picture Vocabulary, and Oral Reading
Recognition exams. Executive function scores are defined as the equal-weighted average of
the Attention, Flanker Inhibitory Control, Dimensional Change Card Sort, and Pattern
Comparison Processing Speed exams.

2.3 Neuroimaging data

Common measures of brain morphometry for cortical and subcortical regions of interest
(ROI), as well as white matter tracts associated with diffusion tensor imaging, were
estimated from structural MRI scans with Freesurfer. We considered 198 neuroimaging

biomarkers obtained from PING that we denote by { v{**} with /= 1,...,479 representing
the subject, j=1,...,66 the cortical ROI, and &= 1,2,3 the measurements of average
thickness, total area, and volume respectively. Throughout our analysis, we worked with
residuals from the multivariate linear regression models

OBS
Uik —(z]k +Za wlq—i—(z C Wiy (k)

foreach j=1, ..., 66 and k= 1,2,3 over the PING sample (n=479), to control for eight
covariates. These covariates include age, sex, handedness, the first two principal components
of the genotype data, and two dummy variables used to represent the three sets of scanner
device settings, given in Table S1, used in obtaining the subjects’ neuroimaging biomarkers.
Finally, the eighth covariance w; ) represents either the whole brain average thickness, total
area, or volume for A= 1,2,3 respectively. We denote {v;i} to be residuals from these

Genet Epidemiol. Author manuscript; available in PMC 2018 January 01.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Mehta et al. Page 5

regressions after being standardized to zero mean and unit variance for each j=1, ...,66 and
k=123

Since there is evidence that household income and parental education account for variance in
cortical surface area (Noble et al., 2015), we also covaried for them in the area
measurements but found there was no material effect on our results.

2.4 Joint Variance test

Throughout, we use S* to represent 37 subjects in the PING sample (n=479) that provided
an affirmative answer to whether they were ever diagnosed with a learning problem (LP).
The remaining 442 subjects are represented by S™.

The Joint Variance (JVAR) test is a method for assessing the importance of each ROl in
discriminating the brain morphologies of S* (positive LP diagnosis) from S~ (no LP
diagnosis) subgroups. Its main assumption is that the j'" ROI is important if o7, <07, for

every k = 1,2,3, where UJ-Zk+ and aj?k_ respectively represent the population variances of

{vijk i € S*} and {Vijk 1€ S7}. The idea behind this is that subjects in S* have greater intra-
class similarity, and thus lower variance, than those in S~ along all three measurements of an
important ROI.

We determined the importance of the j ROI by testing the null hypothesis

> 1.

2 2 2
o o o
P R g1+ Yg24+ Y3+
;5 min < > —5 > 5 —

2
0'j17 O-]Q* U'j37

Under J{o;j-, variances of all three measurements of ROI j for individuals in S* are
simultaneously greater than or equal to the respective variances for S—. We evaluated its
significance with the statistic

3
lel_szl(l_p]k)a

where pj is the observed p-value from a one-sided ratio of variances F-test of a?k L > afk,
with 36 and 441 degrees of freedom. Lower values of pj, provide greater evidence that

03y <o, and imply lower 7; The JVAR test thus rejects # . for lower values of 7.

The JVAR ftest statistic 7;serves as a proxy for the probability of the alternative to Ho. j

2 2 2
0. O o
. . i+ 952+ 9534
T~ P {mm <—2 Y5 5 — > <1}

91— Tj2— O3
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under its null distribution. In fact, 7;is an unbiased estimate of it when v, vjp, and v are
mutually independent. If the three variables are correlated, the approximation breaks down
and is difficult to evaluate. Permutation tests were conducted to obtain the null distribution
of the 7;'s. First, Q=106 permuted samples were produced by randomly assigning 37

subjects to S™ and the remaining 442 to S™. The JVAR statistic TJ‘? was evaluated from each

_ Q
randomly permuted sample. We defined 2j:=& 1Zq:1[{Tj < T} to be the p-value for
the JVAR test of # o,

Our primary reason for taking the similarity approach is that it characterizes differences in
brain morphology between S* and S~ in a multivariate setting to evaluate a notion of
neurobiological risk in a way that is robust against non-linear relationships between
neuroimaging variables. This requires selecting a manageable number of important
neuroimaging biomarkers on which to place our focus. The JVAR test is ultimately a tool for
performing this task in a way that is consistent with the similarity approach.

