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Abstract

Specific learning disorders (SLD) are an archetypal example of how clinical neuropsychological 

traits can differ from underlying genetic and neurobiological risk factors. Disparate environmental 

influences and pathologies impact learning performance assessed through cognitive exams and 

clinical evaluations, the primary diagnostic tools for SLD. We propose a neurobiological risk for 

SLD with neuroimaging biomarkers which is integrated into a genomewide association study 

(GWAS) of learning performance in a cohort of 479 European individuals between 8 and 21 years 

of age. We first identified six regions of interest (ROIs) in temporal and anterior cingulate regions 

where the group diagnosed with learning disability has the least overall variation, relative to the 

other group, in thickness, area, and volume measurements. Although we used the three imaging 

measures, the thickness was the leading contributor. Hence, we calculated the Euclidean distances 

between any two individuals based on their thickness measures in the six ROIs. Then, we defined 

the relative similarity of one individual according to the averaged ranking of pairwise distances 

from the individuals to those in the SLD group. The inverse of this relative similarity is called the 

neurobiological risk for the individual. Single nucleotide polymorphisms in the AGBL1 gene on 

chromosome 15 had a significant association with learning performance at a genomewide level. 

This finding was supported in an independent cohort of 2,327 individuals of the same 

demographic profile. Our statistical approach for integrating genetic and neuroimaging biomarkers 

can be extended into studying the biological basis of other neuropsychological traits.
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1 Introduction

Individuals with learning problems often suffer from diminished socioeconomic status and 

reduced emotional well-being (American Psychiatric Association, 2013), and treating them 

is an important public health priority (Castle, 2002). Five to fifteen percent of school 

children in the United States have a specific learning disorder (SLD) (Altarac & Saroha, 

2007). The Diagnostic and Statistical Manual of Mental Disorders V (DSM-V) defines a 

SLD as a distinct diagnosis for cognitive deficits in perceiving and processing information 

that has a biological origin and that cannot be better explained by developmental, 

neuropsychological, or physical disorders (American Psychiatric Association, 2013). 

Learning disorders are, however, a latent construct manifesting along a continuous risk 

spectrum (Fletcher, Lyon, Fuchs, & Barnes, 2007).

The primary tools used for diagnosing a SLD are reading, writing and mathematical 

performance assessments. Many unrelated factors, including quality of instruction received, 

personal motivation, socioeconomic status, and the presence of emotional or attention 

disorders, also influence test performance (American Psychiatric Association, 2013; Fletcher 

et al., 2007). At the same time, there is considerable evidence that genetic factors influence 

cognitive traits related to learning performance such as reading, working memory, and 

episodic memory (Ando, Ono, & Wright, 2001; Donohoe, Deary, Glahn, Malhotra, & 

Burdick, 2013; Fletcher et al., 2007; Glahn et al., 2012; Hansell et al., 2015; Harlaar, 

Spinath, Dale, & Plomin, 2005; Panizzon et al., 2011).

There are many challenges in mapping genetic variants to learning performance because 

cognitive traits and neuropsychological (NP) traits, more generally, have a complex genetic 

basis (Lee et al., 2013; Okbay et al., 2016; Ripke et al., 2014). Missing heritability is 

endemic in genetic studies of NP traits and may be complicated by copy number variations 

and rare variants (Eichler et al., 2010). These issues raise considerable hurdles in 

genomewide association studies (GWAS) to detect single nucleotide polymorphisms (SNP) 

having significant relationships with NP traits (Visscher, Brown, McCarthy, & Yang, 2012).

Emerging evidence suggests that neuroimaging can offer insight into improving genomic 

studies of NP traits (Meyer-Lindenberg, 2012). Neuroimaging biomarkers, obtained using 

modalities such as magnetic resonance imaging or positron emission tomography, are 

heritable and have significant associations with NP traits such as depressed mood, 

schizophrenia, and cognitive deficits (Glahn et al., 2012; Meyer-Lindenberg & Weinberger, 

2006). Since brain function has a closer biological relationship to clinical traits than genetic 

risk factors, neuroimaging biomarkers are suitable endophenotypes, or intermediaries, in 

genomic studies of cognitive and NP phenotypes (Donohoe et al., 2013; Glahn et al., 2012).
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With this view in mind, several recent large-scale research initiatives performed 

neuroimaging scans with one goal being to improve genomic studies of NP traits. Integrating 

multimodal data collected by these initiatives into a single inferential framework requires 

statistical methods that account for large numbers of observed biomarkers and traits. 

Complex and multivariate relationships between genetics, neurobiology, and clinical 

assessments are not well characterized and thus handicap inference in this field called 

imaging genetics (J. Liu & Calhoun, 2014). Developing effective statistical frameworks for 

imaging genetics offers a promising avenue for better inferring sources of genetic and 

neurobiological risk affecting NP traits (Meyer-Lindenberg, 2012).

