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Abstract

Over the past decade, researchers have recognized the need to study biological systems as 

integrated systems. While the reductionist approaches of the past century have made remarkable 

advances of our understanding of life, the next phase of understanding comes from systems-level 

investigations. Additionally, biology has become a data-intensive field of research. The 

introduction of high throughput sequencing, microarrays, high throughput proteomics, 

metabolomics, and now lipidomics are producing significantly more data than can be interpreted 

using existing methods. The field of systems biology brings together methods from computer 

science, modeling, statistics, engineering, and biology to explore the volumes of data now being 

produced and to develop mathematical representations of metabolic, signaling, and gene 

regulatory systems. Advances in these methods are allowing biologists to develop new insights 

into the complexities of life, to predict cellular responses and treatment outcomes, and to 

effectively plan experiments that extend our understanding. In this chapter, we are providing the 

basic steps of developing and analyzing a small S-system model of a biochemical pathway related 

to sphingolipid metabolism in the regulation of virulence of the human fungal microbial pathogen 

Cryptococcus neoformans (Cn).
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1. Introduction

In recent years, most biologists have recognized that reductionism alone cannot explain 

every cellular biological process and now admit that integralism or pluralism must 

accompany reductionism to fully explain biological phenomena. One key issue in the 

reductionism process is the use of appropriate methodologies in the study of the 

phenomenon of interest. For instance, methodologies that study molecules in the time and 

space of the living cell should be preferable to and complement those that study the 

molecules in vitro. Outside of this critical cellular context, the richness of integrated cell 

behavior may be lost. Systems biology can dramatically improve the selection of such 

experimental strategies.

Since mathematical models can be used to theoretically predict the patterns of enzymatic 

activity that could lead to an observed steady state phenotype, it is possible, in principle, to 

determine which enzyme would have the greatest effect in achieving that phenotype. 

Therefore, systems biology can aid in selecting which enzyme would have to be altered and 

in what manner to obtain the phenotype of interest. In other words, mathematical models can 

be used as valuable tools for exhaustive prescreening studies for all kinds of scenarios and 

for creating novel hypotheses that are then to be tested in the laboratory. Computational 

modeling can help in selecting the experiments most likely to disprove the hypothesis and 

further improve our conceptual model of the system under study.

Cellular systems frequently employ cascade mechanisms to facilitate the transduction of 

external signals and activation of transcription factors that regulate the expression of specific 

genes in response to specific signals. Cascade pathways and signaling in Cryptococcus 
neoformans (Cn) has been extensively studied (1–17). In our studies, we found that an 

enzyme in the fungal sphingolipid pathway, inositol phosphoryl ceramide synthase 1 (Ipc1), 

controls the signaling cascade leading to the production of melanin (18). In particular, Ipc1 

produces inositol-containing sphingolipids (e.g., inositol phosphoryl ceramide or IPC) and 

diacylglycerol (DAG) (19), which, in Cn, activates protein kinase C1 (Pkc1) (20). Although 

previous studies showed that DAG does not activate Pkc1 of other fungal species, such as 

Candida albicans (Ca) (21) and Saccharomyces cerevisiae (Sc) (22), we found that this was 

not the case for the Cn Pkc1. In Cn, Pkc1 activation occurs through the C1 domain of Pkc1 

since deletion of this domain reduces its activation by DAG (20). The Ipc1–DAG–Pkc1 

pathway appears to drive laccase to its proper location (cell wall) so that it can transform L-

Dopamine into melanin in the outer leaflet of the cell wall (Fig. 1).

In this chapter, we demonstrate the development of a simple mathematical model of the 

regulation of melanin by the sphingolipid pathway in the pathogenic microorganisms C. 
neoformans. This microbe is an environmental fungus that, upon inhalation, can cause a life-

threatening meningoencephalitis, especially in immunocompromised patients (23). Cn 
produces a black melanin pigment deposited on the outer cell wall that protects the fungus 

from the environment and from the host immune response (24–27). Melanin deficient 

mutants are not pathogenic (28–30), thus it became important to define how its production is 

regulated.
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Mathematical modeling of biochemical and regulatory systems is a well-developed field of 

research, and there are numerous strategies that could be employed to implement the 

sphingolipid activated production of melanin in Cn. We choose Biochemical Systems 

Theory (BST) as developed by Savageau in the 1960s (31, 32) and applied in numerous 

modeling efforts since. BST employs a power-law formalism derived from a Taylor series 

approximation to each process rate law in logarithmic coordinates. The resulting canonical 

representation greatly simplifies the construction of models, provides a rigorous basis for 

analyzing the stability and performance of the system, and has been successfully applied to 

metabolic pathways, gene regulatory networks, and signal transduction systems. BST has 

been successfully used to model a variety of pathways in a variety of organisms (33–35), 

including metabolic pathways in S. cerevisiae (36, 37) and Cn (38, 39). In the BST 

framework, the system's dynamic behavior is captured in a set of differential equations, 

where the rates of individual processes are given as the product of power laws. Each time 

varying quantity of interest, termed a dependent variable, is described by one of these 

equations. When each of the underlying processes (reaction, transport, expression, etc.) is 

described individually, the model is termed a Generalized Mass Action (GMA) system 

owing to its mathematical similarity to Mass Action systems. In many cases, this form can 

be further simplified by aggregating influxes and effluxes into a single product of power law 

terms each. Models in this form are referred to as S-systems and have distinct computational 

and analytical advantages. Equations giving the canonical forms for each of these forms are 

given below

GMA equation

S-system equation

Here, the αs and βs are referred to as rate constants and the gs and hs as kinetic orders. More 

formally, these gs and hs are called apparent kinetic orders to differentiate them from the 

kinetic orders familiar to those describing process rates using mass action kinetics. For a 

more detailed explanation of the theory behind BST models, see appendix below and Voit 

(35).