2.5 Neuroimaging similarity risk score

In the results section, we describe why we chose measure of thickness for six ROIs as being
important. Denoting these variables by v/, , . .., v}, with order being arbitrary, we measure
“neuroimaging similarity” between each pair of subjects in the PING sample as being the
Euclidean distances between these six variables. Similarity between subjects 7and ris

6 2
D= Zq(v;"qu;fq)

with D;-= D,; Relative similarities of subject 7to others are the rankings Ry, ..., Rj, of Dy,
..., Dj from least to greatest with 7=479 the sample size. Lower values of D;-and R;,
indicate greater similarity between subjects 7and r, with D;;=0 and R;;=1 for every /.

The risk score we seek to evaluate for each is subject is their average relative similarity to
subjects in S* (LP diagnosis). Clinical criteria for LP diagnoses however do not reflect
neuroanatomical risk. As such, we considered average relative similarity to subjects in a
subset of S* formed after identifying and removing neuroanatomical outliers.

Subject /€ St was designated as an outlier by comparing their average distances to the
group of individuals in St and S, that is, the means of { Dj,: r€ S*}and {D;-: r€ S}

respectively. Letting ;.. and ., denote the average distances, we quantified a level of
“outlyingness” of each subject /€ S* through the p-value g;from the Wilcoxon rank sum

test of the null hypothesis ,;~ < .-~ Lower values of g;mean subject /€ S has a lower

level of outlyingness within S* because there is increasing evidence that ;. >, that is,
their average distance to S is lower than their average distance to S*.

We controlled for the number of outliers through a threshold v used to define the subsets by
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Sy={i e ST:q;>v} and Sf={i € ST:q; < v},

which respectively contain outliers and non-outliers in the LP diagnosed subgroup S*.
Selecting outliers reflects clinical LP diagnoses that do not necessarily represent
neurobiological risk (American Psychiatric Association, 2013; Fletcher et al., 2007).

Each subject’s rank-based average similarity with 5'tis

-1
ZiV:C . ( Z Rir)
V'ES;r

where ¢> 0 is an arbitrary scaling value and can be set so that mzian:l. We term 7" as a
risk score of “neuroimaging similarity with learning problem diagnoses” (NS-LP).
Throughout our analysis, we set 1=0.01. It is easy to see that subject 7will have a higher risk

score for lower values of { R;..r ¢ S/}, that is, for greater relative similarity to individuals

in st

2.6 Genetic studies

We performed a genomewide association study (GWAS) of the learning performance scores
over the PING sample (n=479). Marginal association tests were for performed for 488,200
SNPs on autosomal chromosomes having minor allele frequency and Hardy-Weinberg
equilibrium p-value greater than 0.05 and 1074, respectively, in that sample. The genotype
call rate was at least 0.99 for every subject.

Tests for the effect of each SNP were performed in two models of the learning performance
score Y}, which by construction was uncorrelated with age, sex, household income, and
parental education. We included in both models the covariate effects of a learning problem
diagnosis and the first two principal components of the genotype data that, along with an
intercept, are represented by b’W;.

We first tested the null hypothesis that there was no genetic effect in the gene-risk
interaction (GxR) model for the gt SNP, given by

Yi=b Wity Zit By Xig+74(Zi x Xig)

where Xy is the number of risk alleles and ;.= 7 is the NS-LP risk score for v=0.01.
There is no genetic effect in this model only if B, + y,- Z;= 0 for all values of Zj, which is

possible only under the joint null hypothesis jo(g):ﬂgzo, ¥g= 0. We performed a F-test with
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2 and 472 df for each fo(g). For comparison we also performed a F-test, with 1 and 474 df,
of the null hypothesis //0(9):99:0 in the main effect model Y;=b’W,+ 6,Xijy for each SNP.

All estimates were obtained using ordinary least squares (OLS). In the GxR model, the
estimated effect from one additional risk allele is Kz g, y) = p+y - zwith standard error

. — T
being SE(z5,7)= \ % anz, where d,= (1, 2) Tis a vector of size two and Zpis the 2x2

matrix of the covariance for the p and -y estimates.