We sought to develop an integrated framework for studying the genomic basis of learning 

ability from neuroimaging, cognitive, and genetic data collected by the Pediatric Imaging, 

Neurocognition, and Genomics Study (PING) (Jernigan et al., 2015). To this end we proceed 

in three steps as outlined in Figure 1. First, we use principal component analysis to generate 

a quantitative learning performance score based on cognitive assessments in the NIH 

Toolbox used in the PING. In this approach, an ideal score would reflect cognitive domains 

relevant for perceiving and processing information, while deemphasizing others such as 

attention or executive function. Next, we use neuroimaging biomarkers to generate a 

neuroimaging risk score for learning problems that takes into account functional 

specialization of relevant brain regions. We developed novel, robust, and computationally 

efficient methods using variance-based methods to develop both of these scores. Finally, we 

integrate the combined learning performance and neuroimaging risks into a gene-

environment interaction of learning performance that accounts for population heterogeneity.

2 MATERIALS AND METHODS

2.1 PING Cohort

The primary results are from data collected by the PING Study, which examined a cohort of 

1,492 typically developing children from the United States, 3 years through 21 years of age. 

Subjects were genotyped with the Illumina Human660W-Quad Beadchip and underwent 

structural MRI scans with one of 13 devices at multiple sites (see Table S1 for scanner 

parameters). Subjects were also accessed with age-appropriate exams from the NIH Toolbox 

to evaluate neuropsychological performance across several cognitive domains (Weintraub et 

al., 2013). The cognitive attributes evaluated by the respective exams are listed in Table S2. 

Protocols for data collection, informed consent, and quality assurance are described in 

Jernigan, et al. (2015). Non-genetic data was obtained from PING’s web portal, while 

genetic data was obtained from the study’s principal investigators. All statistical procedures 

were evaluated in R unless otherwise noted. Script and custom functions for duplicating all 

results presented here may be obtained from the corresponding author.

Our analysis was restricted to 479 PING participants of European genetic ancestry (EGA), 

ages 8 years through 21 years. Restrictions were placed to reduce nonlinear effects on exam 

scores (Akshoomoff et al., 2014) and neuroimaging biomarkers due to age and population 

heterogeneity. See Table S3 and Table S4 for demographic summaries and inclusion criteria, 

respectively, for the sample of 479 subjects considered here.
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EGA was determined by principal component analysis (PCA) of the genotype data from the 

PING. Participants were designated as having EGA if their scores on the first two principal 

components were below the extreme 1st percentile of participants with self-reported 

European ancestry (see Figure S1 for details). The sample was also restricted to include only 

the elder of any pair of participants having high genetic-relatedness, which was defined as 

having an identity-by-descent (IBD) value greater than 0.20. There were 97 such pairs in the 

entire PING cohort. EGA and IBD restrictions were placed to avoid inflated test statistics 

that often arise in samples that are highly stratified or contain cryptic relatedness. PCA and 

IBD analysis were both performed with PLINK version 1.9 (Purcell et al., 2007).

Variables for household income and highest level of parental education were used as 

covariates in the analysis. Missing values for either variable were imputed with the 

missForest package in R (Stekhoven & Bühlmann, 2012; Stekhoven, 2013) (see Table S5 for 

details).

2.2 Cognitive exam scores

Covariate effects of age, sex, household income, parents’ education, and first two PCs of 

genotype were removed from scores on each cognitive exam through multivariate linear 

regression over the PING sample (n=479). Exam scores were then each scaled to zero mean 

and unit variance. A learning performance score was defined as the equal-weighted average 

of the List Sorting, Picture Sequence Memory, Picture Vocabulary, and Oral Reading 

Recognition exams. Executive function scores are defined as the equal-weighted average of 

the Attention, Flanker Inhibitory Control, Dimensional Change Card Sort, and Pattern 

Comparison Processing Speed exams.

2.3 Neuroimaging data

Common measures of brain morphometry for cortical and subcortical regions of interest 

(ROI), as well as white matter tracts associated with diffusion tensor imaging, were 

estimated from structural MRI scans with Freesurfer. We considered 198 neuroimaging 

biomarkers obtained from PING that we denote by { } with i = 1,…,479 representing 

the subject, j= 1,…,66 the cortical ROI, and k = 1,2,3 the measurements of average 

thickness, total area, and volume respectively. Throughout our analysis, we worked with 

residuals from the multivariate linear regression models

for each j= 1, …, 66 and k = 1,2,3 over the PING sample (n=479), to control for eight 

covariates. These covariates include age, sex, handedness, the first two principal components 

of the genotype data, and two dummy variables used to represent the three sets of scanner 

device settings, given in Table S1, used in obtaining the subjects’ neuroimaging biomarkers. 

Finally, the eighth covariance wi;(k) represents either the whole brain average thickness, total 

area, or volume for k = 1,2,3 respectively. We denote {vijk} to be residuals from these 
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regressions after being standardized to zero mean and unit variance for each j= 1, …,66 and 

k = 1,2,3.

Since there is evidence that household income and parental education account for variance in 

cortical surface area (Noble et al., 2015), we also covaried for them in the area 

measurements but found there was no material effect on our results.