Since this demonstration model is based on our previous experiments, model analyses show 

that under alteration of its parameters the simulations strictly reflect the results obtained in 

the previous experiments. Indeed, any mathematical model crucially depends on solid 

experimental data. However, once a model is established, it becomes a rich tool for analyses 

that are often unattainable with wet experimentation. For instance, the model can simulate 

the effect of Pkc1 downregulation on cell wall integrity and laccase location at the cell wall; 

these predictions could help to design additional experiments that specifically address this 
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hypothesis. This chapter walks the reader through the basic steps of developing and 

analyzing a small S-system model of a biochemical pathway related to sphingolipid 

metabolism in Cn.

2. Methods

2.1. The Modeling Process

Regardless of which mathematical method is chosen to model a biological system, the same 

general process is followed to develop and test a model. Each step is discussed in greater 

detail in the appendix below, but briefly here are the main steps. The crucial first step 

consists of defining the pathway to be modeled and deciding which components are altered 

by the system (dependent variables) and which remain unchanged (independent variables). 

The second step is to write the system equations; each dependent variable represented by 

one differential equation that calculates how the amount of the associated molecular species 

changes. The equations are first written symbolically in terms of the dependent and 

independent variables and kinetic parameters and then numerically once all parameters have 

been estimated. Next, the quality and robustness of the model is assessed by calculating the 

local stability at steady state and the logarithmic gains and sensitivities of the variables and 

parameters. Last, simulations of known behavior are used to examine the dynamics of the 

model in response to perturbations. Reasonable responses indicate that the model is ready 

for predictive simulations. The modeling process is not strictly linear but iterative with 

successive rounds of experimentation and refinement as determined by the results of the 

analysis.

2.2. Graphical Model Design

As described in the introduction and illustrated in Fig. 1, our pathway of interest is a 

signaling cascade that promotes melanin production in Cn. After listing the components of 

the pathway (see Table 1), the most crucial step is to create a drawing or map of the 

biological system to be modeled, as it is from this map that the equations are written. This 

map connects the real biological system with the mathematical analysis. Thus, the map 

should be as accurate as possible based on the published literature and the researchers 

knowledge and should include the level of detail desired for the given problem. This map is 

similar to the conceptual drawings of biological pathways often found in textbooks or 

journal articles, but there are some simple guidelines to insure consistency between model 

maps and to help avoid ambiguity or confusion.

The system map is represented as a network graph with two basic elements: nodes and 

directed edges. Nodes typically represent a pool of material, such as metabolites, cofactors, 

signaling molecules, proteins, enzymes, or genes. Nodes may represent dependent (time 

varying) or independent (fixed) variables. For example, a canonical reaction, where the 

substrate is transformed into a product (e.g., L-DOPA-int and melanin) by an enzyme 

(laccase) has two dependent and one independent variable; the substrate and product 

concentrations are changed by the reaction, but the enzyme typically is not. Each dependent 

variable has an equation that describes the influx and efflux of that variable, while 

Garcia et al. Page 4

Methods Mol Biol. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independent variables have a constant value. Some typical independent variables are 

enzymes and cofactors.

Solid edges are used to indicate a flow or conversion of material and must connect to nodes. 

Single-headed arrows denote irreversible reactions and double-headed arrows indicate 

reversible reactions. If a different enzyme catalyzes the reverse reaction, then two single-

headed arrows pointing in opposite directions are used. Several variations of flux arrows are 

possible depending on the number of substrates, products, enzymes, and cofactors involved 

in the reaction; see Sims et al. for more examples (40).

Edges are also used to indicate the flow of information, i.e., signals, from one variable that 

regulate some process in the model. In this case, the arrows are dashed and may have a 

positive or negative sign to indicate activation or inhibition, respectively. Lack of a sign on a 

dashed arrow is considered activation. Information flow arrows connect a node to an edge 

associated with a flow of material (solid arrow). Often these dashed arrows are used to 

indicate the relationship between an enzyme and the reactions that it modulates or the 

inhibition of one metabolite on some step in the pathway.

2.3. Equation Formulation, Symbolic, and Numeric

Once satisfied that the system map is accurate and includes all details relevant to the model, 

the differential equations can be set up from the map. It is helpful to first write the symbolic 

equations of the system. These indicate all the pertinent components that affect each 

dependent variable, but no specific numerical values, such as metabolite concentration are 

used. After the symbolic equations are complete, parameter values are estimated and 

plugged in to create the numeric equations that are used for further analysis.

