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� Background and aims Boron is essential for plant growth but hazardous when present in excess. As the antioxi-
dant properties of hydrogen gas (H2) were recently described in plants, oxidative stress induced by excess boron
was investigated along with other biological responses during rice (Oryza sativa) seed germination to study the ben-
eficial role of H2.
� Methods Rice seeds were pretreated with exogenous H2. Using physiological, pharmacological and molecular
approaches, the production of endogenous H2, growth status, reactive oxygen species (ROS) balance and relative
gene expression in rice were measured under boron stress to investigate mechanisms of H2-mediated boron toxicity
tolerance.
� Key Results In our test, boron-inhibited seed germination and seedling growth, and endogenous H2 production,
were obviously blocked by exogenously applying H2. The re-establishment of ROS balance was confirmed by re-
duced lipid peroxidation and ROS accumulation. Meanwhile, activities of catalase (CAT) and peroxidase (POX)
were increased. Suppression of pectin methylesterase (PME) activity and downregulation of PME transcripts by H2

were consistent with the alleviation of root growth inhibition caused by boron. Water status was improved as well.
This result was confirmed by the upregulation of genes encoding specific aquaporins (AQPs), the maintenance of
low osmotic potential and high content of soluble sugar. Increased transcription of representative AQP genes
(PIP2;7 in particular) and BOR2 along with decreased BOR1 mRNA may contribute to lowering boron
accumulation.
� Conclusions Hydrogen provides boron toxicity tolerance mainly by improving root elongation, water status and
ROS balance.

Key words: Oryza sativa, boron toxicity, seed germination, root elongation, hydrogen gas, ROS balance, water sta-
tus, aquaporins.

INTRODUCTION

Although boron (B) is an essential micronutrient for plant
growth, an excessive concentration of B due to arid and saline
soils, as well as low rainfall and poor irrigation, usually produ-
ces toxicity in plants, including inhibition of seed germination
and seedling growth and reduction of crop yield (e.g. Reid
et al., 2004; Roessner et al., 2006; Miwa et al., 2007). The inhi-
bition of root elongation has been found to be one of the most
distinct symptoms among all the responses to B toxicity in
plants (e.g. Chio et al., 2007; Tanaka and Fujiwara, 2008), and
it has been reported that pectin methylesterase (PME) and os-
motic potential are involved in this process (Chio et al., 2007;
Tanaka and Fujiwara, 2008). Due to the excess B normally oc-
curring in arid and semiarid areas, water stress is another seri-
ous problem (e.g. Ben-Gal and Shani, 2003; Reid et al., 2009;
Pandey and Archana, 2013). Several genes encoding B trans-
porters have been identified to play roles in B absorption or
providing tolerance to B toxicity, including PIP2;4, PIP2;7
(Kumar et al., 2014), TIP5;1 (Pang et al., 2010) and BOR1

(Nakagawa et al., 2007), as well as Bot1 in barley (Sutton
et al., 2007) and BOR4 in Arabidopsis (Miwa et al., 2007).
Excess of B could also trigger the overproduction of reactive
oxygen species (ROS) in plant cells, thus leading to oxidative
damage in biomembrane lipids and other macromolecules (e.g.
Cervilla et al., 2007, 2009). In response to ROS accumulation,
activities of antioxidant enzymes, including superoxide dismut-
ase (SOD), catalase (CAT), ascorbate peroxidase (APX) and
guaiacol peroxidase (POX), were modulated. Thus, enhanced
antioxidant enzyme activities have been shown to be closely as-
sociated with plant tolerance of excess B (e.g. Ardıc et al.,
2009; Aftab et al., 2010).

The production of hydrogen gas (H2) in higher plants was
discovered in 1964 (Renwick et al., 1964), and hydrogenase-
like genes have been reported (Cavazza et al., 2008; Zeng
et al., 2013). In animals, the antioxidant property of H2 was first
described in 2007 owing to its ability to react directly with
ROS (Ohsawa et al., 2007). Subsequently, a series of investiga-
tions showed that H2 exhibits multiple biological functions in
clinical trials owing to its antioxidant ability (e.g. Buchholz
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et al., 2008; Taura et al., 2010). Ample evidence further con-
firmed that H2 exhibits potential as a new antioxidant and sig-
nalling molecule in preventive and therapeutic applications
(e.g. Huang et al., 2010; Kawaguchi et al., 2014; Iuchi et al.,
2016). Similar to the approach used in animals, hydrogen-rich
water was regarded as a safe and easily available means of in-
vestigating the physiological function of endogenous H2 in
plants. It has been shown that H2 might be a novel bioregulator
involved in phytohormone signalling (Zeng et al., 2013), the
delay of fruit senescence (Hu et al., 2014) and plant responses
to various stresses, including paraquat (Jin et al., 2013), ultravi-
olet radiation (Su et al., 2014; Xie et al., 2015), drought (Xie
et al., 2014), salinity (Xie et al., 2012; Xu et al., 2013), cad-
mium (Cui et al., 2013) and mercury exposure (Cui et al.,
2014). However, whether H2 regulates plant adaptive responses
to B toxicity is unknown. Most importantly, the above-men-
tioned beneficial responses in plants were mostly attributed to
the antioxidant behaviour of H2.