2.4 Joint Variance test

Throughout, we use S+ to represent 37 subjects in the PING sample (n=479) that provided 

an affirmative answer to whether they were ever diagnosed with a learning problem (LP). 

The remaining 442 subjects are represented by S−.

The Joint Variance (JVAR) test is a method for assessing the importance of each ROI in 

discriminating the brain morphologies of S+ (positive LP diagnosis) from S− (no LP 

diagnosis) subgroups. Its main assumption is that the jth ROI is important if  for 

every k = 1,2,3, where  and  respectively represent the population variances of 

{vijk :i ∈ S+} and {vijk :i∈ S−}. The idea behind this is that subjects in S+ have greater intra-

class similarity, and thus lower variance, than those in S− along all three measurements of an 

important ROI.

We determined the importance of the jth ROI by testing the null hypothesis

Under ℋ0;j, variances of all three measurements of ROI j for individuals in S+ are 

simultaneously greater than or equal to the respective variances for S−. We evaluated its 

significance with the statistic

where pjk is the observed p-value from a one-sided ratio of variances F-test of 

with 36 and 441 degrees of freedom. Lower values of pjk provide greater evidence that 

 and imply lower Tj. The JVAR test thus rejects ℋ0;j for lower values of Tj.

The JVAR test statistic Tj serves as a proxy for the probability of the alternative to ℋ0;j
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under its null distribution. In fact, Tj is an unbiased estimate of it when vij1, vij2, and vij3 are 

mutually independent. If the three variables are correlated, the approximation breaks down 

and is difficult to evaluate. Permutation tests were conducted to obtain the null distribution 

of the Tj’s. First, Q=106 permuted samples were produced by randomly assigning 37 

subjects to S+ and the remaining 442 to S−. The JVAR statistic  was evaluated from each 

randomly permuted sample. We defined  to be the p-value for 

the JVAR test of ℋ0;j.

Our primary reason for taking the similarity approach is that it characterizes differences in 

brain morphology between S+ and S− in a multivariate setting to evaluate a notion of 

neurobiological risk in a way that is robust against non-linear relationships between 

neuroimaging variables. This requires selecting a manageable number of important 

neuroimaging biomarkers on which to place our focus. The JVAR test is ultimately a tool for 

performing this task in a way that is consistent with the similarity approach.

2.5 Neuroimaging similarity risk score

In the results section, we describe why we chose measure of thickness for six ROIs as being 

important. Denoting these variables by , with order being arbitrary, we measure 

“neuroimaging similarity” between each pair of subjects in the PING sample as being the 

Euclidean distances between these six variables. Similarity between subjects i and r is

with Dir = Dri. Relative similarities of subject i to others are the rankings Ri1, …, Rin of Di1, 

…, Din from least to greatest with n =479 the sample size. Lower values of Dir and Rir 

indicate greater similarity between subjects i and r, with Dii =0 and Rii =1 for every i.

The risk score we seek to evaluate for each is subject is their average relative similarity to 

subjects in S+ (LP diagnosis). Clinical criteria for LP diagnoses however do not reflect 

neuroanatomical risk. As such, we considered average relative similarity to subjects in a 

subset of S+ formed after identifying and removing neuroanatomical outliers.

Subject i ∈ S+ was designated as an outlier by comparing their average distances to the 

group of individuals in S+ and S−, that is, the means of { Dir : r ∈ S+} and {Dir : r ∈ S− } 

respectively. Letting  and  denote the average distances, we quantified a level of 

“outlyingness” of each subject i ∈ S+ through the p-value qi from the Wilcoxon rank sum 

test of the null hypothesis . Lower values of qi mean subject i ∈ S+ has a lower 

level of outlyingness within S+ because there is increasing evidence that , that is, 

their average distance to S− is lower than their average distance to S+.

We controlled for the number of outliers through a threshold v used to define the subsets by
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which respectively contain outliers and non-outliers in the LP diagnosed subgroup S+. 

Selecting outliers reflects clinical LP diagnoses that do not necessarily represent 

neurobiological risk (American Psychiatric Association, 2013; Fletcher et al., 2007).

Each subject’s rank-based average similarity with is

where c > 0 is an arbitrary scaling value and can be set so that . We term  as a 

risk score of “neuroimaging similarity with learning problem diagnoses” (NS-LP). 

Throughout our analysis, we set v=0.01. It is easy to see that subject i will have a higher risk 

score for lower values of { }, that is, for greater relative similarity to individuals 

in .

2.6 Genetic studies

We performed a genomewide association study (GWAS) of the learning performance scores 

over the PING sample (n=479). Marginal association tests were for performed for 488,200 

SNPs on autosomal chromosomes having minor allele frequency and Hardy-Weinberg 

equilibrium p-value greater than 0.05 and 10−4, respectively, in that sample. The genotype 

call rate was at least 0.99 for every subject.

Tests for the effect of each SNP were performed in two models of the learning performance 

score Yi, which by construction was uncorrelated with age, sex, household income, and 

parental education. We included in both models the covariate effects of a learning problem 

diagnosis and the first two principal components of the genotype data that, along with an 

intercept, are represented by bTWi.