In our GWAS, we performed tests of the null hypotheses <//10(9) and /(](9) for each of 488,200
SNPs. To correct for multiple testing, we evaluated false discovery rates over the ©=976,400
tests performed in the GWAS. We also evaluated permutation-based family-wide error rates
(p-FWER) to account for correlations between SNPs and control for finite sample size.

The steps for evaluating p-FWER are as follows. Let pl.... ,pg denote the Bonferroni-
adjusted p-values, sorted from least to greatest, observed in the GWAS with Q tests. In p-
FWER, the Q tests are performed again, except after randomly permuting the responses over
the sample. This was repeated for a total of R times. For each permutation r=1, ..., R, we

denote p1; - pg as the Bonferroni-adjusted p-values, ordered from least to greatest.

1R -
Forg=1,...Q, letpqzzﬁzrzll{p2<qq}

denote the average number of times that p2 is less than pé, . ,pf. Defining the integer
sq:=max{s:ps < a}fora >0, the s, tests with the lowest observed p-values are designated
as having genomewide significance at level a. The p-FWER thus examines the joint
distribution of extreme test statistics under null distributions.

2.7 Power analysis

In the JVAR test for ROI j, we compared the ratio of variances along the respective three
measurements between S* (n=37) and S~ (n=442) subgroups in the PING sample. Through
simulation experiments, we determined that the JVAR tests of size 0.05 have 80% power

)
when max (ﬁzi &, %) < 0.85 for case and control groups of these sizes.

j1— 72— 53—

The GWAS was conducted over the PING sample (n=479). We performed power analysis
for minimum effect size needed for a sample of this size for tests of level 5 x 1078 that

achieve 80% power. For tests of /0@, parameters By and g in the GxR effect model for a
SNP with minor allele frequency p must satisfy
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2p(1-p) (B +75) - 0.004
o? B ’

where ;2 is the variance of residuals from the model fit using NS-LP scores that are first
standardized to zero mean and unit variance. We verified this relationship through numerical

experiments. For tests of (///0@, the parameter 6 in the main effect model must satisfy

2
0¢

2.8 PNC study

We found support for the significant genetic results from the GWAS of the PING sample
with participants of 8 through 21 years of age and possessing EGA from the Philadelphia
Neurodevelopmental Cohort (PNC) study (Satterthwaite et al., 2014). The PNC study
genotyped participants with one of six platforms, of which the lllumina Human610-Quad or
Human550 (v1 and v3) platforms included six SNPs we sought to validate. Subjects were
included in the PNC sample if they were genotyped with those platforms, had no major
developmental problems, and possessed EGA. The latter was determined by performing
PCA on the three platforms separately. Subjects were designated as having EGA if their
scores on the first two PCs were both greater than the respective extreme third percentile of
subjects with self-reported European ancestry.

The PNC sample had n=2,327 subjects with valid scores on the Wide Range Achievement
Test (WRAT) (Wilkinson & Robertson, 2006) that was taken to be cognitive response for
assessing learning performance. The WRAT is a comprehensive 1Q-achievement exam
commonly used in diagnosing learning disorders. Table S3 and Table S6 respectively
provide demographics and inclusion criteria for the PNC sample.

We performed a F-test with 1 and 2321 df, on the null hypothesis %O(;i)Nc:ggZO in the main
effect model for the six most significant SNPs in the PING GWAS. Covariates included age,
sex, two dummy variables for chip platform, and an indicator whether the subject had a
reading problem. Household income and parental education data was not available on
dbGAP. Neuroimaging data at the region of interest level from the PNC study was also not
available on dbGAP. As a result, NS-LP scores could not be evaluated and, in turn, tests of
the GxR model could not be performed.

3 RESULTS

3.1 Memory and language exams best predict learning problem diagnoses

We first sought a composite measure of learning performance, which refers throughout here
to the cognitive measures associated with reading, writing, or mathematics deficits in the
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DSM-V model of SLDs as opposed to others like attention or executive function. To achieve
this goal, we performed principal component analysis (PCA) on scores from the eight exams
in the NIH Toolbox. Because exam scores were highly associated with subjects’ age, sex,
level of household income, highest level of parents’ education, and genetic ancestry
(Akshoomoff et al., 2014) we removed their effects from each exam through multivariate
regression prior to PCA in order to reduce these common sources of variation.