In this report, excess B-induced ROS imbalance and other bi-
ological responses during rice seed germination were used as
excellent models in which to study the specific mechanism of
action of H2. Our results showed that, besides the function of
H2 in the re-establishment of ROS imbalance, tolerance to B
toxicity is associated with reduced B accumulation and the im-
provement of water status. Alleviation of seed germination and
root growth inhibition was also observed. Related mechanisms
were primarily illustrated.

MATERIALS AND METHODS

Plant materials, growth conditions and experimental design

Rice (Oryza sativa, Nanjing 49) seeds were surface-sterilized
with 5 % (v/v) hypochlorite (NaClO) for 15 min and rinsed ex-
tensively in distilled water for 30 min. Seeds were presoaked in
hydrogen-rich water for 24 h and then transferred to Petri dishes
containing 5 mL of distilled water or 10 mM boric acid
(H3BO3) solution (B). All seeds were grown in a growth cham-
ber in darkness and kept at 28 �C. After various treatments, the
samples were harvested and used immediately. Alternatively,
plant tissues were frozen in liquid nitrogen and stored at
�80 �C until further analysis.

Seeds were supplied with H2 by adding hydrogen-rich water
to the seed-bathing solution. Purified hydrogen gas (99�99 %,
v/v) generated from a hydrogen gas generator (SHC-300;
Saikesaisi Hydrogen Energy, Shandong, China) was bubbled
into 1000 mL of distilled water at the rate of 150 mL min�1 for
30 min. Then, the hydrogen-saturated water was immediately
diluted to the required concentrations [1, 10, 50 and 100 % sat-
uration (v/v)]. The H2 concentration in freshly prepared solu-
tions, analysed by gas chromatography (GC; Agilent 7890A,
equipped with a thermal conductivity detector), was 0�008,
0�08, 0�39 and 0�78 mM, respectively, and maintained at a rela-
tively constant level for at least 12 h.

Determination of endogenous H2 content

To analyse endogenous H2 content, headspace sampling of
gas followed by GC (Agilent 7890A equipped with a thermal

conductivity detector) was adopted with minor modifications
according to a method described previously (Xie et al., 2014).
Rice seedlings (0�2 g) were homogenized with 7 mL of distilled
water and then placed in a vial, followed by the addition of
5 lL of octanol and 139 lL of concentrated sulphuric acid
(H2SO4). Pure nitrogen (N2) was then bubbled into the vial to
fully displace the air. After being capped and shaken vigorously
for 1 min, the vial was heated at 70 �C for 1 h to liberate H2 be-
fore analysis.

Analysis of germination and growth

Germination tests were carried out using at least three repli-
cates of 120 seeds each. After various treatments at the indi-
cated time points, germination parameters (germination rate,
germination energy and germination index) were recorded.
Seed germination energy (%) was calculated as (number of ger-
minating seeds/number of total seeds per treatment after germi-
nation for 2 d) � 100. The germination index (GI, %) was
calculated as described by the Association of Official Seed
Analysts (1983), using the following formula: GI ¼

P
(Gt/Dt),

where Dt is the number of days to germination and Gt is the
number of germinating seeds in correspondence to Dt. Seeds
were considered to have germinated when the emerging root
was approximately equal to the length of the seeds. We also
determined root and shoot lengths and fresh and dry weights.

Additionally, soluble sugar content was determined as de-
scribed by Dubois et al. (1956).

Analysis of osmotic potential and water status

Total water content was determined as fresh weight minus
dry weight per plant. Water status of tissues, measured in terms
of specific water content (SWC), relative water content (RWC),
water uptake capacity (WUC) and water saturation deficit
(WSD), was determined as described by Pandey and Archana
(2013).

The osmotic potential in rice root tips (3 mm in length) was
measured with a PSYPRO (C52; Wescor, South Logan, UT,
USA), and calculated according to the van ’t Hoff equation.

Determination of boron content

Dried rice roots (�100 mg) were digested with 2 mL of
68 % (v/v) nitric acid (HNO3) using a Microwave Digestion
System (Milestone Ethos T, Italy) for 30 min. The B content
was measured with an inductively coupled plasma optical emis-
sion spectrometer (ICP-OES; Perkin Elmer Optima 2100DV).