We first tested the null hypothesis that there was no genetic effect in the gene-risk 

interaction (G×R) model for the gth SNP, given by

where Xig is the number of risk alleles and  is the NS-LP risk score for v = 0.01. 

There is no genetic effect in this model only if βg + γg · Zi = 0 for all values of Zi, which is 

possible only under the joint null hypothesis , γg = 0. We performed a F-test with 
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2 and 472 df for each . For comparison we also performed a F-test, with 1 and 474 df, 

of the null hypothesis  in the main effect model Yi = bTWi + θgXig for each SNP.

All estimates were obtained using ordinary least squares (OLS). In the G×R model, the 

estimated effect from one additional risk allele is E(z; β, γ ) = β+γ · z with standard error 

being , where dz = (1, z)T is a vector of size two and ΣD is the 2×2 

matrix of the covariance for the β and γ estimates.

In our GWAS, we performed tests of the null hypotheses  and  for each of 488,200 

SNPs. To correct for multiple testing, we evaluated false discovery rates over the Q=976,400 

tests performed in the GWAS. We also evaluated permutation-based family-wide error rates 

(p-FWER) to account for correlations between SNPs and control for finite sample size.

The steps for evaluating p-FWER are as follows. Let  denote the Bonferroni-

adjusted p-values, sorted from least to greatest, observed in the GWAS with Q tests. In p-

FWER, the Q tests are performed again, except after randomly permuting the responses over 

the sample. This was repeated for a total of R times. For each permutation r =1, …, R, we 

denote  as the Bonferroni-adjusted p-values, ordered from least to greatest.

denote the average number of times that  is less than . Defining the integer 

 for α > 0, the sα tests with the lowest observed p-values are designated 

as having genomewide significance at level α. The p-FWER thus examines the joint 

distribution of extreme test statistics under null distributions.

2.7 Power analysis

In the JVAR test for ROI j, we compared the ratio of variances along the respective three 

measurements between S+ (n=37) and S− (n=442) subgroups in the PING sample. Through 

simulation experiments, we determined that the JVAR tests of size 0.05 have 80% power 

when  for case and control groups of these sizes.

The GWAS was conducted over the PING sample (n=479). We performed power analysis 

for minimum effect size needed for a sample of this size for tests of level 5 × 10−8 that 

achieve 80% power. For tests of , parameters βg and γg in the GxR effect model for a 

SNP with minor allele frequency p must satisfy
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where  is the variance of residuals from the model fit using NS-LP scores that are first 

standardized to zero mean and unit variance. We verified this relationship through numerical 

experiments. For tests of , the parameter θg in the main effect model must satisfy

2.8 PNC study

We found support for the significant genetic results from the GWAS of the PING sample 

with participants of 8 through 21 years of age and possessing EGA from the Philadelphia 

Neurodevelopmental Cohort (PNC) study (Satterthwaite et al., 2014). The PNC study 

genotyped participants with one of six platforms, of which the Illumina Human610-Quad or 

Human550 (v1 and v3) platforms included six SNPs we sought to validate. Subjects were 

included in the PNC sample if they were genotyped with those platforms, had no major 

developmental problems, and possessed EGA. The latter was determined by performing 

PCA on the three platforms separately. Subjects were designated as having EGA if their 

scores on the first two PCs were both greater than the respective extreme third percentile of 

subjects with self-reported European ancestry.

The PNC sample had n=2,327 subjects with valid scores on the Wide Range Achievement 

Test (WRAT) (Wilkinson & Robertson, 2006) that was taken to be cognitive response for 

assessing learning performance. The WRAT is a comprehensive IQ-achievement exam 

commonly used in diagnosing learning disorders. Table S3 and Table S6 respectively 

provide demographics and inclusion criteria for the PNC sample.

We performed a F-test with 1 and 2321 df, on the null hypothesis  in the main 

effect model for the six most significant SNPs in the PING GWAS. Covariates included age, 

sex, two dummy variables for chip platform, and an indicator whether the subject had a 

reading problem. Household income and parental education data was not available on 

dbGAP. Neuroimaging data at the region of interest level from the PNC study was also not 

available on dbGAP. As a result, NS-LP scores could not be evaluated and, in turn, tests of 

the G×R model could not be performed.

3 RESULTS

3.1 Memory and language exams best predict learning problem diagnoses

We first sought a composite measure of learning performance, which refers throughout here 

to the cognitive measures associated with reading, writing, or mathematics deficits in the 
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DSM-V model of SLDs as opposed to others like attention or executive function. To achieve 

this goal, we performed principal component analysis (PCA) on scores from the eight exams 

in the NIH Toolbox. Because exam scores were highly associated with subjects’ age, sex, 

level of household income, highest level of parents’ education, and genetic ancestry 

(Akshoomoff et al., 2014) we removed their effects from each exam through multivariate 

regression prior to PCA in order to reduce these common sources of variation.