The exam loadings on the first PC, shown in Table S7, all had the same sign, which indicates
it represents a latent factor for overall cognition, along with other confounding effects,
common to all eight exams. Loadings on the second PC gave more insight into achieving our
goal. Four exams evaluating episodic memory, working memory, reading, and vocabulary
had negative loadings. These cognitive domains define learning performance as being
distinct from executive control and attention. Indeed, there were positive loadings on the
remaining four exams, which evaluated executive function, attention, and processing speed.

Our composite learning performance score, as described in the Methods section, was an
equal-weighted average of language and memory exams and was, by construction,
uncorrelated with age, sex, household income, highest level of parents’ education, and first
two PCs of genotype data. The mean and standard deviation of the learning performance
scores were g =0 and o = 0.67 respectively.

The learning performance score discriminated between subjects with and without a learning
diagnosis. As shown in Figure S2, the learning performance score distribution for S*
(diagnosed with LP) subgroup was markedly lower than that of S~ subgroup (KS-test: D=
0.39, p< 1074). For comparison, we also derived a composite executive function score in the
same way using the four exams assessing executive function, attention, and processing
speed. There was no significant difference (KS-test: D= 0.17, p=0.26) in the distributions
of that composite score between S*and S-, which indicates those domains are less relevant
for diagnosis of learning problems.

3.2 Thickness of ROIs in temporal lobes best characterize neurobiological risk for learning

problems

We next sought to quantify neurobiological risk related to learning performance using
neuroimaging biomarkers. To decouple this risk from cognitive assessments, we used the
subgroup S* (diagnosed with LP) as a surrogate measure. Indeed, Figure S2 shows there is a
large overlap in the distributions of learning performance scores of S* and S~ (no LP
diagnosis), which indicates the LP diagnosis status does not directly reflect cognitive
evaluations.

We identified neuroimaging biomarkers that best characterized S* as being distinct from S~
using the joint variance (JVAR) test described in the Methods section. The heat map in
Figure 2 illustrates p-values for the respective ROIs from the JVAR test, where significance
was assessed from a null distribution generated by permutations. Lower p-values indicate the
ROI better characterizes the brain morphology of S* relative to S~. Most regions did not
characterize St well under the JVAR test over the PING sample. See Table S12 for p-values
for all 66 ROIs.
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Table 1 lists the ten most significant ROIs among the JVAR test results. Only the left
temporal pole had a Bonferroni-adjusted p-value less than 0.05. Six ROIs with unadjusted o
values less than 0.054 were in the temporal lobes and anterior cingulate gyri on either
hemisphere. The thickness component of the JVAR statistic contributes to the significance of
all six ROIs, whereas area and volume components are less consistent. We quantified
neurobiological risk for learning problems with the thickness of these six ROIs. We chose a
cut-off for this number of ROIs because there was a marked decrease in significance for the
right transverse temporal gyrus, which was the seventh most significant ROI.

3.3 NS-LP scores predict learning performance scores

There were 7 outliers among the 37 subjects having a positive LP diagnosis with respect to
these variables for outlyingness threshold v=0.01. Also using these six variables, we
evaluated NS-LP risk scores, denoted 7;:= 7" for v=0.01, in the PING sample (n=479).

The distribution of the NS-LP risk scores had a high positive skew (& = 0.84). Along with
the covariates used for the neuroimaging variables, NS-LP scores also had insignificant
correlations with either household income (,5= 0.04 ; p=0.37) or parental education (,5
=0.006; p=0.89).

To understand the relationship between the NS-LP and the learning performance scores Y;
described above, we fit three models to the PING sample (n=479). Model A'is Y;= & +
a,Zj model Bis Y;= by + b, Lj and model Cis Yj= ¢y + ¢; L;j+ c,Zjwith L;= 1 for positive
LP diagnosis and L;= 0 otherwise. Learning performance scores are, by construction,
uncorrelated with age, sex, household income, parents’ education (highest level), and genetic
ancestry. Summaries of the three model fits are given in Table 2.