It is mathematically convenient to substitute symbols for the proper names of the associated 

molecular species. They are represented by Xi for dependent and Xj for independent 

variables with the respective subscript. By convention, the numeration is consecutive 

beginning with i = 1 to n for the dependent variables j = n + 1 to n + m for the independent 

variables. Table 1 lists the components of the sample system along with the symbolic name 

and initial value. The fluxes between metabolites are also given symbolic names of the form 

vi,j, where i and j indicate the two nodes the flux flows between. Next, for each dependent 

variable Xi, we identify the other variables and signals that influence its influx and efflux. A 

symbolic differential equation is then written for each dependent variable using either the S-

system or GMA method of flux representation.

For example, Fig. 2 shows the network map with symbolic notation for the signaling cascade 

Ipc1–DAG–Pkc1 described in the introduction. In the first half of the cascade, the enzyme 

Ipc1, (X7) transfers the phosphoryl-inositol moiety from phosphatidylinositol (PI), (X6) to 

phytoceramide, (X5) forming IPC, (X1) and DAG, (X2)

In the second half of the system, melanin (X4) is synthesized from an internal concentration 

of L-DOPA-int, (X3) via laccase, (X11). In Cn, melanin (X4) is produced in the presence of 

phenolic substrates, such as L-DOPA-ext, (X9) (41, 42) that are actively transported into the 
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cell (43). This transport process is identified in this relatively simple model as the variable 

X10.

These two metabolic pathways are connected by two signals. First, DAG, (X2) released from 

the production of IPC activates the enzyme Pkc1, (X8), which then activates laccase, (X11), 

stimulating the increased production of melanin.

This example contains four dependent variables, the metabolites: X1, X2, X3, and X4. Their 

synthesis is affected by their respective precursors and their degradation depends only on 

their own concentration. Note that the production of melanin requires numerous precursors 

and reactions, but has been simplified in this example as a direct substrate of L-DOPA-int. 

For each Xi, all components whether dependent or independent that have a part in its 

synthesis are aggregated in , the influx function. Similarly, all variables dependent or 

independent that have a part in the degradation of Xi are aggregated in , the efflux 

function. For the system shown in Fig. 2, the influx and efflux functions for each dependent 

variable can be represented as follows.

2.3.1. Mass Balance Equations—

The next step is to flesh out these influx and efflux functions. While the actual function that 

governs an enzymatic reaction may sometimes be described using Michaelis–Menten kinetic 

rate laws, often the exact mechanism is not known. This is when using the power law 

formalism has a great advantage. We can rewrite these flux functions as symbolic S-system 

equations as shown below, where each of the fluxes is given as a product of power-law 

terms.

2.3.2. Symbolic Equations

2.4. Parameter Estimation

Once the symbolic equations are defined, it is time to provide numeric values for each 

parameter. Most often, this procedure occurs “bottom-up” by estimating the parameters for 

individual reactions based on kinetic characterizations of the associated enzymes. Recently, 

efforts have also focused on estimating these parameters from time series measurements of 

the dependent variables, the so-called top-down approach (44–47). Here, we employ the 
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“bottom-up” approach and focus on using kinetic data for each reaction or process in the 

model. This step utilizes published information about the enzymes and reactions, such as 

Km, Ki, and Vmax, although there are times when the needed data are unavailable. In such 

cases, custom experiments may need to be conducted, parameter values may be estimated 

from characterizations in other organisms, or default “guesstimates” may be used for a 

limited number of parameters.

On initial inspection, our system appears to have 8 rate constants and 19 kinetic orders that 

need to be calculated; however, there are constraints on the system that equate some 

parameters, thus reducing the total number to be determined. For example, the synthesis of 

X1 and X2 occur from the same process so V1
+ and V2

+ are equivalent. Also, the precursor–

product relationship conserves the flux of a reaction, thus the efflux V3
− must equal the 

influx of V4
+. This means that the rate constants and kinetic orders of each of these 

relationships must be equal resulting in the following constraints on the parameters.

2.4.1. Kinetic Orders—In BST, the kinetic order of a variable indicates the influence of 

that variable on the flux in which the variable appears and is derived from the slope of the 

rate function when expressed in logarithmic coordinates. Kinetic orders influence the 

stability of the system and the logarithmic gains, and sensitivities of the dependent variables 

(35). Several methods are available for the estimation of kinetic orders, including estimation 

from time series data (as in the top-down approach), estimation from kinetic data of 

individual enzymes, or through approximations to established rate laws for well-

characterized processes. Kinetic orders are frequently determined directly from experimental 

data by estimating the slope in a log–log plot of rate versus concentration data (34). When a 

rate law is available to describe a process of interest, it is also possible to calculate kinetic 

orders using partial derivatives as shown below.

This expression is derived from the partial derivative of the log rate Vi with respect to the 

log of the variable of interest Xj. For example, the simple Michaelis–Menten rate law 

produces the following kinetic order with respect to the substrate Xi.

Given

For the first example, consider the enzyme Ipc1, X7 of the sphingolipid pathway and its 

substrates X5 and X6 which are assumed to be independent variables and thus are constants. 
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However, the products of this reaction can change; so the kinetic orders of V1
+ and V2

+ are 

associated with the IPC and DAG. Estimations of the kinetic orders g1,5 and g1,6 are 

illustrated in the appendix below. To determine the kinetic order of the enzyme, we assume a 

direct proportionality between activity and concentration of enzyme. Differentiation gives a 

value of 1. Recalling the constraints on parameters discussed previously, we get g1,7 = g2,7 = 

1.