The exam loadings on the first PC, shown in Table S7, all had the same sign, which indicates 

it represents a latent factor for overall cognition, along with other confounding effects, 

common to all eight exams. Loadings on the second PC gave more insight into achieving our 

goal. Four exams evaluating episodic memory, working memory, reading, and vocabulary 

had negative loadings. These cognitive domains define learning performance as being 

distinct from executive control and attention. Indeed, there were positive loadings on the 

remaining four exams, which evaluated executive function, attention, and processing speed.

Our composite learning performance score, as described in the Methods section, was an 

equal-weighted average of language and memory exams and was, by construction, 

uncorrelated with age, sex, household income, highest level of parents’ education, and first 

two PCs of genotype data. The mean and standard deviation of the learning performance 

scores were μ = 0 and σ = 0.67 respectively.

The learning performance score discriminated between subjects with and without a learning 

diagnosis. As shown in Figure S2, the learning performance score distribution for S+ 

(diagnosed with LP) subgroup was markedly lower than that of S− subgroup (KS-test: D = 

0.39, p < 10−4). For comparison, we also derived a composite executive function score in the 

same way using the four exams assessing executive function, attention, and processing 

speed. There was no significant difference (KS-test: D = 0.17, p = 0.26 ) in the distributions 

of that composite score between S+ and S−, which indicates those domains are less relevant 

for diagnosis of learning problems.

3.2 Thickness of ROIs in temporal lobes best characterize neurobiological risk for learning 
problems

We next sought to quantify neurobiological risk related to learning performance using 

neuroimaging biomarkers. To decouple this risk from cognitive assessments, we used the 

subgroup S+ (diagnosed with LP) as a surrogate measure. Indeed, Figure S2 shows there is a 

large overlap in the distributions of learning performance scores of S+ and S− (no LP 

diagnosis), which indicates the LP diagnosis status does not directly reflect cognitive 

evaluations.

We identified neuroimaging biomarkers that best characterized S+ as being distinct from S− 

using the joint variance (JVAR) test described in the Methods section. The heat map in 

Figure 2 illustrates p-values for the respective ROIs from the JVAR test, where significance 

was assessed from a null distribution generated by permutations. Lower p-values indicate the 

ROI better characterizes the brain morphology of S+ relative to S−. Most regions did not 

characterize S+ well under the JVAR test over the PING sample. See Table S12 for p-values 

for all 66 ROIs.
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Table 1 lists the ten most significant ROIs among the JVAR test results. Only the left 

temporal pole had a Bonferroni-adjusted p-value less than 0.05. Six ROIs with unadjusted p-

values less than 0.054 were in the temporal lobes and anterior cingulate gyri on either 

hemisphere. The thickness component of the JVAR statistic contributes to the significance of 

all six ROIs, whereas area and volume components are less consistent. We quantified 

neurobiological risk for learning problems with the thickness of these six ROIs. We chose a 

cut-off for this number of ROIs because there was a marked decrease in significance for the 

right transverse temporal gyrus, which was the seventh most significant ROI.

3.3 NS-LP scores predict learning performance scores

There were 7 outliers among the 37 subjects having a positive LP diagnosis with respect to 

these variables for outlyingness threshold v = 0.01. Also using these six variables, we 

evaluated NS-LP risk scores, denoted  for v = 0.01, in the PING sample (n=479).

The distribution of the NS-LP risk scores had a high positive skew (ξ = 0.84). Along with 

the covariates used for the neuroimaging variables, NS-LP scores also had insignificant 

correlations with either household income (ρ̂ = 0.04 ; p=0.37 ) or parental education (ρ̂ 

=0.006; p=0.89).

To understand the relationship between the NS-LP and the learning performance scores Yi 

described above, we fit three models to the PING sample (n=479). Model A is Yi = a0 + 

azZi, model B is Yi = b0 + bLLi, and model C is Yi = c0 + cLLi + czZi with Li = 1 for positive 

LP diagnosis and Li = 0 otherwise. Learning performance scores are, by construction, 

uncorrelated with age, sex, household income, parents’ education (highest level), and genetic 

ancestry. Summaries of the three model fits are given in Table 2.

Figure 3 shows there was a significant negative relationship between the NS-LP and the 

learning performance scores in model A (ẑz = −0.36, p = 3.7×10−4). It was not surprising 

that LP diagnosis status had a significant negative relationship to learning performance in 

Model B, given what was observed in Figure S2. It was surprising, however, that Model C fit 

learning performance better than Model B by 44% based on adjusted R2. A F-test of the null 

hypothesis for Model B against the alternative of Model C yielded a significance of p = 

2.8×10−3 over the PING sample. The significant negative marginal relationship between the 

two scores in Model C (ĉz = 0.31, p =2.8×10−3) suggests that neuroimaging variables 

enabled NS-LP to predict learning performance.

In post-hoc analysis, we performed marginal association tests between learning performance 

Yi and {vijk} for each respective j =1, …, 66 and k = 1,2,3 over the PING sample. Among 

the 198 tests, there was no p-value less than 0.006; see Table S10. This lends evidence to the 

hypothesis that multivariate approaches to neuroimaging are more favorable than univariate 

ones (J. Liu & Calhoun, 2014; Meyer-Lindenberg, 2012; Norman, Polyn, Detre, & Haxby, 

2006).