Analysis of thiobarbituric acid-reactive substances and ROS

Lipid peroxides were measured by measuring the concentra-
tion of thiobarbituric acid-reactive substances (TBARS)
(Hodges et al., 1999). The absorbance of the supernatant was
read at 532 nm and corrected by elimination of non-specific tur-
bidity at 600 nm. The TBARS content was quantified by using
an extinction coefficient of 155 mM

�1 cm�1 and expressed as
lmol g�1 dry weight.
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The content of H2O2 was estimated according to the method
described by Bellincampi et al. (2000). Rice seedlings were ex-
tracted with 200 mM perchloric acid (HClO4) and mixed with
the substrate solution (500 lM ammonium ferrous sulphate,
50 mM H2SO4, 200 lM xylenol orange and 200 mM sorbitol)
with incubation for 45 min. A calibration curve was obtained
by adding various amounts of H2O2 to the substrate solution
and measuring the respective absorbance values at 560 nm.

Superoxide anion (O2
�•)-scavenging activity was measured

according to the method of Nishikimi et al. (1972) with slight
modifications. Extracts (0�1 g) were mixed with the reaction so-
lution [1�3 lM riboflavin, 13 mM methionine, 63 lM nitroblue
tetrazolium chloride (NBT), 100 lM ethylene diamine tetraace-
tic acid (EDTA) and 50 mM phosphate buffer (PBS), pH 7�8]
and then incubated under 4000 lux illumination at 25 �C for
20 min. The absorbance values of the reaction mixtures were
measured at 560 nm. The relative (O�•

2 )-scavenging activity
(%) was calculated by using the formula: (1�A560 of sample/
A560 of control) � 100.

The hydroxyl radical (•OH)-scavenging activity was also
measured as described by Halliwell et al. (1987) with minor
modifications. Homogenized samples (0.1 g) were added to the
reaction solution [2�8 mM deoxyribose (DR), 50 lM FeCl3,
2�8 mM H2O2, 100 lM EDTA and 10 mM PBS], and incubated
at 37 �C for 60 min after 100 lM ascorbic acid (ASA) had been
added to start the reaction. The results are expressed as the per-
centage inhibition of DR attack, where 100 % attack is defined
as absorbance of DR without addition of samples.

Analysis of enzyme activities

The activities of a-amylase and b-amylase were determined
according to the starch–iodine method described by Collins
et al. (1972). One unit of activity was taken as the quantity of
enzyme giving 50 % of the original colour intensity. Protein
concentration was determined by the method of Bradford
(1976) using bovine serum albumin as the standard.

Pectin methylesterase was extracted using a high-salt buffer
[0�1 M citrate, 0�2 M disodium hydrogen phosphate (Na2HPO4)
and 1 M sodium chloride (NaCl), pH 5�0] (Ren and Kermode,
2000), and its activity was determined according to the method
described by Richard et al. (1994). Extracts (8 lL) were added
to 4 mL of substrate solution [0�5 % (w/v) citrus pectin (Sigma),
0�2 M NaCl and 0�15 % (w/v) methyl red, pH 6�8], followed by
incubation at 37 �C for 2 h. A standard curve was obtained by
adding 80–240 lL of 0�01 M hydrochloric acid (HCl) to 4 mL of
substrate solution and measuring absorbance at 525 nm.

Frozen rice plants (0�2 g) were homogenized in 2 mL of
50 mM PBS (pH 7�0) containing 1 mM EDTA and 1 % (w/v)
polyvinylpyrrolidone for SOD, POX and CAT assays, or the
combination with the addition of 1 mM ASA for the APX assay.
Activity of SOD was analysed by measuring its capacity to in-
hibit the photochemical reduction of NBT (Beauchamp et al.,
1971). One unit of SOD activity was defined as the amount of
crude enzyme extract required to inhibit the reduction rate of
NBT by 50 %. Activity of APX was determined by monitoring
the decrease at 290 nm (extinction coefficient 2�8 mM

�1 cm�1)
(Nakano and Asada, 1981). Activity of CAT was measured by
monitoring the consumption of H2O2 (extinction coefficient

39�4 mM
�1 cm�1) at 240 nm for at least 3 min (Durner et al.,

1996). Activity of POX was determined by measuring the oxi-
dation of guaiacol (extinction coefficient 26�6 mM

�1 cm�1) at
470 nm (Hammerschmidt et al., 1982).