Next, we assume a simple kinetic Michaelis–Menten rate law for the laccase reaction from 

which we compute the kinetic orders h3,3 and g3,9. First, h3,3 quantifies the effect of internal 

L-DOPA on its own degradation through laccase. This enzyme exhibits a constant kinetic for 

DOPA with a Km = 0.59 mM (48). After differentiation and substitution of measured values, 

we get the following:

Similarly, the kinetic order g3,9 is obtained by differentiation of V3
+ with respect to X9. The 

kinetic order g3,9 reflects the effect of L-DOPA-ext on L-DOPA-int via transport through the 

cell wall with a kinetic constant Km = 0.45 mM (48) as shown below.

We note that in the calculation of these kinetic orders, we supply a value for one or more of 

the system variables (X4 and X9 in the examples above). The power-law derived in this 

manner is an approximation to the underlying rate law (Michaelis–Menten in this case), 

more formally it is a first order Taylor approximation in logarithmic coordinates. As such, 

we must choose a point around which to make this approximation. This becomes what is 

called the operating point and is often chosen to match the nominal conditions around which 

the system is expected to operate. At this operating point, both the rate and the slope of the 

power law approximation match that of the rate law being approximated.

2.4.2. Rate Constants—Rate constants represent the speed of the processes. Their values 

can be calculated with data for the Vmax, metabolite and enzyme concentrations along with 

the calculated kinetic orders (49). This is accomplished by setting the power law flux term 

equal to the original rate law at the operating point and solving for the rate constant this 

guarantees that the velocity of the original rate law and the power law approximation match.

For example, the rate constant associated with the formation of the variable X1 is determined 

from the set of values for the flux rate, concentrations, and kinetic orders:
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From the parameter constraints, we know that the rate constant associated with the formation 

of the variable X1 is the same value as the rate constant associated with the formation of the 

variable X2. Thus, α2 = 0.1119. Similar calculations give the remaining rate constants.

Once all the values have been calculated for the kinetic orders and rate constants, those 

values replace the symbols to produce the numeric equations that are then ready for analysis 

and testing. For several detailed examples of parameter estimation, see (35) and (40).

2.4.3. S-System Representation

2.5. Model Analysis

The system of equations that have been developed are now tested for steady state values, 

eigenvalues, and sensitivity or logarithmic gains. The computations associated with these 

analyses are somewhat more complicated; fortunately, these steps have been automated and 

are available in at least two freely available software packages; PLAS http://

www.dqb.fc.ul.pt/docentes/aferreira/plas.html (50) and PLMaddon http://www.sbi.uni-

rostock.de/plmaddon (51). At this time, it is useful to employ a software package that has 

been developed specifically for this task, such as PLAS. The equations and initial values (see 

Table 1) for the variables are entered into the software. The software can then automatically 

compute the steady state of the system by simultaneously setting the system of differential 

equations to zero. For S-systems the system of equations can be solved directly after 

logarithmic transformation. When the model is characterized using the GMA model, the 

software must use numerical integration techniques as a closed form for the steady state is 

not available. See appendix below and (35) for more details. Our system reaches steady state 

as shown in Table 2.

Along with the steady state, it is necessary to check the eigenvalues of the system which 

indicates the local stability of the system. Stability is an indication of the system's behavior 

following small perturbations from the steady state. If the system eventually returns to the 

steady state following a perturbation it is considered stable, a desirable property of our 

model. Stability is assessed by examining the eigenvalues of a linear approximation to the 

nonlinear system, constructed at the steady state. When the real parts of all the eigenvalues 

are negative, the steady state of the system is considered stable. Our system has negative real 

parts (see Table 2) and is thus stable. Also, the imaginary parts are all zero, indicating that 

the system does not oscillate as it returns to the steady state following a perturbation. Next, 

we check the sensitivity of the parameters and independent variables. Again, the available 

software package implements the required calculations. Sensitivities and logarithmic gains 

indicate how much the steady state values of dependent variables or fluxes of the system 

change when a parameter or independent variable is changed by a small amount. These 

measures are interpreted as relative changes. For example, a sensitivity of 5 means that a 1% 
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change in the parameter or independent variable cause a 5% change in the steady state or 

flux. Positive sensitivities indicate a change in the same direction, whereas negative 

sensitivities indicate opposite directions of change. Robust models have mostly small 

sensitivities; unusually, large values (e.g., >10) suggests that something may be amiss with 

the model or importantly, that the node in question may play a key role in the pathway.

Several types of sensitivities are calculated, but each with the dependent variables and the 

fluxes of the system; sensitivity with respect to kinetic orders (Table 3) and to rate constants 

(Table 4), and logarithmic gains of the independent variables (Table 5). As can be seen in the 

tables, our system has low log gains and mostly low to medium sensitivities of the kinetic 

orders. The primary exception is the kinetic order of laccase with respect to L-DOPA-int 

which equals −19.71.

The results presented show that the relatively simple model presented in the Fig. 2 is self-

consistent with a steady state that is stable. The sensitivities are relatively small suggesting 

that this model is robust. Note that this model is only a preliminary analysis and consists of 

only four dependent variables. Additional variables and pathways could be included in the 

system, which would lead to a more detailed analysis of the formation of melanin and its 

regulation by sphingolipid metabolism in Cn. Now, we can simulate a perturbation to study 

the dynamics of the system.