3.4 Genetic results

We performed a GWAS of the learning performance scores under the G×R and main effect 

models for each of the 488,200 SNPs genotyped from the PING sample (n=479). The 
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significances from the GWAS of  and  tests are compared in the QQ-plots shown 

in Figure 4. The horizontal axis represents the theoretical null distribution of p-values over 

the G =488,200 tests, with values given by  for g=1, …, G. The vertical axis 

corresponds to the ordered p-values, on a −log10 scale, observed in the GWAS of the two 

hypotheses. Tests of  detected two significant SNPs whereas those of  failed to 

detect any under theoretical asymptotic null distributions.

Among tests of  and  performed for G SNPs, the six tests having greatest 

significance were of  for SNPs all on the same linkage disequilibrium block within the 

AGBL1 gene on chromosome 15. Table 3 provides their respective significances and model 

estimates. They all have FDR less than 0.05 over the 976,400 tests performed. We verified 

the significance with p-FWER.

The most significant SNP in both the G×R and main effect models of the 488,200 SNPs tests 

was rs11633708. In the G×R model, its p-value was less than 5×10−8, a threshold commonly 

accepted for designating a SNP with genomewide significance in a GWAS. Table 3 also 

shows tests of the main effect model for these six SNPs over the PNC sample (n=2,327) 

were all significant with p-values all less than or equal to 7×10−4. Table S11 provides minor 

allele frequencies, minor allele, and positions for these SNPs along with those of the 50 most 

significant SNPs in the GWAS under both the G×R and main effect models.

For these SNPs, tests of  had greater significance than tests of  suggesting that the 

gene-risk interaction model had greater information gain than the respective main effect 

model. Information gain here is the increase in adjusted R2 of the fitted model (main effect 

or G×R) over that of the fitted base model, given by Yi =bTWi. For these six SNPs, the gene-

risk interaction model had higher information gain despite being penalized for having two 

extra parameters.

In Figure 5, the change in estimated effect from one additional allele of rs11633708, given 

everything else equal, on the learning performance score in the G×R model is plotted as a 

function of NS-LP scores (red line). A 95% confidence interval band is also shown where 

the upper and lower 2.5% percentiles are

with derivations of E(z; β, γ) and SE(z; β, γ) given in the methods section. The significance 

of the estimated effect is greatest for subjects in the sample with low NS-LP scores and is 

negligible for subjects scoring at the higher range of NS-LP, as indicated by the widening 

confidence interval that crosses 0.0 (blue line). In contrast, the main effect model (red line) 

does not account for differences in estimated genetic effects on learning performance, with 

respect to NS-LP risk, over the sample. Therefore, testing genetic effect in the main effect 

model suffers from diminished power.
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To confirm these findings, we performed a gene-based analysis for the set of 150 SNPs on 

AGBL1 included in our GWAS. The combined significance from the respective tests of 

for these SNPs was 1.99×10−6 when using the VEGAS method (J. Z. Liu et al., 2010). The 

Bonferroni-corrected p-value is 0.04 if the same SNP-set analysis was conducted for 20,000 

genes.

Finally, we performed post-hoc analysis to determine whether we could arrive at similar 

results using, for interaction variables in the GxR model, any of the neuroimaging 

biomarkers identified as being important with the JVAR test. To do this, we tested the 

genetic effect in G×R models for rs11633708 where the thickness measurement of the six 

most significant ROIs in the JVAR test are the interaction variables. The results are reported 

in Table S12 and show that the significance of genetic effect for these models was far lower 

than in the GxR model with the NS-LP score.

3.5 Sensitivity Analysis

We detected a significant association between SNPs in AGBL1 and learning performance in 

the PING sample through the G×R model, which required evaluating NS-LP scores. These 

scores represent within-sample risk as they are constructed from pairwise similarities 

between subjects’ neuroimaging measurements. This inherently heightens sample 

dependence of the genetic results.

We performed a sensitivity analysis to assess the stability of the NS-LP scores and their 

effect on the genetic results. To do this, we fit the main effect and G×R models for 

rs11633708 to a random subset of 407 subjects (85%) from the PING sample. The G×R 

model used NS-LP scores which were reevaluated over that subset. Figure S3 compares the 

information gain of the two models over 100 different random subsets. It shows that the 

G×R model for rs11633708 yielded more information gain than the main effect model over 

the random subsets.

4 DISCUSSION

We observed several SNPs in the AGBL gene that were significantly associated with 

learning performance at genomewide levels in our GWAS. AGBL1 encodes an enzyme 

regulating protein deglutamylation in the cytosolic carboxypeptidase (CCP) family of 

catalysts. This enzyme and others in the CCP family have been observed to effect neuronal 

survival (Rogowski et al., 2010; Wang, Parris, Li, & Morgan, 2006). To the best of our 

knowledge, there are no findings linking AGBL1 to any cognitive traits through either 

neurochemistry or genetic association studies.

