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ABSTRACT

The delayed flowering phenotype caused by nitrogen (N) fertilizer application has been known for a long
time, but we know little about the specific molecular mechanism for this phenomenon before. Our study
indicated that low nitrogen increases the NADPH/NADP" and ATP/AMP ratios which affect adenosine
monophosphate-activated protein kinase (AMPK) activity and phosphorylation and abundance of nuclear
CRY1 protein. Then CRY1 acts in the N signal input pathway to the circadian clock. Here we further discuss:
(1) the role of C/N ratio in flowering, (2) circadian oscillation of plant AMPK transcripts and proteins, (3)
conservation of nutrition-mediated CRY1 phosphorylation and degradation, and (4) crosstalks between

nitrogen signals and nitric oxide (NO) signals in flowering.

Cryptochrome 1 (CRY1) is a blue light receptor which works
upstream of the photoperiod pathway and controls plants flow-
ering through interaction with other light signaling compo-
nents. CRY1 regulates the expression of flowering-related genes
CONSTANS (CO) and FLOWERING LOCUS T (FT)."? Here in
our study, CRYI has been identified as the pivotal gene in the
nitrogen (N)-regulated flowering pathway.” N mediates the
central oscillator through the CRY1 input pathway.” Carbohy-
drates (C) generate another nutrition signal, which also regu-
lates flowering. A recent report found that sugars repress the
expression of the morning-expressed gene PSEUDORESPONSE
REGULATOR 7 (PRR7) and activate the key component the
central oscillator CCA1.* Similar to the high N condition, nitric
oxide (NO) also causes the inhibition of floral transition
through repressing circadian-clock output genes CO and
GIGANTEA (GI).” In summary, N, C and NO may influence
the circadian clock through the input pathway, the central
oscillator pathway and the output pathway, respectively
(Fig. 1). Furthermore, circadian-clock output signals in turn
give a feedback to the input pathway.

C/N ratio may also affect flowering

C and N are indispensable elements among various nutrients
and they are affected by many environmental cues such as abi-
otic and biotic stresses, atmospheric CO,, circadian rhythm
and so on.°'® The change of N must be accompanied by a
change of C/N ratio. Therefore, our previous study did not rule
out the side-effect of altered C/N ratios. However, both the low
C condition (MS media without sucrose) and the high C condi-
tion (MS media with 5% sucrose) show late-flowering pheno-
types (our unpublished data). Thus, C and N may regulate

ARTICLE HISTORY
Received 15 July 2016
Accepted 28 July 2016

KEYWORDS

Adenosine monophosphate-
activated protein kinase;
circadian clock;
cryptochrome 1; nitrate
reductase; nitrogen-
regulated flowering

flowering through different pathways. Given that nitrogen lev-
els regulate ferredoxin-NADP™"-oxidoreductase and ATP syn-
thesis rate (energy metabolism flow),>'! nitrogen metabolism
and carbon metabolism may be tightly linked with each other.
The crosstalk between C metabolite signals and N metabolite
signals needs further investigations.

The role of AMPK in plant cells

AMPK is the key molecular in biological energy metabolism.
AMPK is a heterotrimeric protein kinase consisting of a cata-
lytic () subunit and 2 regulatory (B, ) subunits.'> Under con-
ditions of hypoxia, exercise, ischemia, heat shock, and low
glucose, AMPK is activated allosterically by rising cellular AMP
and by phosphorylation of the catalytic « subunit.'* In mam-
malian cells, AMPK plays a broader role in regulating whole-
body energy metabolism and glucose homeostasis through the
regulation of processes like muscle glucose uptake, insulin pro-
duction and secretion, management of body lipids, and appe-
tite."> But its functions in plants were rarely reported. The
SnRK family in Arabidopsis is the homologous to mammalian
AMPK, which comprised of 3 distinct subfamilies.'* Arabidop-
sis AMPKa1 shows inhibitory responses to sugar metabolites,
especially the trehalose-6-phosphate (T6P)."” But no clear cor-
rection between plant SnRK family proteins and sugar signaling
or other nutritional signaling in plant cells has been identified.
Here we find that the high level of AMP under the high N con-
dition activates Arabidopsis AMPKa1.> Similar to mammal
AMPKs, the AMPKa1 protein in plant cell nuclei also shows a
robust rhythm.” Furthermore, nuclear activity of AMPKa1 was
also higher in the day than at night. In mammal cells, circadian
expression of AMPKf2 transcript has been observed.'® Because
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Figure 1. Diagram of the effects of N, sugar, NO on circadian clock. The input path-
way may also give a feedback to the input pathway.

the subunit composition of AMPK complexes regulates its
localization, oscillating AMPKB2 could diurnally regulate the
nuclear import of AMPK."® Circadian expression of AMPKf2
mRNA and the diurnal AMPK import should be further veri-
fied in plant cells.

Conservation of AMPK-CRY 1 pathway in nutritional
signaling

Previous studies in mammalian cells have demonstrated that
AMPK regulates CRY1 stability. Active nuclear AMPK phos-
phorylates cryptochromes, thus increasing their interaction with
F-box and leucine-rich repeat protein 3 (FBXL3) and leading to
ubiquitin-dependent proteasomal degradation.'®'” However in
Arabidopsis cells, blue-light-induced CRY1 phosphorylation is
not accompanied by a decrease in its protein steady-state-level.'®
Indeed, Arabidopsis CRY1 is a light-stable protein; while CRY2
is a light-labile protein.'®'® Experiments in Arabidopsis demon-
strated that the blue-light-dependent phosphorylation of CRY2
(but not CRY1) triggers its degradation." Different subcellular
localization of Arabidopsis CRY1 between light conditions
(mainly in the cytosol) and dark conditions (mainly in the
nucleus) might be the reason.”® In plant cells, nuclear AMPK
induce nuclear CRY1 phosphorylation.” While phosphorylated
nuclear CRY1 promotes its ubiquitin-dependent degradation
(the localization of ubiquitin-dependent proteasomes exist both
in cytosol and the nuclear).>'® Thus, the nutritional status —
AMPK - CRY1 - circadian clock pathway may represent a con-
served mechanism in higher eukaryotes.™'®

NO may patrticipate in N-regulated flowering

Nitrate reductase (NR) is the key enzyme in N assimilation that
catalytic reduction from nitrate to nitrite. NR produces NO
from nitrite by NAD(P)H-dependent manner.>'>> Therefore,
our previous study cannot rule out the side-effect of NO gener-
ated by the N assimilation. NO is involved in photoperiod and

autonomous flowering pathway (NO represses the amplitudes
of output pathway components CO and GI).” These correla-
tions imply that N-regulated flowering pathways may be very
complex. We should consider more about carbon metabolite
signals and NO signals in the future studies.
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