2.6. Model Dynamics

Since the analysis of our system was favorable, we can now perform simulations to see how 

the system behaves dynamically. This is done using the software package by adding a 

statement that changes a variable's value at a specific time and then returns that variable to 

its initial value. This is typically designed to simulate the presentation and removal of a 

stimulus as might be accomplished in a laboratory experiment but may also be applied to 

any sort of perturbation to the system. For example, Fig. 3 illustrates the dynamics when 

Ipc1p activity is decreased by 85% at 1 min and then returned to its initial value at 5 min. 

Another example is shown in Fig. 4, where the concentration of DAG is decreased by 85% 

at 1 min. These two simulation show that the system behaves as expected if either of the 

enzymes are decreased and then returns to steady state. Further scenarios could be tested as 

well, such as increasing the input of PI and or phytoceramide.

2.7. Validation of the Model

Once the mathematical model has been established it becomes essential to perform 

laboratory experimentations to validate its accurateness. For instance, the downregulation 

or/and deletion of IPC1 or/and PKC1 genes by homologous recombination should produce 

mutant strains that make less or no melanin. We would expect IPC and DAG lipid 

measurements to be decreased in the mutant in which Ipc1 is downregulated. Also, in this 

mutant, Pkc1 enzymatic activity should be decreased. Experiments of this type not only help 

to prove (or disprove) the model but also help in finding additional components of the model 

(e.g., cell wall genes regulated by Pkc1 in the regulation of cell wall integrity) (52, 53). In 

the Chapter 16, we provide a detailed description of materials and methods used for 
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performing molecular biology and biochemistry studies in Cn that can be used to validate 

theories generated by systems biology.

Ultimately, reliable models are used as tools for prescreening studies for different kind of 

scenario and for creating novel hypotheses. But the creation of reliable mathematical models 

requires substantial efforts from both biologists and mathematicians. As modeling has 

improved significantly during the past few decades, collaborations between biological and 

computational scientists have begun to show that their effort reveal insights for a better 

understanding of biological processes that neither biologists nor mathematicians could have 

obtained without each other. Thus, the development of mathematical models should be seen 

as a tool that can analyze the system in different ways, complementing laboratory 

experimentations.

3. Analytical Methods

In the sections that follow, we provide a more complete description of the analytical methods 

involved in the modeling of melanin regulation by the sphingolipid pathway.

3.1. Methods of System Characterization

Within the framework of BST, models are usually constructed with either the S-system or 

GMA system representation. In special cases such as ours, where no branch points are 

present, the S- and GMA representations are equivalent. In the more general case, the S-

system representation can be constructed so as to be equivalent to the GMA model at the 

operating point by aggregating all incoming or outgoing fluxes for each dependent variable 

into one incoming and one outgoing flux (please see examples in (35)).

Power-Law Formalism

Synergistic System

Generalized Mass Action

Two kinetic representations are related within the power-law formalism (33, 54). The 

aggregation for Synergistic System (S-System) has one differential equation for each 

dependent variable Xi with one term for the accumulation or synthesis and another term for 

the degradation. In GMA, each equation may contain one, two or more terms. In both 

aggregations, the derivatives of the variables with respect to time t are dXi/dt. Each term 

contains all variables that affect the process that the term represents. The multiplicative rate 

constants α and β could be zero but not negative and the state variables Xj are positive. The 
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exponential parameters are the kinetic order g and h that can be positive or negative real 

numbers; the subscript i enumerates the equations of the process, k refers to the process 

number of production or degradation (in GMA only), n refers to the number of dependent 

variables, and m to the number of independent variables.

3.1.1. S-System—The explanations below correspond with the simple model for the Ipc1–

diacylglycerol–Pkc–laccase–melanin pathway. The general equation that describes the 

biological changes with respect to time can be written as

where  is a function that contains all the variables (dependent Xi and independent Xj) that 

influence the synthesis of the given Xi while  is a function of all variables related with 

degradation of Xi. This can be written as

According with the general properties of biochemical system, a good representation of 

and  is a product of power-law functions of the variables that directly influence the 

production ( ) or degradation ( ) of the quantity Xi, n is the number of dependent 

variables, i corresponds to the dependent variable subscript which typically ranges from 1 to 

n. Each function can be written as a power-law function, as shown below

The parameters α and ß are positive real numbers called the rate constants and g and h are 

kinetic orders and can take on positive or negative values. α and g are parameters related 

with the synthesis of Xi, whereas ß and h are related to the degradation of Xi. Putting these 

two equations together and writing in compact form gives the canonical S-system 

representation.

The S-system in our model contains four equations. Each term contains all the dependent 

and independent variables that have direct effect on the associated degradation or production 

process. Also each variable in each term has one exponent called the kinetic order. The 

kinetic order in the synthesis term is typically labeled g and the kinetic order in the 

degradation term labeled h. Each first subscript i in the kinetic order g or h refers to the 

dependent variable of the equation, and the second subscript j refers to the variable of the 
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exponent. The rate constants αi and ßi have one subscript that identifies the equation in 

question. The S-system equations for the model Fig. 3 are the following:

3.1.2. GMA—As with the S-system, a GMA system contains one differential equation for 

each dependent variable. However, each of these equations may include a sum of any 

number of terms. Typically, the number of terms in an equation is related to the number of 

reactions in which the associated dependent variable is involved. Each term has a rate 

constant αik associated with each synthesis (processes where Xi is a product) and other rate 

constant ßik associated with each degradation (processes where Xi is a reactant). In some 

instances, we relax the constraint on the signs of αik and βik giving a single sum with rate 

constant γik. Each term contains all dependent and independent variables that directly affect 

the process of synthesis or degradation of Xi that the term represents. The index i identifies 

the dependent variable, j the variable influencing the process, and k gives the index of the 

production or degradation process (k = 1,. . .,m). Each variable Xj is raised to its kinetic 

order gijk and hijk (sometimes denominated as fijk).