Figure 3 shows there was a significant negative relationship between the NS-LP and the
learning performance scores in model A (z,= -0.36, p = 3.7x1074). It was not surprising
that LP diagnosis status had a significant negative relationship to learning performance in
Model B, given what was observed in Figure S2. It was surprising, however, that Model C fit
learning performance better than Model B by 44% based on adjusted R2. A F-test of the null
hypothesis for Model B against the alternative of Model C yielded a significance of p=
2.8x1073 over the PING sample. The significant negative marginal relationship between the
two scores in Model C (é,= 0.31, p=2.8x1073) suggests that neuroimaging variables
enabled NS-LP to predict learning performance.

In post-hoc analysis, we performed marginal association tests between learning performance
Yjiand {vjy} for each respective j=1, ..., 66 and k= 1,2,3 over the PING sample. Among
the 198 tests, there was no p-value less than 0.006; see Table S10. This lends evidence to the
hypothesis that multivariate approaches to neuroimaging are more favorable than univariate
ones (J. Liu & Calhoun, 2014; Meyer-Lindenberg, 2012; Norman, Polyn, Detre, & Haxby,
2006).

3.4 Genetic results

We performed a GWAS of the learning performance scores under the GxR and main effect
models for each of the 488,200 SNPs genotyped from the PING sample (n=479). The
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significances from the GWAS of //0@ and /()(g) tests are compared in the QQ-plots shown

in Figure 4. The horizontal axis represents the theoretical null distribution of p-values over
G-y

the G =488,200 tests, with values given by —logyo G+ )forg=1, ..., G. The vertical axis

corresponds to the ordered p-values, on a —logg scale, observed in the GWAS of the two

hypotheses. Tests of /O(g) detected two significant SNPs whereas those of ///O(g> failed to
detect any under theoretical asymptotic null distributions.

Among tests of /O(g) and ///O(g) performed for G SNPs, the six tests having greatest

significance were of /()(g) for SNPs all on the same linkage disequilibrium block within the
AGBL 1 gene on chromosome 15. Table 3 provides their respective significances and model
estimates. They all have FDR less than 0.05 over the 976,400 tests performed. We verified
the significance with p-FWER.

The most significant SNP in both the GxR and main effect models of the 488,200 SNPs tests
was rs11633708. In the GxR model, its p-value was less than 5x1078, a threshold commonly
accepted for designating a SNP with genomewide significance in a GWAS. Table 3 also
shows tests of the main effect model for these six SNPs over the PNC sample (n=2,327)
were all significant with p-values all less than or equal to 7x1074. Table S11 provides minor
allele frequencies, minor allele, and positions for these SNPs along with those of the 50 most
significant SNPs in the GWAS under both the GxR and main effect models.

For these SNPs, tests of /0@ had greater significance than tests of Q///O(g) suggesting that the
gene-risk interaction model had greater information gain than the respective main effect
model. Information gain here is the increase in adjusted R? of the fitted model (main effect
or GxR) over that of the fitted base model, given by Y; =bTW;. For these six SNPs, the gene-
risk interaction model had higher information gain despite being penalized for having two
extra parameters.

In Figure 5, the change in estimated effect from one additional allele of rs11633708, given
everything else equal, on the learning performance score in the GxR model is plotted as a
function of NS-LP scores (red line). A 95% confidence interval band is also shown where
the upper and lower 2.5% percentiles are

ClL s power (238, 7)=E(2:8,7) £1.96 - SE(2;8,7)

with derivations of £(z; B, y) and SE(z; B, y) given in the methods section. The significance
of the estimated effect is greatest for subjects in the sample with low NS-LP scores and is
negligible for subjects scoring at the higher range of NS-LP, as indicated by the widening
confidence interval that crosses 0.0 (blue line). In contrast, the main effect model (red line)
does not account for differences in estimated genetic effects on learning performance, with
respect to NS-LP risk, over the sample. Therefore, testing genetic effect in the main effect
model suffers from diminished power.
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To confirm these findings, we performed a gene-based analysis for the set of 150 SNPs on

AGBL1 included in our GWAS. The combined significance from the respective tests of jo(g)
for these SNPs was 1.99x1076 when using the VEGAS method (J. Z. Liu et al., 2010). The
Bonferroni-corrected p-value is 0.04 if the same SNP-set analysis was conducted for 20,000
genes.