On the other hand, AGBL1 has been linked to schizophrenia in two separate GWAS with 

independent samples (Ikeda et al., 2013; Sullivan et al., 2008). Both GWAS identified SNPs 

in AGBL1 as being the most significant among approximately 500,000 tested, albeit not at 

genomewide levels, with p-values less than 4×10−6. Schizophrenic patients suffer from 

several cognitive deficits (Barch, 2005) including ones related to working memory (Forbes, 

Carrick, McIntosh, & Lawrie, 2009; Lett, Voineskos, Kennedy, Levine, & Daskalakis, 2014), 

episodic memory (Leavitt & Goldberg, 2009; Lepage, Sergerie, Pelletier, & Harvey, 2007), 
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and language (Bhati, 2005; Covington et al., 2005; Robbins, 2002). Taken together, these 

results suggest a pleiotropic effect of AGBL1 on both schizophrenia and certain cognitive 

traits related to learning performance.

In the PING sample, the SNPs in AGBL1 had significant association with learning 

performance at the genomewide level in the gene-risk interaction model. Within this model, 

the magnitude and direction of genetic effect depends on the NS-LP risk. The interaction 

term in the model mitigated the impact of this heterogeneity might have had on detecting 

genetic variants in AGBL1.

Indeed, many disparate environmental and non-genetic biological risk factors, in conjunction 

with genetic risk, influence how neuropsychological traits manifest (Hardy & Singleton, 

2009). For example, early environmental stressors, substance abuse, hormones, and 

immunological factors are related to the onset of psychosis-spectrum disorders in individuals 

with a genetic predisposition (Agid et al., 1999; Ikeda et al., 2013; Kirkbride et al., 2006; 

Kulkarni, Hayes, & Gavrilidis, 2012). Identifying significant risk factors stands to 

dramatically improve power in statistical inference of NP traits (Agid et al., 1999). As our 

results demonstrate, neuroimaging biomarkers can be used to quantify neurobiological risk.

Neurobiological risk is, however, neither observable nor well-defined. Furthermore, many 

influences on brain plasticity and function, such as socioeconomic status (Noble et al., 

2015), stress (McEwen, 1999), and cardiovascular fitness (Colcombe et al., 2004), among 

others (Ellingson, Fleming, Vergés, Bartholow, & Sher, 2014), are confounders present in 

neuroimaging studies. Here, we describe a new multivariate method that defines 

neurobiological risk in a sample by similarity in brain morphology for a given diagnosis (see 

Figure 6 for an illustration). This approach assumes only that individuals in a high diagnosis 

risk subgroup are clustered in a multivariate space of a few important neuroimaging 

biomarkers. Any given individual’s risk is then their average similarity in that space to those 

in the diagnosed subgroup.

The clustering will remain persistent when projecting onto a single important variable and 

will disappear when projecting onto a single unimportant variable any individual’s risk. The 

JVAR test identifies neuroimaging biomarkers that distinguish subjects at high risk for 

learning problems. The rank-based average similarity then allows for quantifying risk in a 

multivariate setting without the need to specify complicated parametric models of 

multivariate neuroimaging data. That this approach requires no additional assumptions about 

environmental exposures suggests that it is robust and potentially generalizable to other 

phenotypes and domains.

The similarity framework is also robust against “mislabeling” if the high-risk subgroup is 

initialized as being those with clinical diagnoses. Mislabeling here means that the diagnosis 

status of individuals may not match up with their neurobiological risk. Outliers in the 

diagnosed group can be identified through their neuroimaging biomarkers.

We used the JVAR test here to determine how well ROIs characterize the LP diagnosis group 

as being distinct from rest of the PING sample. As listed in Table 1, seven of the ten most 

significant regions are in the temporal lobes in either hemisphere. This is consistent with 
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well-established neuroimaging findings in learning performance. The temporal lobes contain 

networks vital to memory formation, recall and language comprehension (Brockway et al., 

1998; Hoenig & Scheef, 2005; Leritz, Grande, & Bauer, 2006). Two other regions with high 

significance are in the anterior cingulate gyrus, which plays a key role in motivation through 

rewards-based learning (Shenhav, Botvinick, & Cohen, 2013).

Finally, the genetic results also depend on the learning performance phenotype. Here, we 

conditioned association on a composite of four memory and language assessments. This 

improves power for detecting genetic markers having significant association with latent 

factors common to all four assessments by reducing idiosyncratic noise and amplifying 

signal-to-noise ratio in the genetic model. Table S8 shows that rs11633708 had associations 

with the composite learning performance score with far greater significance than with any of 

the eight individual exams under both  and  hypotheses.

Our approach for integrating genetics, neuroimaging, and clinical data into a single 

statistical framework can be readily extended to other phenotypes for symptom severity, 

such as attention exams or psychotic symptom ratings, using risk scores of neuroimaging 

similarity to clinical diagnoses of attention or psychosis disorders. A major advantage to this 

framework is that, by summarizing neuroimaging risk with a single variable, it presents a 

massive reduction in tests for interactions between genetic and neuroimaging biomarkers.