An important advantage, GMA representation permits the identification of each component 

and each process to be expressed explicitly, retaining the original the stoichiometry of 

influxes and effluxes. However, a significant inconvenience of GMA representation is that it 

does not permit the easy calculation of the steady state solution as does the S-system 

representation.

S- and GMA systems are closely related and, as in our example, sometimes equivalent. 

Models using the GMA representation explicitly represent each process in the system and 

preserve the system stoichiometry. S-systems are often constructed from a GMA model and 

thus require an additional step, the aggregation of fluxes. Despite the fact that the GMA 

system explicitly represents each process, research indicates that the S-system representation 

permits error compensation and approximates the branches of traditional rate laws more 

exactly than GMA representation, although S-system can introduce discrepancies in flux 

stoichiometry. S-systems have a distinct computational advantage in the availability of a 

closed form solution for the steady state. This can be a significant advantage in optimization 

problems and in cases where a large parameter space is being explored. In this example, the 

model includes four differential equations for the dependent variables X1, X2, X3, and X4 

each with one production and one degradation term. In this case, the GMA equations 

coincide with the S-system equations as our model system has no branch points.
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The GMA equations are:

3.2. Kinetic Order Estimation

Kinetic orders can be estimated using several, different methods but frequently these values 

are obtained directly from experimental data, or from any mathematical representation of 

such data. In some particular cases, the slope in a log–log plot of rate versus concentration 

data gives the corresponding kinetic order directly (34). At steady state, when the net flux 

through a dependent variable is zero, the influx and efflux terms must be equal. Thus, a 

given exponent g (or h) can be computed via partial differentiation of V with respect to X 
and multiplied by the ratio of X and V all evaluated at the operating point. The expression is 

formulated as:

The kinetic orders for the influence of a reactant, derived from a Michaelis–Menten rate law 

are between 0 and 1, where a value of 0.5 is obtained when the operating point is such that 

the substrate concentration is equal to the Km of the enzyme.

For example, the production of IPC (X1) is represented by the flux v5,1. The process that 

contributes to this flux is assumed to be irreversible, and the bisubstrate reaction includes 

phytoceramide, X5 and phosphatidylinositol, X6. The enzyme Ipc1 exhibits Michaelis–

Menten kinetics with a Km = 1.35 mol% for phytoceramide, Km = 5 mol% for DAG (48). 

The following equation includes substrate phytoceramide, X5 and phosphatidylinositol, X6:

Derived from Vmax, the flux was calculated from the specific activity VIpc1 = 35 

pmol/min/mg (18). In this simple model, we are assuming that 1 L contains 1 mg of protein.

This gives the following equation for the flux v5,1.

(1)

The kinetic order g1,5 is then computed through partial differentiation of V1
+ with respect to 

X5 which yields:
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The partial derivative using the initial concentrations of the substrates is

and the kinetic order is then calculated as

where 12.29 is produced from solving Eq. 1 using the initial concentrations of X5 and X6. 

The kinetic order g1,6 is obtained in the same fashion, but its partial differentiation is with 

respect to X6 resulting in g1,6 = 0.5241.

3.3. Software Implementation

As mentioned previously, software packages such as PLAS, greatly simplify the 

computations associated with model analysis and simulation. With PLAS, and other 

software packages, the user must typically provide (1) a model description, in this case, the 

system of differential equations for each of the dependent variables, (2) the operating point 

given as a list of values for the dependent and independent variables, normally a steady state 

of the system, (3) equations needed to translate the predicted system response to that of the 

experimental measurement system, and when simulating the system, (4) a set of initial 

conditions, starting time, end time, and reporting time interval. The sample PLAS input 

given below provides these for our model. Here, each of the differential equations is given as 

X1’, X2’, X3’, and X4’ where the “’” indicates that this equation gives the first derivative of 

Xi and the expression is given as a sum of power-law terms (“^” indicates exponentiation). 

The operation point (and steady state) are given by the lines X1 = 1 to X11 = 1500 and the 

start time, end time, and reporting interval are given by t0, t1, and hr. Additional details on 

the PLAS model syntax and options are given in the software documentation. Below is the 

PLAS code for our model.

X1 ’ = .1119780350157*X5^.2621359223298*X7^1. *X6^.

5241090146750-12.29000020354*X1^1.

X2 ’ = .1119780350157*X5^.2621359223298*X7^1. *X6^.5241090146750-.

3234210579878*X2^1.

X3 ’ = .9474646868175e-2*X9^.3103448275861*X10^1.-.