Gel electrophoresis

The isozymes of SOD, APX, CAT and POX were separated
on discontinuous polyacrylamide gels (stacking gel 5 % and
separating gel 10 %) under non-denaturing conditions. Isozyme
activities on the gel were visualized (Woodbury et al., 1971;
Pinhero et al., 1997; Janda et al., 1999). Gels were scanned in
transmission black-and-white mode, and band intensity was cal-
culated by using Quantity One v4.4.0 software (Bio-Rad,
Hercules, CA, USA).

Real-time quantitative reverse transcription–polymerase chain
reaction analysis

Total RNAs were extracted by using Trizol reagent
(Invitrogen, Gaithersburg, MD, USA). Further real-time quantita-
tive reverse transcription–polymerase chain reaction (qRT–PCR)
reactions were performed using a Mastercycler

VR

ep realplex real-
time PCR system (Eppendorf, Hamburg, Germany) with SYBR

VR

Premix Ex TaqTM (TaKaRa Bio, Dalian, China). A list of the ol-
igonucleotide primers used is shown in Supplementary Data
Table S1. All genes were amplified by initial heating at 95 �C
for 10 min followed by 40 cycles at 95 �C for 10 s, x �C (differ-
ent for individual genes) for 20 s and 72 �C for 20 s. Melting
curves were analysed at the dissociation step to examine the spe-
cificity of amplification. Relative expression level was expressed
as the value relative to that of the corresponding control samples
at the indicated times, after normalization to actin1 transcript lev-
els. Data were obtained in three independent experiments with
three replicates for each.

Statistical analysis

Results were expressed as the means 6 s.e. of three indepen-
dent experiments with at least three replicates for each.
Statistical analysis was performed using SPSS 10�0 software ac-
cording to Duncan’s multiple comparison.

RESULTS

Boron inhibited rice seed germination in a concentration- and
time-dependent manner

Rice seed germination rate was examined to evaluate the toxic
effect of excess B. Results showed that the addition of different
concentrations of H3BO3 (B) for 5 d inhibited rice seed germi-
nation rate in a concentration- and time-dependent manner
(Supplementary Data Fig. S1). For instance, in respect to the
B-free control samples, 5 and 10 mM H3BO3 treatments for 5 d
brought about �13�0 and �74 % reduction in germination rate,
respectively. Since 20 mM H3BO3 severely inhibited seed ger-
mination up to �90 % (regarded as a lethal dose), 10 mM

H3BO3 (an excess B condition) was applied in the following
experiments.
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Excess boron decreased endogenous H2 production in
germinating rice seeds

We tested whether the toxic effect of excess B was related to
the production of endogenous H2 in rice plants. By using GC
we observed that, in comparison with the control samples, B
treatment for 24 h significantly inhibited endogenous H2 pro-
duction in germinating seeds (Fig. 1A). This result suggested a
possible role of endogenous H2 in the regulation of B toxicity,
which was assessed in the following experiments.

Hydrogen alleviated inhibition of rice seed germination and
seedling growth caused by excess boron

To test whether endogenous H2 has any role in the alleviation
of B toxicity, rice seeds pretreated with different concentrations
of H2 (using hydrogen-rich water) followed by 10 mM H3BO3

stress were used to compare growth status. Table 1 shows that
rice seed germination (assessed using germination rate, germi-
nation energy and germination index) and seedling growth
were markedly inhibited after being exposed to excess B, with
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more distinct inhibition of root length than of shoot length.
However, pretreatments with H2 ranging from 0�008 to
0�78 mM differentially alleviated the reduction of root and shoot
lengths compared with samples subjected to B stress alone.
Among the pretreatments, 0�39 mM H2 exhibited the most sig-
nificant rescuing effect (except changes in germination energy
and shoot length). Time-course analysis of seed germination
rate exhibited similar tendencies (Supplementary Data Fig. S2),
and 0�39 mM H2 was therefore selected for further experiments.
We also noticed that the application of 0�08 and 0�39 mM H2

alone clearly boosted germination energy, germination index
(but not germination rate), and seedling growth with respect to
the control samples (except germination rate; Table 1 and Fig.
S2).

Subsequent results showed that the addition of 0�39 mM H2

could block B-inhibited H2 production in rice plants (Fig. 1A).
Similar to our previous results (Table 1 and Fig. S2), B-trig-
gered inhibition of seed germination and root growth was less-
ened by H2 (Fig. 1D, E). In particular, the inhibition of fresh
weight rather than dry weight per plant was alleviated to some
extent (Fig. 1B, C). Consistent with the improvement in seed
germination inhibition (Table 1), we discovered that 0�39 mM

H2 pretreatment was able to increase the activities of a/b-amy-
lase in B-stressed rice seeds, which was further confirmed by
the accumulation of soluble sugar (Fig. 2A, B).