When defined appropriately, neurobiological risk can better control for population 

heterogeneity in the study of any NP trait. Controlling for heterogeneity enables detecting 

genetic risk factors important for individuals at any given level of neurobiological risk. A 

direct consequence here is identifying targets for actionable personalized treatments of NP 

disorders, which is an important priority in current psychiatric and neuropsychological 

research missions (Insel & Cuthbert, 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of inferential procedure applied to PING study
Data: Cognitive assessments were taken from eight exams within the NIH Toolbox. 

Learning problem (LP) status is a binary variable corresponding to a yes/no answer in 

response to the question whether a subject was ever diagnosed with a learning problem. 

There are 198 neuroimaging biomarkers corresponding to average thickness, area, and 

volume measurements for 66 cortical regions of interest (ROI) obtained from structural MRI 

scans. Approximately 500,000 SNPs were genotyped for each subject in the sample. Results: 

(1) A composite learning performance score was derived from exams assessing memory 

(working and episodic) and language (reading and vocabulary). (2A) The joint variance test 

was performed to determine how well each ROI discriminated subjects with a LP diagnosis 

from others in the sample using thickness, area, and volume measurements. Of the 10 most 

significant regions, seven were in the temporal lobe and two were in the anterior cingulate 

on either the left or right hemispheres. (2B) With neuroimaging biomarkers best 

discriminating the LP subgroup, rank-based average linkage (similarity) clustering was 

applied to evaluate continuous risk scores for each subjects’ neuroimaging similarity to 

those in the LP subgroup. The similarities were with respect to the neuroimaging biomarkers 

identified as being most significant under the joint variance test. (3) A GWAS of the learning 

performance score was conducted using models including effects from interactions between 

genomic markers and the neuroimaging risk score. Six SNPs on the AGBL1 gene were 

observed to have significant associations with learning performance score at a genomewide 

level.
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Figure 2. Heat map of each ROI’s significance under JVAR test
Colors represent p-values from the JVAR test for each ROI comparing subjects with a 

learning problem diagnosis (n=37) and without a LP diagnosis (n=442) in the PING sample 

(n=479). Red indicates greater significance. (a) The p-values are not adjusted for multiple 

comparisons. The p-values from the JVAR tests for all 66 ROIs are listed in Table S9.

Mehta et al. Page 20

Genet Epidemiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Learning performance scores versus NS-LP scores
The blue, black, and red markers represent subjects in subgroups denoted by S− (n=442), 

, and  respectively. The  and  subgroups respectively contain 

outliers and non-outliers in S+ (n=37) based on outlyingness of subjects, with respect to 

neuroanatomical measurements, threshold v = 0.01. Methods section describes how outliers 

are identified. Regression results are over the PING sample (n=479) and based on Model (A) 

specified in Table 2.
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Figure 4. QQ-plot of GWAS of learning performance score in PING sample (n=479)
Tests were performed for genomic effects G×R and Main effect models of learning 

performance scores for each of 488,200 SNPs. Observed p-values in the GWAS of each 

model were sorted and then plotted on a −log10 scale against expected values in theoretical 

null distributions. The shaded region indicates a 95% confidence interval. Blue dots 

correspond to tests of  in the G×R model. Red triangles correspond to tests of  in 

the main effect model. The genomic inflation factors for the GWAS of the G×R and Main 

effect models were 1.012 and 1.002, respectively.
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Figure 5. Estimated effect of rs11633708 on learning performance as function of NS-LP risk 
score
The SNP rs11633708 on AGBL1 (chromosome 15) was the most significant in a GWAS of 

learning performance scores over the PING sample (n=479). The vertical axes represents 

estimated effect one additional risk allele of rs11633708 on learning performance scores (μ= 

0, σ= 0.67). Lines and shaded regions represent estimated effects and their 95% confidence 

intervals in three models. Blue represents the main effect model, which does not rely on NS-

LP risk scores. Red represents the G×R model presented in the genomic results section. 

Estimates and standard errors in the G×R model are a function of NS-LP scores. Standard 

errors there were evaluated from the covariance matrix of estimates in the respective linear 

regression models. The gray region in both plots is the empirical density of NS-LP scores 

and is at scale with the vertical axis.
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Figure 6. Illustration of neuroimaging similarity for a diagnosis
Two subgroups of subjects are formed on the basis of observed diagnosis. Plus signs 

represent S+ (positive diagnosis) and dots represent S− (negative diagnosis). Along important 

variables, S+ has greater level of within-group similarity (homogeneity) relative to S-. Along 

unimportant variables, the level of within-group similarity for S+ and S− are roughly equal. 

Background colors represent subjects’ continuous level of along respective axes. Each figure 

represents bivariate comparisons between variables. Background color represent continuous 

level to neuroimaging similarity with S+ in bivariate setting. (a) Axes represent two 

unimportant variables where neuroimaging similarity risk cannot be detected. (b) Respective 

axes are important and unimportant variables. Neuroimaging similarity risk increases only 

along axis for important variable. (c) Axes represent two important variables, where 

neuroimaging similarity to S+ is with respect to multivariate distances.
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