Finally, we performed post-hoc analysis to determine whether we could arrive at similar
results using, for interaction variables in the GXR model, any of the neuroimaging
biomarkers identified as being important with the JVAR test. To do this, we tested the
genetic effect in GXR models for rs11633708 where the thickness measurement of the six
most significant ROIs in the JVAR test are the interaction variables. The results are reported
in Table S12 and show that the significance of genetic effect for these models was far lower
than in the GXR model with the NS-LP score.

3.5 Sensitivity Analysis

We detected a significant association between SNPs in AGBL 1 and learning performance in
the PING sample through the GXR model, which required evaluating NS-LP scores. These
scores represent within-sample risk as they are constructed from pairwise similarities
between subjects’ neuroimaging measurements. This inherently heightens sample
dependence of the genetic results.

We performed a sensitivity analysis to assess the stability of the NS-LP scores and their
effect on the genetic results. To do this, we fit the main effect and GxR models for
rs11633708 to a random subset of 407 subjects (85%) from the PING sample. The GxR
model used NS-LP scores which were reevaluated over that subset. Figure S3 compares the
information gain of the two models over 100 different random subsets. It shows that the
GxR model for rs11633708 yielded more information gain than the main effect model over
the random subsets.

4 DISCUSSION

We observed several SNPs in the AGBL gene that were significantly associated with
learning performance at genomewide levels in our GWAS. AGBL 1 encodes an enzyme
regulating protein deglutamylation in the cytosolic carboxypeptidase (CCP) family of
catalysts. This enzyme and others in the CCP family have been observed to effect neuronal
survival (Rogowski et al., 2010; Wang, Parris, Li, & Morgan, 2006). To the best of our
knowledge, there are no findings linking AGBL 1 to any cognitive traits through either
neurochemistry or genetic association studies.

On the other hand, AGBL 1 has been linked to schizophrenia in two separate GWAS with
independent samples (Ikeda et al., 2013; Sullivan et al., 2008). Both GWAS identified SNPs
in AGBL 1 as being the most significant among approximately 500,000 tested, albeit not at
genomewide levels, with p-values less than 4x107%. Schizophrenic patients suffer from
several cognitive deficits (Barch, 2005) including ones related to working memory (Forbes,
Carrick, Mcintosh, & Lawrie, 2009; Lett, Voineskos, Kennedy, Levine, & Daskalakis, 2014),
episodic memory (Leavitt & Goldberg, 2009; Lepage, Sergerie, Pelletier, & Harvey, 2007),
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and language (Bhati, 2005; Covington et al., 2005; Robbins, 2002). Taken together, these
results suggest a pleiotropic effect of AGBL I on both schizophrenia and certain cognitive
traits related to learning performance.

In the PING sample, the SNPs in AGBL 1 had significant association with learning
performance at the genomewide level in the gene-risk interaction model. Within this model,
the magnitude and direction of genetic effect depends on the NS-LP risk. The interaction
term in the model mitigated the impact of this heterogeneity might have had on detecting
genetic variants in AGBL 1.

Indeed, many disparate environmental and non-genetic biological risk factors, in conjunction
with genetic risk, influence how neuropsychological traits manifest (Hardy & Singleton,
2009). For example, early environmental stressors, substance abuse, hormones, and
immunological factors are related to the onset of psychosis-spectrum disorders in individuals
with a genetic predisposition (Agid et al., 1999; Ikeda et al., 2013; Kirkbride et al., 2006;
Kulkarni, Hayes, & Gavrilidis, 2012). Identifying significant risk factors stands to
dramatically improve power in statistical inference of NP traits (Agid et al., 1999). As our
results demonstrate, neuroimaging biomarkers can be used to quantify neurobiological risk.

Neurobiological risk is, however, neither observable nor well-defined. Furthermore, many
influences on brain plasticity and function, such as socioeconomic status (Noble et al.,
2015), stress (McEwen, 1999), and cardiovascular fitness (Colcombe et al., 2004), among
others (Ellingson, Fleming, Vergés, Bartholow, & Sher, 2014), are confounders present in
neuroimaging studies. Here, we describe a new multivariate method that defines
neurobiological risk in a sample by similarity in brain morphology for a given diagnosis (see
Figure 6 for an illustration). This approach assumes only that individuals in a high diagnosis
risk subgroup are clustered in a multivariate space of a few important neuroimaging
biomarkers. Any given individual’s risk is then their average similarity in that space to those
in the diagnosed subgroup.