Hydrogen improved water status

Normally, excess B can lead to water deficiency in plants,
but low osmotic potential in plant cells can enhance water up-
take and maintain root elongation under low water potential
condition. As expected, higher osmotic potential was observed
in rice roots when supplied with excess B, and this was arrested
by H2 pretreatment (Fig. 2C). Reductions in total water content,
SWC and RWC in rice roots were also observed under excess
B, while WUC and WSD were increased (Fig. 2D–H). By con-
trast, H2 pretreatment differentially increased total water con-
tent and SWC under B toxicity, indicating that water status in
rice roots was partly improved.

Hydrogen suppressed B accumulation by regulating expression of
BOR1 and aquaporin (AQP) genes

In our experimental conditions, excess B treatment for 48 h
led to rapid uptake of B in root tissues, while pretreatment with
H2 significantly suppressed the accumulation of B (Fig. 3). We
also noticed that in the initial 24 h no significant difference in
B content was observed between the presence and absence of
H2. Transcription of the BOR1 gene, encoding an efflux B
transporter in rice roots (Nakagawa et al., 2007), was further
analysed. As expected, downregulation of BOR1 associated
with excess B was markedly increased by H2 (Fig. 4A).
Transcription of BOR2 (a barley homologue of Bot1) and
BOR4 (an Arabidopsis homologue of BOR4) was also analysed.
Pretreatment with H2 clearly upregulated the expression of
BOR2 under B toxicity (Fig. 4B). However, there was no signif-
icant difference in the transcription of BOR4 between H2 pre-
treatment and control samples (Fig. 4C). These results suggest
the possible role of H2 in the suppression of B accumulation by
regulation of BOR1 and BOR2.

Since AQPs, which are membrane-intrinsic proteins, can me-
diate the transport of water and some low molecular weight sol-
utes, including B (Javot and Maurel, 2002; Pang et al., 2010;
Kumar et al., 2014), transcription of five AQP genes was
analysed. In our experimental conditions, the expression of
TIP4;2, TIP5;1, PIP1;1, PIP2;4 and PIP2;7 was decreased by
excess B (Fig. 4D–H), which was consistent with the water de-
pletion under B stress (Fig. 2D–H). However, H2 pretreatment
significantly increased the expression of the AQP genes, espe-
cially PIP2;7, in B-stressed plants.

Hydrogen modulated PME activity and expression of PME genes

Increases in PME activity and PME gene expression may
stiffen the cell wall and lead to the inhibition of root elongation
under B toxicity (Wang et al., 2010). To examine whether the
alleviating effect of H2 on root growth inhibition was related to
PME, further research was conducted. As expected, a signifi-
cant increase in PME activity observed after 48 h of exposure
of rice seeds to excess B was counteracted by H2 pretreatment

TABLE 1. Alleviation of excess of boron-induced inhibition of rice seed germination and root and shoot length by H2

Treatment Germination rate (%, 5 d) Germination energy (%, 2 d) Germination index(%) Root length (%, 3 d) Shoot length (%, 3 d)

0 mM H2!H2O 93�33 6 1�76A 66�00 6 3�46B 53�06 6 0�91B 3�62 6 0�11B 1�28 6 0�05A

0�008 mM H2!H2O 94�67 6 2�3A 79�33 6 6�40A 56�91 6 1�59A 3�78 6 0�1AB 1�29 6 0�05A

0�08 mM H2!H2O 98�00 6 1�14A 88�00 6 1�13A 60�38 6 0�74A 3�91 6 0�11A 1�38 6 0�05A

0�39 mM H2!H2O 96�67 6 1�75A 85�33 6 1�33A 59�19 6 1�01A 3�96 6 0�08A 1�38 6 0�08A

0�78 mM H2!H2O 96�00 6 1�14A 81�33 6 5�70A 57�93 6 1�095A 3�63 6 0�07B 1�28 6 0�04A

0 mM H2!B 24�00 6 2�31c 0�67 6 0�67c 8�12 6 1�15c 0�49 6 0�03b 0�91 6 0�01b

0�008 mM H2!B 45�33 6 2�67b 0�67 6 0�67c 14�73 6 0�09b 0�61 6 0�03b 0�96 6 0�06ab

0�08 mM H2!B 46�00 6 3�05b 3�33 6 0�67a 17�88 6 1�57b 0�67 6 0�03b 1�02 6 0�03a

0�39 mM H2!B 64�67 6 5�21a 1�33 6 0�67bc 24�02 6 1�48a 0�84 6 0�03a 0�91 6 0�07b

0�78 mM H2!B 46�00 6 3�46b 1�33 6 0�67bc 16�46 6 0�05b 0�65 6 0�03b 0�92 6 0�03b

Seeds were presoaked in water in the presence or absence of 0�008, 0�08, 0�39 and 0�78 mM H2 for 24 h and then transferred to H2O or 10 mM H3BO3 solution
(B) for another 5 d.