7915373351201e-6*X11^1.*X8^1.*X2^1. *X3^.3710

X4 ’ = .7915373351201e-6*X11^1.*X8^1.*X2^1. *X3^.3710-2.413793103448*X4^1.
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&& X5 X6 X7 X8 X9 X10 X11

!! XX1 XX2 XX3 XX4 Ib

!! XXINDEP Ib

‘// Dependent and independent variables‘ = 1 .. 11

X1 = 1

X2 = 38

X3 = 1

X4 = 1

X5 = 3.8

X6 = 4.54

X7 = 35

X8 = 53.5

X9 = 1000000

X10 = 3.5

X11 = 1500

XX1 = X1

XX2 = 1/38*X2

XX3 = X3

XX4 = X4

// Times

t0 = 0

hr = .1

tf = 150

3.4. Steady State Solution

At steady state, the time rate of change for all dependent variables must be 0 and thus all of 

the equations in the S-system model (or GMA model) must equal 0. For S-systems, the 

resulting expression equates a difference of two power-law terms to 0. Moving the 

degradation term to the opposite side and taking logarithms results in a system of equations 
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linear in the log concentrations. Given the gs, hs, αs, and βs, this system of equations can be 

solved for the system steady state (32).

The PLAS software executes these calculations and provides the computed steady state. The 

software additionally evaluates a linearized model at the computed steady state and gives us 

the eigenvalues for that model from which we can determine the stability of the system. In 

this model, the real parts are negative; the steady state is locally stable indicating that the 

system returns to the steady state following small perturbations.

3.5. Logarithmic Gains

We often wish to predict how the system responds to an increase or decrease in one of the 

independent variables to understand, for example, how over expression of an enzyme or 

increase in available nutrient might change the steady state of the system. Logarithmic gains 

indicate this relation of change between the dependent concentration Xi and the independent 

concentration Xj. The logarithmic gains characterize the propagation of biochemical signals 

throughout the system (55). These systemic properties are obtained by a single analytical 

solution of the steady state equations within the framework of the S-system representation 

(33).

Logarithmic gains can be used to understand changes in either dependent variable steady 

states or changes in steady state fluxes. The expression for a flux gain is given by the 

equation

A similar equation can be used to compute dependent variable logarithmic gains. If the 

resulting log gain is greater than 0, this implies amplification of the original signal; a 

magnitude less than 0 indicates attenuation. If the log gain is positive, this indicates that the 

changes of the independent and dependent variable are in the same direction, both increase 

and both decrease. If the log gain is negative, this indicates that the changes are in opposite 

directions.

3.6. Sensitivities

Sensitivities, like logarithmic gains, provide a measure of how the system steady state 

concentrations and steady state fluxes change with changes to rate constants and kinetic 

orders. Again, these values provide a relative indication of effect.

3.6.1. Sensitivities of the Rate Constant Parameters on the Metabolites—
Metabolite sensitivities with respect to a rate constant indicates a relative change in the 

steady state dependent concentration Xi in response to changes in the rate constant, 

calculated by differentiation. For S-systems, some sensitivities are linked by the structure of 

the equation system. Increasing a production rate constant is mathematically equivalent to 

decreasing the corresponding degradation rate constant. Therefore, the sensitivity of Xi with 

respect to α is equivalent but with negative sign to the sensitivity of Xi with respect ß. This 
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can be expressed as the following equations giving the relative change in a dependent 

concentration Xi with respect to relative change in the rate constants α and ß.

3.6.2. Sensitivities of the Rate Constant Parameters on the Fluxes—The 

equations for the sensitivities of the rate constants with respect to the fluxes are

The details of these derivations of these equations can be found in (35). The PLAS program 

includes procedures to calculate the logarithmic gains and sensitivities.

3.6.3. Sensitivities of the Kinetic Order Parameters on the Metabolite—This 

sensitivity shows a relative change in Xi given a relative change in a kinetic order gij. This 

influence is given by a magnitude that correspond to S(Xi, gij).

The sensitivities with respect to kinetic orders are:

3.6.4. Sensitivities of the Kinetic Order Parameters on the Fluxes—The change 

that can be generated in a flux when a kinetic order is changed is defined in the following 

fashion:

3.7. Advantages of S-System Representation

In this analysis, we have chosen to use a modeling representation developed from BST, in 

particular the S-systems representation. Choosing this framework brings a wealth of theory, 

numerous examples from the literature, established methods for the analysis of biochemical 

systems, and freely available software implementing the required calculations. The S-system 

representation provides some additional advantages. The steady state in S-systems can be 

expressed in linear equations that govern the local behavior of the intact biological system 

(32). The formalism is consistent with biologically relevant allometric relationships that 

quantitatively characterize the relative growth among the parts of the biological systems. S-

system equations allow explicit symbolic determination of conditions for local stability and 
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have been shown to represent the behavior of many biological systems with sufficient 

accuracy. For further study, we recommend the textbook from Voit (35).
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Fig. 1. Signaling pathway regulating melanogenesis in Cryptococcus neoformans (Cn) by 
sphingolipids
Diacylglycerol (DAG) produced by Ipc1 activates Pkc1 through the C1 domain of Pkc1. 