The clustering will remain persistent when projecting onto a single important variable and
will disappear when projecting onto a single unimportant variable any individual’s risk. The
JVAR test identifies neuroimaging biomarkers that distinguish subjects at high risk for
learning problems. The rank-based average similarity then allows for quantifying risk in a
multivariate setting without the need to specify complicated parametric models of
multivariate neuroimaging data. That this approach requires no additional assumptions about
environmental exposures suggests that it is robust and potentially generalizable to other
phenotypes and domains.

The similarity framework is also robust against “mislabeling” if the high-risk subgroup is
initialized as being those with clinical diagnoses. Mislabeling here means that the diagnosis
status of individuals may not match up with their neurobiological risk. Outliers in the
diagnosed group can be identified through their neuroimaging biomarkers.

We used the JVAR test here to determine how well ROIs characterize the LP diagnosis group
as being distinct from rest of the PING sample. As listed in Table 1, seven of the ten most
significant regions are in the temporal lobes in either hemisphere. This is consistent with
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well-established neuroimaging findings in learning performance. The temporal lobes contain
networks vital to memory formation, recall and language comprehension (Brockway et al.,
1998; Hoenig & Scheef, 2005; Leritz, Grande, & Bauer, 2006). Two other regions with high
significance are in the anterior cingulate gyrus, which plays a key role in motivation through
rewards-based learning (Shenhav, Botvinick, & Cohen, 2013).

Finally, the genetic results also depend on the learning performance phenotype. Here, we
conditioned association on a composite of four memory and language assessments. This
improves power for detecting genetic markers having significant association with latent
factors common to all four assessments by reducing idiosyncratic noise and amplifying
signal-to-noise ratio in the genetic model. Table S8 shows that rs11633708 had associations
with the composite learning performance score with far greater significance than with any of

the eight individual exams under both _##) and .#® hypotheses.

Our approach for integrating genetics, neuroimaging, and clinical data into a single
statistical framework can be readily extended to other phenotypes for symptom severity,
such as attention exams or psychotic symptom ratings, using risk scores of neuroimaging
similarity to clinical diagnoses of attention or psychosis disorders. A major advantage to this
framework is that, by summarizing neuroimaging risk with a single variable, it presents a
massive reduction in tests for interactions between genetic and neuroimaging biomarkers.

When defined appropriately, neurobiological risk can better control for population
heterogeneity in the study of any NP trait. Controlling for heterogeneity enables detecting
genetic risk factors important for individuals at any given level of neurobiological risk. A
direct consequence here is identifying targets for actionable personalized treatments of NP
disorders, which is an important priority in current psychiatric and neuropsychological
research missions (Insel & Cuthbert, 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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2A: Regions in temporal lobe
and anterior cingulate best
characterize LP subgroup
METHOD
Joint variance test

2B: Risk score for
neurobiological similarity
with LP subgroup

1: Composite score of
learning performance
based on Language +
Memory METHOD
Factor analysis

METHOD
Ranked average linkage

GWAS of Learning Performance using Gene-Risk Interaction Model

LEGEND

3: AGBL1 has significant effect
in PING & PNC samples

* Confounding variables included at each step

Figure 1. Overview of inferential procedure applied to PING study
Data: Cognitive assessments were taken from eight exams within the NIH Toolbox.