Values are means 6 s.d. of three independent experiments with at least three replicates for each.
Within each set of experiments, uppercase letters denote significant differences among different H2 pretreatments followed by H2O treatments, and lower-

case letters denote significant differences among different H2 pretreatments followed by B treatments, at P< 0�05 according to Duncan’s multiple comparison
test.
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(Fig. 5A). The results of qRT-PCR further showed that B toxic-
ity stimulated the gene expression of PME11, PME14 and
PME27 (Fig. 5B). However, H2 pretreatment partly abolished
the induction by B of PME genes, especially PME14.

Hydrogen modulated ROS homeostasis

Excess B usually leads to ROS imbalance. To examine
whether the beneficial role of H2 in B toxicity was related to
the modulation of ROS imbalance, we measured TBARS
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FIG. 2. Hydrogen modulates amylase activities, soluble sugar content, osmotic potential and water status in rice seedling roots under boron toxicity. Seeds were pre-
soaked in water in the presence or absence of 0�39 mM H2 for 24 h and then transferred to water (!H2O) or 10 mM H3BO3 solution (!B). Activities of a-amylase
and b-amylase (A) were measured after 48 h of different treatments. Soluble sugar content (B), osmotic potential (C) and the water status parameters of total water
(D), specific water content (SWC; E), relative water content (RWC; F), water uptake capacity (WUC; G) and water saturation deficit (WSD; H) were measured after
72 h of the treatments. Within each set of experiments, values are the means 6 s.e. of three independent experiments with at least three replicates for each. Different

letters and * denote significant differences at P < 0�05 according to Duncan’s multiple comparison test.
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content and accumulation of ROS. Pretreatment with 0�39 mM

H2 significantly suppressed the accumulation of TBARS caused
by excess B (Fig. 6A). This result was consistent with the
changes in ROS, showing that B-triggered H2O2 production
was partially alleviated by H2 (Fig. 6B). The scavenging activi-
ties of O�•

2 and •OH in rice seedlings were increased (Fig. 6C,
D). These results suggest that H2 has a protective function
against B-induced lipid peroxidation and oxidative stress in
rice.

As antioxidant enzymes are mainly responsible for scav-
enging ROS, the activities of antioxidant enzymes
were measured. The results showed that B-inhibited CAT
(Fig. 6G) and in particular POX (Fig. 6H) activities were
differentially improved by H2 pretreatment. Slight but non-
significant increased activities of SOD (Fig. 6E) and APX
(Fig. 6F) were observed.

To further confirm the above results, we conducted a non-de-
naturing polyacrylamide gel electrophoresis (PAGE) analysis
(stacking gel 5 %, separating gel 12 %) (Fig. 7). At least five
SOD isozymes, seven APX isozymes, two CAT isozymes and
three POX isozymes were observed in germinating rice seeds.
Similar to the results for total activities shown in Fig. 6, CAT
and POX isozyme activities in B-stressed plants were increased
by H2 pretreatment, especially CAT-I and in particular POX-I
isoforms. Apart from this, no obvious differences were found in
the isozyme activities of SOD and APX in the presence or ab-
sence of H2 followed by B stress.

DISCUSSION

Hydrogen alleviated boron toxicity by modulating ROS
homeostasis

Excess of B can lead to plant growth inhibition and crop
yield reduction (e.g. Reid et al., 2004; Roessner et al., 2006;
Miwa et al., 2007). Our results show that rice seed

germination, root growth and shoot growth were seriously in-
hibited by excess B (Table 1, Fig. S1), and a reduction in
fresh weight and dry weight was also observed (Fig. 1B–E).
The above responses to B toxicity, as well as oxidative dam-
age and membrane peroxidation (Fig. 6A and B), were the
most common symptoms occurring in plants (e.g. Chio et al.,
2007; Tanaka and Fujiwara, 2008; Wang et al., 2010; Pandey
and Archana, 2013). Previous results confirmed that re-
establishment of ROS homeostasis is beneficial for plants un-
der B toxicity (e.g. Cervilla et al., 2007, 2009; Ardıc et al.,
2009; Aftab et al., 2010). For example, B tolerance of chick-
pea was closely related to increased capacity of the antioxi-
dant system (Ardıc et al., 2009). Further results showed that
exogenously applied H2 (0�39 mM) not only significantly
blocked B-inhibited endogenous H2 production (Fig. 1A) but
also alleviated the inhibition of rice seed germination and
seedling growth (Table 1, Fig. 1 and Fig. S2).