Activation of Pkc1 maintains the structure of the cell wall, which enables laccase to produce 

melanin granules deposited in the cell wall. Melanin production is required for pathogenesis 

of Cn. PI phosphatidylinositol, Ipc1 inositol phosphoryl ceramide synthase 1, Pkc1 protein 

kinase C 1, L-DOPA-ext L-Dopamine extracellular, L-DOPA-int L-Dopamine intracellular.
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Fig. 2. Network map of the production of melanin via the signaling cascade: Ipc1–-DAG–Pkc1
Based on the pathway described in Fig. 1., the system has four dependent variables X1, X2, 

X3, X4 and seven independent variables X5, X6, X7, X8, X9, X10, and X11. Metabolites are 

shown as boxes with dependent variables in bold, enzymes as ovals, and the transport 

process as a circle. Solid arrows indicate flux and dashed arrows indicate that the variable 

has an effect on the system. Positive signals are indicating activation.
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Fig. 3. Decrease of the enzyme Ipc1 by 85%
The results show that X1 and X2 decrease and then reach the steady state. X3 increases 

rapidly and significantly (approximately fourfold) and then back to the steady state. X4 

exhibits a slight S shape before reaching the steady state.
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Fig. 4. Decrease of the metabolite DAG by 85%
The results show an increase of X3 by 3.36 fold and a decrease of X4. This perturbation does 

not affect X1. After the perturbation, all variables reach quickly their initial values.
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Table 1

Model variables with initial values

Type Symbol Variable name Role Initial value Reference

Dependent X 1 IPC
a Metabolite

1 mol%
b (56)

X 2 DAG
c Metabolite 38 pmol/nmol Pi (18)

X 3 L-DOPA-int
d Metabolite

1
e (42)

X 4 Melanin Metabolite
1
f (42)

Independent X 5 Phytoceramide Metabolite 3.8 pmol/nmol Pi (18)

X 6 PI
g Metabolite 4.54 mol% (56)

X 7 Ipc1
h Enzyme 35 pmol/min/mg (18)

X 8 Pkc1
i Signaling molecule

53.5 pmol/min/mg
j (18)

X 9 L-DOPA-ext
k Metabolite 106 nM (42)

X 10 Transport Process
3.5 nmol/min/mg of cells

l (43)

X 11 Laccase Enzyme 1,500 pmol/min/107 cells (18)

a
Inositol phosphoryl ceramide

b
The total membrane concentration of IPC is 1 mol% under normal conditions during exponential growth, value reported by Wu et al. (56). Mol% 

is equivalent to the concentration of sphingoid base or phosphatidate/concentration of total phospholipid

c
Diacylglycerol

d
L-Dopamine intracellular

e
C. neoformans grown in L-3,4-dihydroxyphenylalanine (L-DOPA) external (42). The L-DOPA internal concentration is assumed equal to the 

relative melanin contents

f
This concentration refers to the relative melanin contents whose value is equal to 1 (42)

g
Phosphatidylinositol

h
Inositol phosphoryl ceramide synthase 1

i
Protein kinase C 1

j
Serine/threonine kinase whose specific activity in the absence of lipids is reported as 31.5 pmol/min/mg. In the presence of the DAG subspecies, 

its activity was increased by 1.7 fold (18)

k
L-Dopamine extracellular

l
Vmax
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Table 2

Steady state and stability assessment using PLAS software. Eigenvalues for the S-system model (Fig. 2) of 

cascade Ipc1–DAG–Pkc1–laccase

Steady state Eigenvalues

Variable Value Flux Re Im

X 1 1 12.29 −12.29 0

X 2 38 12.29 −2.41 0

X 3 1 2.41 −0.90 0

X 4 1 2.41 −0.32 0
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Table 3

Influence of the rate constant on the metabolite concentrations of the model in Fig. 2

Metabolite concentration Flux of metabolite

Equation Rate constant X 1 X 2 X 3 X 4 V(X1) V(X2) V(X3) V(X4)

IPC
a α 1 1 – – – 1 – – –

β 1 −1 – – – – – – –

DAG
b α 2 – 1 −2.7 – – 1 – –

β 2 – −1 2.7 – – – – –

L-DOPA int
c α 3 – – 2.7 1 – – 1 1

β 3 – – −2.7 −1 – – – −1

Melanin α 4 – – – 1 – – – 1

β 4 – – – −1 – – – –

a
Inositol phosphoryl ceramide synthase 1

b
Diacylglycerol

c
L-Dopamine intracellular
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Table 5

Sensitivity of the kinetic orders on the metabolite concentrations and fluxes of the model in Fig. 2. The largest 

negative influence is on L-Dopamine (L-DOPA) concentration, X3. This metabolite responds to a change in the 

kinetic order associate to degradation h3,11; increase its concentration when this parameter decreases. 

Additionally, S(X4, g4,11) indicates an increase in melanin concentration, X4 when its own synthesis increases

Metabolite concentration Flux of metabolite

Independent variable X 1 X 2 X 3 X 4 V(X1) V(X2) V(X3) V(X4)

Phytoceramide X 5 0.26 0.26 −0.71 – 0.26 0.26 – –

PI
a X 6 0.52 0.52 −1.41 – 0.52 0.52 – –

Ipc1
b X 7 1.00 1.00 −2.70 – 1.00 1.00 – –

Pkc1
c X 8 – – −2.70 – – – – –

L-DOPA-ext
d X 9 – – 0.84 0.31 – – 0.31 0.31

Transport X 10 – – 2.70 1.00 – – 1.00 1.00

Laccase X 11 – – −2.70 – – – – –

a
Phosphatidylinositol

b
Inositol phosphoryl ceramide synthase 1

c
Protein kinase C 1

d
L-Dopamine extracellular
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