Learning problem (LP) status is a binary variable corresponding to a yes/no answer in
response to the question whether a subject was ever diagnosed with a learning problem.
There are 198 neuroimaging biomarkers corresponding to average thickness, area, and
volume measurements for 66 cortical regions of interest (ROI) obtained from structural MRI
scans. Approximately 500,000 SNPs were genotyped for each subject in the sample. Results:
(1) A composite learning performance score was derived from exams assessing memory
(working and episodic) and language (reading and vocabulary). (2A) The joint variance test
was performed to determine how well each ROI discriminated subjects with a LP diagnosis
from others in the sample using thickness, area, and volume measurements. Of the 10 most
significant regions, seven were in the temporal lobe and two were in the anterior cingulate
on either the left or right hemispheres. (2B) With neuroimaging biomarkers best
discriminating the LP subgroup, rank-based average linkage (similarity) clustering was
applied to evaluate continuous risk scores for each subjects’ neuroimaging similarity to
those in the LP subgroup. The similarities were with respect to the neuroimaging biomarkers
identified as being most significant under the joint variance test. (3) A GWAS of the learning
performance score was conducted using models including effects from interactions between
genomic markers and the neuroimaging risk score. Six SNPs on the AGBL 1 gene were
observed to have significant associations with learning performance score at a genomewide
level.
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Figure 2. Heat map of each ROI’s significance under JVAR test
Colors represent p-values from the JVAR test for each ROl comparing subjects with a

learning problem diagnosis (n=37) and without a LP diagnosis (n=442) in the PING sample
(n=479). Red indicates greater significance. (a) The p-values are not adjusted for multiple
comparisons. The p-values from the JVAR tests for all 66 ROIls are listed in Table S9.
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Learning performance score
1
w

Learning Performance vs. NS-LP Scores

= Linear Prediction
Slope (se): —0.36(0.10)
. p-value: 41x 1074
R-squared: 0.026

1.0

1:5 2.0 2:5.
NS-LP risk score

® S~ (No LP Diagnosis) @ S (Outliers in St) & S} (Rest of ST)

Figure 3. Learning performance scores versus NS-LP scores
The blue, black, and red markers represent subjects in subgroups denoted by S~ (n=442),

S (n=7), and S;F (n=30) respectively. The 5> and s subgroups respectively contain
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outliers and non-outliers in St (n=37) based on outlyingness of subjects, with respect to
neuroanatomical measurements, threshold v= 0.01. Methods section describes how outliers
are identified. Regression results are over the PING sample (n=479) and based on Model (A)

specified in Table 2.
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Figure 4. QQ-plot of GWAS of learning performance score in PING sample (n=479)
Tests were performed for genomic effects Gx/R and Main effect models of learning
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performance scores for each of 488,200 SNPs. Observed p-values in the GWAS of each
model were sorted and then plotted on a —/ogy scale against expected values in theoretical

null distributions. The shaded region indicates a 95% confidence interval. Blue dots

correspond to tests of fo(g) in the GxR model. Red triangles correspond to tests of ///0(9) in
the main effect model. The genomic inflation factors for the GWAS of the GxRand Main

effect models were 1.012 and 1.002, respectively.
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Estimated genomic effect of rs11633708
on learning performance scores
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Figure 5. Estimated effect of rs11633708 on learning performance as function of NS-LP risk
score

The SNP rs11633708 on AGBL 1 (chromosome 15) was the most significant in a GWAS of
learning performance scores over the PING sample (n=479). The vertical axes represents
estimated effect one additional risk allele of rs11633708 on learning performance scores (U=
0, o= 0.67). Lines and shaded regions represent estimated effects and their 95% confidence
intervals in three models. Blue represents the main effect model, which does not rely on NS-
LP risk scores. Red represents the Gx/ model presented in the genomic results section.
Estimates and standard errors in the Gx/ model are a function of NS-LP scores. Standard
errors there were evaluated from the covariance matrix of estimates in the respective linear
regression models. The gray region in both plots is the empirical density of NS-LP scores
and is at scale with the vertical axis.
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Figure 6. lllustration of neuroimaging similarity for a diagnosis
Two subgroups of subjects are formed on the basis of observed diagnosis. Plus signs

represent S* (positive diagnosis) and dots represent S~ (negative diagnosis). Along important
variables, S* has greater level of within-group similarity (homogeneity) relative to S™. Along
unimportant variables, the level of within-group similarity for S* and S~ are roughly equal.
Background colors represent subjects’ continuous level of along respective axes. Each figure
represents bivariate comparisons between variables. Background color represent continuous
level to neuroimaging similarity with S* in bivariate setting. (a) Axes represent two
unimportant variables where neuroimaging similarity risk cannot be detected. (b) Respective
axes are important and unimportant variables. Neuroimaging similarity risk increases only
along axis for important variable. (c) Axes represent two important variables, where
neuroimaging similarity to S* is with respect to multivariate distances.
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