Previous studies revealed that H2 plays an important role
in preventive and therapeutic applications by alleviating oxi-
dative damage (e.g. Ohsawa et al., 2007; Buchholz et al.,
2008; Huang et al., 2010; Taura et al., 2010; Kawaguchi
et al., 2014; Iuchi et al., 2016), and proved that H2 could re-
act directly with cytotoxic ROS due to its ability to rapidly
diffuse across membranes (Ohsawa et al., 2007; Taura et al.,
2010; Iuchi et al., 2016). Consistently, in our experiments,
H2 alleviated B-induced lipid peroxidation and H2O2 overpro-
duction (Fig. 6A, B), which was further confirmed by the en-
hancement of ROS scavenging ability (Fig. 6C, D) and
activities of CAT and POX (Figs 6 and 7). These effects
may be beneficial for the improvement of rice seed germina-
tion and seedling growth under B toxicity. Similar antioxidant
behaviours of exogenous H2 have been reported in studies of
plant tolerance of abiotic stresses (e.g. Xie et al., 2012, 2014,
2015; Cui et al., 2013, 2014; Jin et al., 2013; Xu et al.,
2013; Su et al., 2014).

Hydrogen alleviated rice growth inhibition and water stress
caused by toxic boron

It has been reported that excess B can lead to marked inhibi-
tion of root elongation in plants, the critical site for sensing B
toxicity being the root apex (e.g. Chio et al., 2007; Tanaka and
Fujiwara, 2008; Wang et al., 2010). We also observed a clear
decrease in rice root length (Table 1) and water depletion (Fig.
2D–H) in germinating seeds when supplied with excess B.
These toxic responses were significantly rescued by H2 pre-
treatment. In fact, it has been reported that the most severe
stress happens when tomatoes are grown under both B toxicity
and water stress (Ben-Gal and Shani, 2003), while rain can sig-
nificantly reduce B toxicity (Reid and Fitzpatrick, 2009).
Therefore, we deduced a possible link among root growth inhi-
bition, alteration of water status and the beneficial role of H2 in
B-stressed plants.

The expansion of root cells by water absorption is controlled
by the osmotic potential in cell sap and the mechanical proper-
ties of the cell wall (Pritchard, 1994). Apart from this, lower os-
motic potential could play an important role in the maintenance
of plant root elongation at low water potential (Rodriguez
et al., 1997). In our experiments, a higher level of osmotic
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potential was observed in rice roots under excessive B (Fig.
2C). This may partly explain the water depletion and growth in-
hibition in rice roots. By contrast, H2 pretreatment decreased
the osmotic potential, thus enhancing water absorption and

alleviating root growth inhibition. Our result was also consis-
tent with a study of B-tolerant barley Sahara 3771, showing
that restricting osmotic potential to a lower level could maintain
root elongation under high B (Chio et al., 2007).
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FIG. 4. Hydrogen modulates gene expression of BOR1 (A), BOR2 (B), BOR4 (C), TIP5;1 (D), TIP4;2 (E), PIP1;1 (F), PIP2;4 (G) and PIP2;7 (H) in rice seedling
roots under boron toxicity. Seeds were presoaked in water in the presence or absence of 0�39 mM H2 for 24 h and then transferred to water (!H2O) or 10 mM H3BO3

solution (!B) for another 24 h. Values are means 6 s.e. of three independent experiments with three replicates for each. Different letters denote significant differ-
ences at P < 0�05, and ** denotes significant differences at P < 0�01 according to Duncan’s multiple comparison test.
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The osmotic potential of the cell is modulated by the content
of osmotic solutes and the rate of water flow regulated by
AQPs (Javot and Maurel, 2002; Tabuchi et al., 2004). The con-
tent of soluble sugar in rice roots was decreased by toxic B and
reversed by H2 (Fig. 2B). Soluble sugar in rice roots not only
contributes to the osmotic potential required for water uptake
and cell elongation (Tabuchi et al., 2004; Chio et al., 2007), but
also provides energy for growth. This could explain the im-
provement of plant growth and water status in H2-pretreated
rice plants under B toxicity (Table 1, Figs 1B, C and 2D–H).
Apart from this, the enhanced activities of a/b-amylase trig-
gered by H2 facilitated the conversion of starch into sugars
(Fig. 2A, B). Similarly, a higher soluble sugar content and
lower osmotic potential were found in B-tolerant barely, which
contributed to better root growth compared with B-intolerant
barely (Chio et al., 2007).

Aquaporins are water channel proteins expressed in the
cell membrane of plants, and can facilitate water flow
across root tissues (Javot and Maurel, 2002). Five AQP
genes were downregulated by excess B; this was reversed by

H2 (Fig. 4D–H). These results were consistent with the allevia-
tion of toxic B-induced water stress (Fig. 2D–H). Some AQPs
were also identified as boric acid channels, which play roles in
B uptake under B limitation, or provide tolerance of B toxicity
under excess B (e.g. Pang et al., 2010; Kumar et al., 2014).
Interestingly, B concentration in rice roots was reduced by H2

(Fig. 3). The OsPIP2;4 and OsPIP2;7 proteins have been con-
firmed to be involved in mediating B transport and providing
tolerance via efflux of excess B from root and shoot tissues
(Kumar et al., 2014). In our tests, the expression levels of
PIP2;4 and PIP2;7 genes in B-stressed rice roots were signifi-
cantly upregulated by H2, which may have contributed to the
decreased B accumulation (Figs 3 and 4G, H). The AtTIP5;1
protein is also involved in B toxicity tolerance via vacuolar
compartmentation for B (Pang et al., 2010), and the gene ex-
pression of TIP5;1 was improved by H2 pretreatment as well
(Fig. 4D).

Moreover, OsBOR1 is a B transporter required for efficient
B uptake under B limitation (Nakagawa et al., 2007). We found
that BOR1 transcript in rice roots was decreased by excess B,
an effect that was strengthened by H2 (24 h; Fig. 4A). Apart
from this, Bot1 identified in barley might play a role in limiting
the net entry of B into the root and in the disposal of B from
leaves under high excess boron (Sutton et al., 2007). The gene
expression of BOR2, the homologous gene of Bot1 in rice, was
increased by H2 pretreatment under excess B (Fig. 4B). BOR4
in Arabidopsis functions in the exclusion of toxic B (Miwa
et al., 2007). As expected, the gene expression of BOR4 in rice
was increased under toxic B, but no significant difference was
observed with H2 pretreatment (Fig. 4C). Above all, the
downregulation of BOR1 and upregulation of BOR2 by H2 may
contribute to the decreased concentration of B in rice roots
(48 h; Fig. 3).

Pectin methylesterase, which catalyses the specific demethy-
lesterification of pectic polysaccharide in plant cell walls, can
lead to a stiffening of the cell wall by disrupting pectin gelation
status when enhanced enzymatic activity occurs (Richard et al.,
1994). Increased activity of PME and upregulated gene expres-
sion of PME11, PME14 and PME27 in rice were observed un-
der B toxicity (Fig. 5). Similar changes in the transcription of
eight PME genes and PME activity were used to explain the in-
hibition of rice root elongation caused by aluminium toxicity
(Yang et al., 2013). In fact, the rigidified cell may cause an in-
creased pressure potential and suppress the movement of wa-
ter into the cells (Spollen and Sharp, 1991). This might be
another explanation of water depletion in B-stressed rice roots
(Fig. 2C–H). By contrast, H2 pretreatment significantly re-
versed the high PME activity and PME gene expression in-
duced by excess B. We therefore suggest that H2 may alleviate
rice root growth inhibition and water stress under toxic B by ad-
justing the cell wall rigidity and osmotic potential influenced
by PME. Similarly, hydrogen sulphide (H2S) improved root
elongation inhibition triggered by excess B by targeting cell
wall-related PME (Wang et al., 2010). In kiwifruit, H2 was con-
firmed to suppress the activity of PME and alleviate pectin sol-
ubilization (Hu et al., 2014).

Taking these results together, we suggest the following mech-
anism of H2-mediated tolerance of B toxicity in rice (Fig. 8).
Hydrogen gas keeps osmotic potential low under B toxicity by
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improving soluble sugar content and AQP-related water flow,
and alleviating PME-induced cell wall stiffening. These effects
result in enhanced water uptake and facilitate cell growth for
rice root elongation. The increased soluble sugar content also

provides an energy source for seed germination and seedling
growth. Moreover, upregulation of AQP genes and BOR2, along
with downregulation of BOR1 transcript, may suppress B
accumulation.
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CONCLUSIONS

Our data indicate that H2 alleviates B toxicity in germinating
rice seeds. We observed decreased production of endogenous
H2 in response to B stress and provide evidence for mechanisms
of H2-mediated tolerance of B toxicity in rice: the alleviation of
growth inhibition, water stress and ROS imbalance. Further ge-
netic evidence will be required to investigate the functions of
the B transporters, including BOR1, BOR2 and AQPs, in the
above functions of H2.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of the following. Table S1: sequences of
primers used in qRT–PCR. Figure S1: changes in rice seed ger-
mination rate under different concentrations of boron. Figure
S2: changes in germination rate in rice seeds pretreated with
different concentrations of H2 followed by boron stress.
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